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a= —1 equality (9) is impossible. Hence a; = 0. So Uy = lly = oo = Uy =
for the extremal function and we end the proof similarly to the proof
of theorem 2. . .

Note 3. The case here studied is particulary interesting as it concerns
the classes of meromorphic starlike schlicht functions and meromorphic
gpiral sehlicht functions.

Note 4. The theorems here proved were known for regular starlike
sehlicht funetions and for starlike meromorphic sehlicht functions satisty-
ing the additional assumption a; = 0 [1].
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Note on abstract differential inequalities and Chaplighin
method

by W. MLAK (Krakéw)

We arve interested in this paper in an abstract treatment of the
Chaplighin method [1], [9], [10], [11] for the equation
1) %;zfia;(t)—l—f(t,w(t)).
4 is an infinitesimal generator of a semi-group of linear bounded opera-
tors of class (Cp) in the Banach space B. The essential moment in the
Chaplighin method, is the fact that f(¢,») is convex in x. The second
feature of that method is the use differential inequalities. The purpose
of the present paper is the investigation of the Chaplighin method by using
methods which are closely related to the Hille-Yosida semigroups theory
(see [4]). We make use of some theorems concerning ordinary differential
and integral inequalities. In section 1 we give a Dbrief outline of the no-
tation and definitions. We also discuss some geometric properties of
positive cones. Section 2 presents some results concerning abstract linear
differential inequalities. In sections 3 and 4 we examine almost linear
differential inequalities. Sections 5, 6 and 7 are devoted to the main
object of this paper. Three principal questions are considered. The first
one is the question of existence of the Chaplighin sequence on a common
interval. Next we discuss the problem of uniform boundedness and con-
vergence of the Chaplighin sequence. We then use some assumptions
imposed on the relationship between the partial ordering and metric
properties. Following R. Kalaba [6] we introduce the concept of New-
tonian sequences. Finally we present some results which concern the
estimation of the norm of the difference between the exact solution of (1)
and the approximate one. The last section deals with the uniform bounded-
ness of Newtonian sequences.

1. Preliminaries. Let F be a real Banach space. The norm of
@ el is denoted by |»|. The norm of bounded linear operators is also
denoted by simple bars. The funetion f(¢,®) is defined on <0, «) x B
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and takes on values in H. Let V be the infinitesimal generator of a semi-

group linear bounded operators in E. The semi-group generated by V

is denoted by 7' (#:V). In what follows we consider semi-groups of class (Cy),

ie. such that LmT(h:V)w = for & < E. As far as possible the semi-

=0+ .

groups in question are supposed to be semi-groups of contraction operators,

jie. with norm mnot greater than 1. These agsumptions are introduced

for the sake of simplicity. . o -
The closed set SCE, S s F is a cone if it satisties tl}e following

two conditions (see [4], [13]):
then a+yed,

wel.

(@) if
(3) it
An element @ is said to be positive if © ¢ 8. The partial ordering may be
defined in terms of 8§ with # <y being equivalent to y —« ¢ S. The func-
tional & is said to be positive if &z > 0 for ® ¢ 8. S may be completely
characterised by means of positive linear and continuous functionals.
YWe start with the following theorem (see for instance [2], p. 417):

If K, and K, are disjoint closed convex subsets of B and K, is compact,
then there exist constants a, f and a continuous linear functional & on I
such that

zeS, yek

2>0 and wxe8 then

Er<a< by
for we Ky, y e K.

Suppose now that , € 8. We now put K, = {w,} and I, = §. Hence,
there ave a £e¢E* and constants «, f such that oy < a< f <&y for
4 € 8. We will prove that &y >0 for each y e S. If we suppose the contrary,
then for a certain 7,¢ 8 £yy < 0. On the other hand, ny,e8 for n=1,2,..
and consequently &% < a < f < ényy < 0. Obviously lim &nyy= —oo.

) N=r00
This contradicts the fact that g is finite. We have just proved that the
dual cone 8* = [ {& > 0 for @ ¢ §, & ¢ B*} contains non-trivial elements.

Moreover, it folléws from the above reasoning that the following property
holds:

If Ez >0 for £eS* then weS.

This property is fundamental for our purposes. Xet V be a linear
operator. The domain of V is denoted by D[V]. V i said to be positive
it Vo0 for weS~ D[V]. We then write ¥V > 6. The formula V, <V,
means that V,—V, < 6. A semi-group T(z: U) is callod positive if T'(v: U)
are positive operators for 0 <.

Throughout the present paper with the exception of sections 7 and 8
we agsume that 4 is an infinitesimal generator of a positive semi-group.
For the terminology and other notation conventions we refer in the
sequel to [4].

icm®
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2. Linear differentlal inequalities. The point of departure is
the following lemma (see [18], th. 1):

Leama 1. Let U(t,s) be a family of positive, linear and bounded
opérators defined for 0 < s <t < a.” Suppose that Ult,s) is strongly con-
tinuoys n (t,8) and U(t,t)=1. We assume that the sirong derivative
aU(t, s)mfos exists for @ « D[A(s)] and equals — U (t, s) A (s)@. Let x(t), y (%)
be strongly continuous and let x(t) be strongly differentiable to a'(t) in <0, a).
Suppose that

#'(t) < A (t) +y (@)

for  tec0,a).

Then
i
a(t) <UL, 8)z(s)+ [ U, Dy@dr  jor 0<s<i<a.
8

It is a simple matter to verify that T'(f—s)= U(t, s) where T'(f)
is a positive semi-group of class (C,) satisfies the properties assumed in
lemma 1: 4 = A(t) = const is its infinitesimal generator.

An important role in our investigations is played by the following
lemma:

Lmnea 2. If B(t) 4s summable and if @(t) s strongly absolutely con-
tinuous and strongly differentiable almost everywhere to 2'(1), then, if

£
o[exp ([ p(x)dn) T(1—5)a(s)]

% —<Y(s)

for almost all s € (0,1), we have
i t 32
exp ( [ B(x)d) T(s5)— w(sa) < exp ( [ p(n)de) T(t—s)a(s)+ [ y(x)dr,

for sy < 8 <35 T'(t) is a positive semigroup of class (Cy) and y (t) is supposed
to be Bochner integrable in <0, a) .

Lemma 2 may be proved by using methods similar to that used in
the proof of theorem: 5 of [18].

We first prove the following theorem:

TuEOREM 1. Let A be the infinitesimal generator of a contraction
positive semi-group. Let B() be o strongly continuous operator-valued
fundtion. We assume that there is a f such that B(t)+pI = 6 for t € <0, ad.
Let the strongly differentiable function x(t) satisfy in <0, a) the inequality

() o'(t) < [A+B()]s() .
Suppose that
(3) 2(0) < 0.

Then x(t) < 6 in <0, ad.
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Proof. Let 2(f) = ef'x(t). By (4) we then have
(6) 2(t) < Azt +[B )+ BI2(t) .

It follows from lemma 1 and from (3) and (G) that

11
()é]l‘(t——zA)[B 7) + B2 (7) dr

The operator T(¢—v:A)[B(7)+pI] is positive. 'We conclude therefore
that the sequence defined by formulas

11
alt) =2(8),  faplt) = [ T(E—7 A)B(2)+ BLla(z) dr
0
is an inereasing one: 2u(f) < Zua(t). But 2,(t) is a sequence of successive
approximations for the equation

13
u(t) = [ T(t—v:4)[B(v)+pllu(r)dv .

Hence (1) < lim 2,(t) = 0, q. e d.

7-+00

The assumption that B(t)+ I = 0 may be weakened as follows:
(1) for each te{0,ay there is a veal #(1) such that B@)-+p{)I = 0.

Our next result describes the case of @(f) absolutely continuous.

. THrROREM 2. Let B(t) be a bounded strongly Bochner integrable operator-

valued function and let B(t) satisfy (7) with summable f(t). Let the function

() be strongly absolutely continuous in {0, ad>. We assume that the ine-
quality :
1) < [A+B@H)]a()

holds almost everywhere in (0, a>. Suppose that x(0) = 0. Then x(t) <0

in 0, ay.
i
Proof. The operator V(i,s) == exp (—[ f(z)dr) 1 (F—s:4) is positive.

Hence )
Vi, s)a'(s) <[V, sy A4V (L, s)Bs)]z(s).

It is easy to wverify that

a(vV(t, s)m 8))
08

==V, s)[A—B(s)]x(s)+V (5, 8)a'(s) .
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The above relations imply that

‘l[l(%:‘lﬂ"?)_] < V(t, )[B(s)+ B(s) [](s)

Using lemma 2 we then obtain
i
o) < [V, [B(x)+ f2) o) de.
[}

By (7) V (¢, s)[B(s)+ f(s)I] > 0. The relation x(f) < 0 can now be proved
by using 111L method of successive approximations, just as in the proof
of theorem 1.

The case where nothing is known about the regulasity of 8(t) is much
more complicated. It is then natural to consider some strong assumptions
concerning the behaviour of B(Z). In order to do so we introduce the
following condition discussed by Phillips in [16]:

(8) B(t) is strongly continuously differentiable in ¢ in the whole interval
<0, ay.

In what follows the lemma below is very useful (see [4], th. 13.4.2):

LemmA 3. Let A be an infinitesimal generator of a positive semi-group
T(t: A) of class (Cy) and let B a linear bounded operator. It is supposed that
B+BI 20 for a certain real f. Then A+ B is the infinitesimal generator
of a positive semi-group of class (0,).

Suppose now that (7) is satistied. Then the semi-group 7 (t:. 4+ B(s))
is positive. Observe that (8) implies that the family of closed operators
C(t) = A+ B(t) satisfies the conditions introduced by Xato in [7]:
D[4+ B(#)] does mnot depend on t and H(t,s)=[Al — (4 + B(1))].
R4, A+ B(s)) is strongly continuously differentiable in ¢ for fixed s
for a certain A sufficiently large. It follows from the results of [7] that

the strong limit
n—1

(9) lim n Tltepi—te: A+ B(ty) = Ult, 8)
max| by H—tu-—»o im=
s=l < <Y
exists provided that (8) is satisfied. Moreover U(t,t) = I. One easily
¢
verifies that |U(t, s)| < exp([|B(r)|d7). The operator U(t,s) is positive
and by formula (12) of [8] ’
au (t e

. =—U(t,s)[4d+B(s)]z

for # ¢ D[A]. Using lemma 1 we can snmmarize our discussion in the
following theorem:

Annales Poloniei Mathematiei X 18
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TuunorEM 3. Let A be the infinitesimal generator of a positive semigroup
of class (C,). Suppose that B (i) satisfies (7) and (8). Let x(t) satisfy the
following z’nequalih}es:
<[A+B@®]z@) for tel0,a),
Then a(t) < 0 in (0, a>.

3. Almost linear differential inequalities. This section deals
with inequalities of the following form:

(10) w'(t) < Aa()+f{t, 2()), 0 <i<a,
(11) Y = Ay +i, y@), 0<t<a.

These inequalities imply that
(12) [2(t)—y ()] < Ala@)—y @)1+ [/, 2@) =1, v(0)}] -

The aim of our investigations is the linearization of (12). The linearization
makes it possible to use the results of the preceding section. We shall
make use of the following elementary lemmas:

LevMA 4. Let f(t,2) be Frechet differentiable to f,(¢, a).
that f,(t, ©) is strongly continuous in 2. Then

ffm 2() (@

Suppose

(13) ft, z)—

where 2(t) = y+1(r—y).

The integral appearing in (13) is the Riemann integral of the funetion
Talts z(-r)) (#—19) € B. Owing to the continuity of f,(t, #) in # the following
formula holds

—qy)dr

1

[ iaft 2@) (@) =

0

[ [ at, 2(0) dea—y)

where the integral on the right-hand side is the Riemann integral (in
the strong sense) of the operator-valued funetion fw(t, z('r)).

THEOREM 4. Leét »(t), ¥ (¢) satisfy (10) and (11) respectively. Suppose
that #(0) < y(0). Let f(t,») satisfy the assumptions of lemma 4. It is
supposed that fo(t, ) is strongly continuous in (¢, x). Suppose that there is
a real f such that fu(t, 2)+pL =0 for (t,2) e 0, a> X B Under our as-
sumptions the inequality ©(t) <y (1) holds for ¢ e {0, ).

"Proof. We firgt define
By = f Falts

8)+[o(t)—y () dv.

icm
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B(t) is strongly continuous and B(f)-+pI >
lemma 4 imply that difference z(t) = x(¢)—
2(t) <[4+ B(1)]2(2).
theorem 1.

Using theorem 2 and lemma 4 one easily proves the following theorem:

TrEOREM 3. Let z(t) and y(t) be sirongly absolutely continuous and
strongly differentiable almost everywhere in <0, . Suppose that (10) and (11)
hold almost everywhere in <0, a>. It is supposed that f(t, x) satisfies the
assumptions of lemma 4. Furthermore, f(t, x) is strongly continuous in
(t, ) and foft, y(t) +r[m BD—y(O]) +BMH)I = 0 for t <0, a> and 7 <0, 1>.
We assume that B(t) is summable in <0, a> and (0) < y(0). Then x(t) < y(t)
wn (0, ad. '

We now introduce the following condition:

(14) The function f(f, ») is Frechet differentiable in = to f«{t, ). The
differential fo(¢, #) is strongly continuously differentiable in (¢, z).

It should be observed that the following property holds: if x(t) is strongly
continuously differentiable and if f(¢,x) satisfies (14) then fm(t,x(t)) 8
strongly continuously differentiable 4m t. Combining this result with theo-
rem 3 and lemma 4 we get the following theorem:

THEOREM 6. Let x(t),y(t) be strongly continuously differentiable on
<0, a>. Suppose that (10) cmd (11) hold and 2(0) < y(0). We assume that
f(t, ) satisfies (14). It is supposed that for each t ¢ <0 a) there is a real B(t)
such that fo{t, y(6) +v[2@)—y®)])+BOL = 0 for 70,15 Under our
assumptions the inequality (1) < y(t) holds for te <0, ad.

0. Inequality (12) and
y(t) satisfies the inequality
The assertion of our theorem now follows from

4. Differential inequalities with convex f. Suppose we are
given the funetion g(z) defined on E. The values of g belong to B. Let g (x)
be Frechet differentiable to g,(x). The function g(z) is said to be convex
if its Frechet differential g.(u) increases in w, i.e. gu(u;)2 < ga{us)z for
U < Uy and 2 = 0.

LeMMA 5. Suppose that g(z) is convew and u <
+g(u) < g(o).

Proof. Owing to the properties of § and S* mentioned in section 1
it is sufficient to prove that

£(u) (v—u) +-Eg(u) < &g(v) Ee .

We first define 7#(1) = &g(lw+(1—A)u). For real i h'(A) = o I+
+(1— A)u) (v —wu). Suppose now that A < 2,. Then Aw + (1 — A w
KA+ (1—4A)u and consequently h'(4) < h'(4,). It iz thus seen that
the real-valued function k(1) is convex. We infer therefore that
(A~ 2)+h(d) <h(l). For 4, =0 and A, =1 we therefore get
27€0) + 1 (0) = &gta(m) (v — 1) +£g(w) < £g(v) = h(1), which was to be proved.
18*

v. Then gx{u)(v—u)

for
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We shall make use of the following condition:

(13) The function f(¢, #) is Frechet differentiable to f{t, x). There exists
a continuous and mnon-negative funetion o(t, ) (f € <0, ad, u > 0)
such that |fu(t, 2)— folt, )] < 0(t, |2 —y]).

The function w(t, %) increases in u.

THEOREM 7. Let the functions x(t), y (t) satisfy (10) and (11). Suppoose
that £(0) < y(0). We assume that {(t, x) is continuous in (¢, ) and convew
in x for every te<{0, ad. It is supposed that the operator-valued function
falt, @(2)) = B(t) is strongly continuously differentiable in t on <0, a) and
B(t) satisfies (7). Let f(t, x) satisfy (15) and suppose that there 18 « function
@(t) such that |w{t)—y ()] < @(t) and

4 t
=) [exp ([1BE)ds)ofr, e@)p) +olr, 26—y (@) p@ldr < o)

for 1 € <0y a>. Our assumptions imply that x(t) < y(t) on 0, ad.

Proof. It follows from our assumptions and from the results of
section 2 that there exists an operator-valued function U(t, s) > 0 which
satisfies the assumptions of lemma 1 with A(s) = 4+ fw(s ,w(s)). We
therefore infer that (10) and (11) imply

i .
(16) a(t) < i)+ [ U, lf (v, 2(2)— 1 (v, y(2)) — fufr, (7)) [@(7) —y ()]} dw.

We define a sequence

n(t) = =(1) ,
i
Tpa(t) = Y (1) +f U(t, ) [f (Ta xn("’)) - f(ra K (7)) “fz('rv m(T))("l""(T)"" Y (T))] dr .
0

Suppose that @;_,(t) < @(t) for t € <0, ay and § =1, 2, ..., %. The function
f(t, z) is convex in ». Applying lemma 3

3 we have
Fol®) @na(0) (20(%) = Ba(2)) 4 £ {7, Ba(7)) < F{r, mal))
But fulv, @(7)) < fafz, 24-(v)) and consequently
Hey na(®) = 1z, ¥(5) — falt, 20(7)) (Barlx) = (7))
<He, @l@) =1z, y(0) = falr, @) (@nmrlr) =3 (7)) -

This last inequality together with the fact that U(t, 7) ave positive implies
that za(t) < ©n4(t). We have thus proved that the sequence {w,(f)} is

icm®
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increasing. Applying arguments similar to that used in [19] (p. 114-115)
one shows that (15) implies the following inequality:
(16°)  |f(r, @n(e)) —F (e, 3 () = folr, 2u(x) (2n() —y (2))

< oty [on®) =y (@) [2a(r) — 9 (1) | + 0z, |#(2) — y (1)) |n(2) — y (<) .
We shall now prove that
17 lwt)—y@)| <) for

y=0,1,2,.. and {¢e<0,a).

Obvidusly (17) holds for » = 0. Suppose that |wa(t)—y(¢)| < ¢(t). Then,
by (16°)
i i
(18)  |2walt) ~y ()| < [exp( [1B(5)]as) [o(r, [z(n)—y )] [ealtr) =3 (0)] +
0 T

+ ot [2(0)~y @) |[2a(r) —y (z)[] v .
But (i, u) increases in . By (18) and the assumed property of ¢(f) we
get ’
lw=z+1(t)’—y(t>l

i i -
< [ exp( [ [B)|@s)[ofr, p0)p(0) + wfr, |20~y ())p @] d < g ).

We infer therefore that (17) holds for each 4.

We now define R =maxalt, maxe(t)). From (16°) we get
<08 <0

t
(19) |@41(6) =y ()] < 2RI [ [@alz) =y (2)|dx

where

I =exp ([ |Bs)as)) .
J !
It follows from (19) that

tn+1
eI

[Zn4a(t) =y ()] < (2RID™ o 0<t<a

where ¢ = :Eixaﬂt). This implies that iiﬁ,w"(t) =y(t) in <0, a)>. On the

other hand, the sequence @,(t) is increasing and S is closed in the norm
topology. We conclude therefore that (f) = 2,(t) < 2alt) < liman(t) = y (1),

q. e. d.
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Remark. For small ¢ we can construct @(f) satisfying (%) as follows:
let |2(0)— y(0)] < 7. Then ]m(t)—y(t)[ < 9 for t sufficiently wsmall, say
for t e {0, f>. Then an arbitrary solution ¢(t) of the equation

ds) w(t, wyut+olt, |s@)—y)])n

I
%’ = ex] (f | B(s)

such that ¢(0) = 5 satisfies (x) and lo(t)—y ()] < @(t) for ¢ sufficiently
small.

5. Chaplighin sequences. This section concerns the Chaplighin
method. We begin with the following lemma (see [16], th. 6.3):

LEMMA 6. Let A be the infinditesimal generator of a semi-group of
class (Cp). Suppose that x(t) is strongly continuonsly differentiable to a'(1).
Let {{t, x) satisfy (14) and let fi(t, x) be continuous. Then there exists a unique
continuously differentiable solution y(t) in {0, a> of the initial value problem

¥ = Ay +fft, 3 () [y— @) +F{E, 2(1))

Let x(t) be continuously differentiable: x(?) is said to be admissible
if there exists a function y(¢) such that y(1)I < foft, #(1)) for € <0, a).
We first prove the following

THEOREM 8. Suppose that the funciion x(t) is admmissible and

o(t) < Ae() +1lt, 2(0), 0

Y(0) =yp e D{A].

A AN

(20)

Let the function f(t, z) be convex in © in the sense of the definition of section 4.
We assume that f(t, ) satisfies condition (14). Then the solution y(f) of
the problem

(21) Y = Ayt @) y—a®) +1, 20),  ¥(0) = x(0)

exists in <0, ay> and is an admissible function. Moreover, the following
conditions hold:
(22)

(23)

z(t) <y)  for  telO,ud,
Y < Ay@y+7t, (@) for

Proof. The existence of y(t) satisfying (21) follows from lemma 6.
By (20) and (21) we have

(1) < Aa(t) +faft, 2(0)2(1)

where z(1) = #(t)—y(¢). Inequality (22) follows now from theorem 3 and
from the fact that x(t) is admissible. (22) being proved, we infer by the
monotonicity of f, that

YO u <Lolt, o)) u < fult, y () u

e, a.

2(0) == 0

for wu>0.

iomn®
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Hence y(t) is an admissible function. Applying lemma 5 and (22) we get
falty m(@)) (y () — () + 7 (6, ®(8) < f{t, ¥(2)). This last inequality together
with (21) implies (23).

Observe that the strong diffeventiability of f,(t, z) is needed only to
ensure the existence of the solution of (21). This supposed property of
falt, ®) is a very strong assumption. However, our investigations may
serve as % model provided that the existence problem for (21) is already
solved.:

Suppose now that z(t) satisties the assumptions of theorem 8. Then
there exists a unique solution ¥(t) of (21) corresponding to z(t). We have
thus to do with a transformation law which assignes to () a uniquely
determined function y(t). Denote this transformation by C. We then
have y(-) == Ca(-). It is easy to verify that v (¢) also satisfies the aasump-
tions of theorem (8). Hence the sequence

(24) Bot) = (1),  Tp4a(t) = Cn(t)

is well defined. Using theorem 8 we conclude that

(25) on(t) < Tyt1(t) o z,(0) = wn+1(0) e D[4],
(26) Zn4a(t) < A@pia(t) +f.z((t> mn(t)) (97n+1(.t) - “f'n(t)) +f(t, mn(t)) s
(27) Tpa(t) < Awn-}—l(t) +f(t7 mn+l(t)) .

The sequence {z,(t)} is said to be the Chaplighin sequence if it satisfies (23),
(26) and (27). Hence, the assumptions of theorem 8 may be treated as
an example of conditions which are sufficient for the existence of a Chap-
lighin sequence in a common interval <0, «). Up to this point we have
not been interested in the convergence of Chaplighin sequences. In certain
special functional spaces the monotonicity of a Chaplighin sequence
together with some additional conditions imply its convergence to the
solution of (1). The question of convergence of a Chaplighin sequence is
closely related to the uniform boundedness (in the sense of norm or in
the sense of partial ordering) of that sequence.

We give here an illustration of how the theorems of the previous
sections may be applied to the estimation of Chaplighin sequences. In
what follows we ghall make use of the following condition:

(28) I then

In other words, the norm is an increasing function for positive elements.
Property (28) holds for O(R) and L(Q) spaces with #(-) > 6 being equi-
valent to x(g) > 0 for ¢ Q.

Suppose we are given a function y(t) which satisfies in <0, @) the
inequality
(29)

b<z<y lo] < lyl.

y(t) = Ay () +1{E, y(0) -
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Let z,(¢) be a Chaplighin sequence. If for each » the funections y(#) and
za(f) satisty the assumptions of any of theorems 4, 3, 6, 7 then (1)
L &ypa(t) <y(t). Now we use (28) and thus conclude that |@a(t)|<|y ()| +
+|zo(t)—y ()] It is thus seen that the problem of the uniform boundedness
of a Chaplighin sequence is reduced to the question whether theorems of
sect. 3 and 4 may be applied. A new problem now arises. This is the
problem of existence of y(t) satisfying (29). In many instances y(f) may
be a solution of (1). In general, however, as in the classical case, the
existence of such a y(f) must be postulated.

In order to illustrate the above discussion we formulate one of the
possible theorems.

THEOREM 9. Let @a(t) be @ Chaplighin sequence. Suppose that f.(t, x)
is strongly continuous in (¢, x) and f(t, @)+ B = 0 for a certain real p and
(t, ) € 0, o> x K. Assume that y(t) sati?ﬁes (29). 1t is supposed that (28)
holds. Then |wa(t)] < |y ()] 4 |28} =y (8)] for n=0,1,2,.. and 1 ¢ <0, a}.

6. Convergence of Chaplighin sequences. In this section
we examine the relationship of the monotoniecity of a Chaplighin sequence
and its convergence. Suppose that the partial ordering possesses the
following property:

(30) It 2y < Yn <2y and lima, = lime, = y, then limy, = y, (1) .
n—>00 N+ N—>Q
We start with the following lemma (XKrein):
LEMMA 7. Let condition (30) be satisfied. If uy <
weakly to uy then 1wy converges strongly to u,.
Proof. It is a classical result of 8. Mazur (see [12]) tlnt, the weak

Uy 0 Uy CONVEPgES

convergence of u, implies that there exists a sequence v, = 2,(,1 2y such

that Z ¢ =1,6" >0 and va->u, strongly. On the other hand,
in

(31) < U -

Observe now that w,.,->u, weakly for fixed k. Applying the above
mentioned result of Mazur we conclude that there exists a sequ(mce

&) (k)

It
Iy 1 Gm (%) ()

Wiy Such that v,”—>u, strongly and ep = 0 and \ ) = 1.
t ]

Then, f01 each % we may choose n; in such & way that sy << fpgq m]ld

@ﬁf}j—»uu strongly. But a, <% for each a and conrequently  wy ”775{,2

It now follows from (31) that v, < uy :yv‘,,’“k Using (30) we infer that

U=ty Strongly, q.e.d.

(*) The limits here are in the strong sense.
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y 7 Taaha
and Chaplig

It is thus seen that there is no difference between strongly and weakly
convergent Chaplighin sequences provided, that condition (30) is satistied.
Lemma 7 may be treated as a generalization of Dini’s theorem on mo-
notonic sequences of continuous functions on compact spaces. Indeed,
in spaces C(2) of real-valued continnous functions defined on a compact
Hausdorff space £2 weak convergence of a sequence is equivalent to uniform
boundedness and pointwise convergence. Strong convergence is uniform.
In such spaces the (-) pointwise convergence of a Chaplighin sequence
follows from its monotonicity. The (-) continuity of the limit function
is implied by the fact that it satisfies a suitable integral equation. A more
general situation may be characterised by the following conclusion, which
summarizes our discussion:

If (30) is satisfied, then every weakly convergent Chaplighin sequence
is strongly convergent.

This trivial conclusion generalizes in some sense the well-known pro-
perty of Chaplighin sequences in C(Q) spaces.

It is not true in the case of C(2) spaces that if &, < .1 and ay <y
for each =, then 2. converges weakly. It is known, however, (see [51,
lemma 3.2) that if the norm is additive for positive elements, i.e.

(32) o+l = ol +]y| for

then the following property holds:

If ¥n < @nir and zn <y for certain y then @, converges sirongly to
a certain limit.

@, yel,

In order to establish strong convergence of a Chaplighin sequence #(t)
in spaces satisfying (32) it suffices therefore to find a function y(f) such
that aa(t) <y(t),te<0,ad, n=0,1,2,... This can be done by using
any of the theorems of sections 3 and 4.

7. Convergence to the solution. After a brief outline of some
typical assumptions which ensure the convergence of the Chaplighin
sequence wn(t), we consider the question whether @.(f) converges to the
solution of (1). The function @.(f) satisfies the integral equation

4
(83)  malt) = L(t:4)an(0) + [ T(t—7:4) [falr, Bumsls)fon(2) — amr()) +
0

. +1((7) Bas(v))] dr
provided that f, f, and ap(f) are strongly continuous. If za(t) > (t)
strongly and {@.(t)} is uniformly bounded in <0, a> then, by the Lebesgue
theorem for Bochner integral we infer by (33) that

t
(34) o(t) = T(t: A)w(0)+ [ T(t—r:4)f(r, v()dr.
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In some cases (see for instance [3], th. 12.2) the solution @ (t) of (34)
is a unique solution of differential equation (1) with a prescribed initial
value #(0). In what follows we shall discuss the convergence of a Chap-
lighin sequence to the solution of (1) without making use of integral
equations. Integral equations of the form (33) will be discussed in con-
nection with the problem of uniform boundedness of Newtonian sequences
in- section 8.

Tt has already Dbeen remarked Dby Lusin [9] that the Chaplighin
method is in some sense an extension of the well-known Newtons method
of solving numerical equations to differential equations. Suppose now that
fo(t, @) exists for (¢, z) € <0, ap X E. It is of its own interest to discuss some
metric properties of the sequences of solutions of approximate equations

(35) () = ATy (1) +Felt mn('t)(mn%-l(t) — ion(t)) -+ F{t, walt))

(n{0) = 2y = const). ‘Such sequences will be referved to in the sequel as
Newtonian sequences.

In what follows we do not introduce the relation of inequality. We
are interested only in such properties of the sequence of solutions of (33)
which can be expressed without the use of partial ordering. Some results
for conerete forms of equation (1) in C(R) have been obtained by Kalaba
in [6].

We now prove the following theorem:

TurEoREM 10. Let A be the énfindtesimal generator of a seni-group
of contraction operators of class (Cy). Let aq(t) be a Newtonian sequence and
let |@a(t)] < M = const < + oo for n=.0,1,2,..,1e<0, a>. Suppose that
folt, ®) satisfies (15) and sup |f.(t, 0)] < —|—oo l‘hen m,,( )} converges uniformly
on {0, > to a certain limit. Moreover, if equation (1) has a (unique) solution
#(t) such that z(0) = z,, then ]mn(i)~m(t)|—>0 uniformly on <0, a> and

|2n(t)— 2 ()] < walt)
where

wy(t) 2 |y (t) — (1))
and

Wapa(t) f exp (K (8- 8)) o (s, wals)) wals) ds

with K = sup |fa(t, 0)|+max w(t, M).

Proof. The flmctio:lo’:n(t) = Ly (8) — wa(t) satisfios the equation
2ul(t) = Azn(t) -+ folt, @al0))2n(t) +7 (¢, Bu(8)) = falts #aa(t)) 2na(t) = F {£5 @ns?)) -
Condition (15) implies that

| £t 0a8) —fafty Bnal®)) Bmcs(t) = F (£, Bnoa(8))] < (b |nma(8) ) [2na(8)]
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and |f,(t, 72())| < K. Making use of theorem 4 of [14] we obtain

t t
2a(t)] < K [ |eon(s)|ds + [ (s, [2n-1(8)]) [2sls)] ds .
o 0

The last inequality leads us to the following one:

i
(36) lea(t)] < B [ [[on(s)]+ |2n1(s)[1ds

where R = nmx(K , maxw(t, 2M )). By the theorem on integral inequalities
<0,

(see for instance [15], th. 1) (36) implies that
, .
)| < F [ |#nsls)|ds, F = Rexp(Ra).
0

On the other hand, |#(t)] < 2M. Hence

(.F )71—1
(n—1)1’
We infer therefore that ,(t) is uniformly convergent on <0, u). Let z(t)
satisfy the equation

|2a(t)] < 20 n=1,2,..

@) = Aaft)+1(t, o)
and z(0) = x,. The inequality
(37) [#a(8) — 2 (2)] < wa(t)

holds for n = 1. Let (37) be satisfied for n and write ¢,(¢) = |2,(t)— x(2)].
‘We have

[2,(t) — 2 ()] = AL[a(t)— 2 ()] + faft, Br(8) [@(t) — 2(1)] +
Aol () @ms(8)) [ (8) = 2, a(8)] 4 f (£, Bma (B)) — F (£, (D))
By theorem 4 of [14] and by (15) we get

A

[
< [ [Eols) + 0 (s, gues(8)) roa(8)1ds .

Just as in the first part of the proof, the last inequality implies that

fexp (t—s)) (s, gos(s)) @rrl(8)ds . -
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If ¢ =n+1, then
‘
Facalt) < [ exp (E(t—38)) ofs, guls)) pals) ds
0

i
< [exp (K (t—s)) oo s, wals))wn(s)ds = r0n1a(t) ,
0
which was to be proved. The sequence wn(t) is a sequence of successive
approximations for the equation

{
w(t) = f exp (K (t—8)) o (s, wis))w(s)ds .
0
Hence wy(t) converges on <0, «> uniformly to 0 and this proves owr

assertion.

The estimation \mn(t)—m('t)l < () generalizes a eertain result of
Lusin [10]. In [10] o(t, u) = Qu where @ = sup far|. Following Lusin
we can easily prove that

20
|wn(t)_m(t)l < o
it wy(t) < 1/2Qaexp(Qa). In general, the funetion wy(1) may be caleulated
by using methods developed in [3] and in [11].

8. The uniform boundedness of Newtonian sequences. An
essential role in section 7 was played by the assumption that the New-
tonian sequence is uniformly bounded on a certain interval. Some simple
estimates for Newtonian sequences were given in [6] (see 1. H34-535).
There appeared the assumption that fy exists. We now establish, using
a method similar to that developed in [14], the existence of a common
interval (0, a) on which the Newtonian sequence iz uniformly bounded.

Suppose we are given a function z(¢) e B,? e {0, a>. Assume that

[T(:4)z(0)—=()| < for tel0,ar

and suppose that f(¢, @) satisfies (15). It is assumed that 7(¢, @), falt, 2)
are strongly continuous and |f(t, 2(t))| < F (1), [fo{t, #(1))| < F(¢) in €0, a.
The functions F(¢) and G(f) are continuous. Tn what follows @(t) is the
right-hand maximum solution of the equation

(38)

and @(0) = 7. Let p(t) exist as a solution of (38) on the whole interval
<0, o). With the aid of a general theorem of T. Wazewski (see [17]) one
easily proves the following lemma:

W' = 3Gt )u-+3w(t, w)u - F(1)
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LeymMA 8. Suppose that ¢(t) is the right-hand maximum solution of
equation

(39) o =20, p(1)p(t)+2G M) 1) +F 1)+ [oft, o) + G(t)] o

and o(0) = @(0). Then o(t) = @(t) in <0, ).
THEOREM 11. Suppose that |o(t)—z2(t)| <o) in <0, a>. Let y(t)
satisfy the integral equation

t
y(t) = ’1'(t:A)y(0)+fT(t—szA)[fx(s,m(s))(y(8)~w(s))+f(s,fv(s))]ds
0

for t €0, a>. Suppose that y(0) = z(0). Then ly(t)—~2(t)] < p(2).
Proof. Obviously
¢

y(t)—2(t) = T(: A)2(0)—2(t) + [ T(t—s:4)[fufs, 2($)){y () —2(s))+

0

+1a{ss @(8))(e(s)—2(s)) + (s, 2 (s))] ds .
On the other hand, |T'(t—s:4)] <1 and

(40)

If:c(sy 'U(S)H < G(s)+ca(s, (P('S‘)):
If(s, 2()] < F(s)+G(s)p(s)+ w(s, p(s)) p(s) -

It follows from (40) that

.
ly@ =2 <7+ [ {[ofs, p() + G(5)]ly(s)—2(s) +
+2[ofs, p(s)} + G(s)lp(s) + F(s)) ds .

The last inequality and the theorem on integral inequalities (see [13], th. 1)
imply that
ly () —2(t)] < o (1)

where o(t) is the right-hand maximum solution of equation (39) for which
o(0) = n. By lemma 8 o(f) = p(¢). Hence |y(t)—2(t)| < ¢ (), q.e.d.

Suppose now that f.(t,s) exists for (f,x)e<0,edxE and let
[falt 2(1)] < @), [F{t, 2(0))| < F(t) where 2(t) = T'(¢: 4)uy, 4y e D[A] and
F(t) and G(t) are continuous in <0, a>. Denote by @(f) the right-hand
maximum solution of (38) for which ¢(0) = 0. We assume that ¢(t) exists
as a solution in the whole interval <0, «). In what follows we assume
that (15) holds. As usual, 4 is the infinitesimal generator of a semigroup
of contraction operators.
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TaEorREM 12. Let y(t) satisfy in <0, a the equation
y'(t) = Ay () +falt, 2 (0) [y () — @) +£(t, 2(1))
and assume that y(0) = w,. Suppose that |x(t)—=z ()| < ¢(t). Then
ly)—=()| <olt)  for
Proof. Our assumptions imply that

[y () —= ()]
= Ay () — 2] +olt, 2Oy (1) —2(8)) -+ falt, 2 (2 () —2 (D)) +F (1, (1))

te<0,a).

and
foft, () (y (1) —2(0)| < [G@) + oo ft, e ()| ly ()~ 2 ()],

ety o) (0 —2(0) + 1t 20)] < 201, 9(0) @ () + 26 (D) p () +F (1)

Applying th. 4 of [14] we infer that |y(t)—=2(f)| < o(1) where o(?) i the
right-hand maximum solution of (39) for which o(0) = 0. Tt is clear by
lemma 8 that o(f) = @(f). This completes the proof.

Tt should be remarked that in theorem 12 we do not assume that
f(E, ), folt, ) are continuous.

Suppose that we want to find the solution w«(¢) of (1) for which
u({0) = uy e D[A]. We now define z(f),= T(t: A)u,. Then the interval
{0, a> and ¢(t) in theorem 12 are uniqeuly determined by =z(t), f{t, )
and w(t, w). If we take z,(t) = 2(¢) as a first member of the Newtonian
sequence {&n(t)} (24(0) = %), then, by theorem 12 |an(t)—ay(t)| < @(¥) for
te0,a) and n=1,2,.. We may then estimate apriori the interval
on which the Newtonian sequence is uniformly bounded.
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