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Solution of linear systems of differential equations by
the use of the method of successive approximations

by M. Kwarisz (Gdansk)

I. A scrutiny of linear parametric networks leads to the mecessity
of solving systems of differential-integral equations which can formally
be presented in the form

Au(t)’:l(t) ‘I‘Am t)iﬂ(t) . _I_Aln(t)’l;ﬂ(t) = 71 t)

(1) a0 el + . -l
A (1) 33 (1) + Apa(t) 0a(t) + ... +Ana(t) in t) = fn

where fi(t), ¥ =1,2,..,%, are known continuous functions for ¢ > 0;
() are unkown functions; Agx(t) are operators determined by

d
@) Ault) = Tult)- & +Rult) +Su0) [ ()
Ly(t), Rult), Sult), I,k =1,2,...,n, ave known continuous functions for
t>0.

From now on we will carry on considerations assuming that opera-
tors Ag(t), I,k =1,2,..,n, are defined by the formula

t
(@) Alt) = Tnlt) & 1 Rytty £ 5000) [ ()i
0
on account of
t
Sult) [ u(t) @ = Suft) [ da(r)dv+ quSult), g = const,
0

one can pass from considering system (1) when the operators Ax(t) are
cefined by formula (2) to considering system (1) when the operators are
of form (2’). Functions fi(t) then include the expressions grSu(t). .
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Writing
An(t) Agpt) ... duwlt) iy(1) fu(t)
| At it |0 ||
Am(t) Aps(t) .. Anal?) in(t) | _ ()
system (1) can be written more briefly in the form
(3) di=7.

Prof. dr Joézef Lenkowski in his work [1]—where the results of the
present paper were adopted—used an iteration process to solve system (3),
which, with the use of the notation here applied can be expressed as
follows: )

Solutions of the system of equations (1) satisfying an initial condi-
tion ¢(0) = ¢ can be found according to the following scheme: We write
equation (3) in the form

(4). AitA—D)i=1,
where
Ay oo A .
= o eer Aoy - = = -
oA Du=LuG o+ Bat S [ (O,
Auy oo Ay °

Ly, By, Sy U, k=1,2,...,m, are integers connected with functions
Ll,,(t),.Ryc(t), Slk(t? (jbut they may be chosen arbitrarily). When these
functions are periodical with periods Ty, I, k = 1, 2, ..., n, then we assume
for instance
Ty 7 . y

. 1 B ; 3
5) In—— -1 Sy =
) Lu=g of Lu®d, R = 6} Run)ds,  Su=p- [ Sulm)is.

[

We assume that a zero approximation of solution of equation (3) with

1 [ n ‘7:(0) = ¢ I8 & vector-fun:
the initial co ditio tor-fur ction 4yt eing the olution
0( )’ b mg 8

(3 Ai =
with the initial condition iy(0) = c.

As the m<41-th “correction” w ‘
) : we take a vector- i —_—
which satisfies the equation primetion )

4 : At (A— AYipy =0
and the initial condition Im1(0) =0, m =0,1,2
‘ )2,
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A solution of equation (3) satisfying the given initial condition 4(0) = ¢
ig obtained in the form

(6) ity = Y imld) -

m=0
The iteration process thus formulated has been worked out by applying
to the system of equations (1) some modification of Picard’s method of
successive approximations, given by 8. A. Schelkunoff [2] for a simple
linear system of two differential equations; next it was adopted by
L. A. Zadeh [3] for linear differential equations of the n-th order.

Qufficient conditions of convergence of an iteration sequence in the
modified Picard method of successive approximation were given in
paper [4].

In 1937 prof T. Wazewski [5] dealt already with a modification of
Picard’s method for nonlinear systems of differential equations and he
formulated a general theorem concerning the convergence of an appro-
priately formed iteration sequence. The theorem includes neither the case
discussed in paper [4] nor the case considered in this work.

The aim of this paper is to give a sufficient condition for uniform
convergence of series (6) to solve equation (8). The following theorem
includes this condition: -

TuEoREM 1. A sufficient condition of uniform convergence of series (6)
in the interval 0, ay —where a is an arbitrary positive real number—
for the solution of equation (3) sabisfying the initial condition 1(0) = ¢ s
the following:

10 there emists a derivative of the matriz L(t) bounded in the interval

L0, ap,

29 detL 5 0,

3° the condition

max | I{L-L) <1
o<t<a

must be satisfied.

CONCLUSION 1. If the assumptions of theorem 1 are satisfied for any
a> 0, series (8) is mearly uniformly convergent in the interval <0, co) for
the solution of system (1) satisfying the initial condition 4(0) = 6.


GUEST


312 M. Kwapisz

It can easily be seen that if series (6) and one formed from it by
differentiating term by term are uniformly convergent in the interval
{0, @), then the sum of the series (6) is the solution of the system of equa-
tions (1) satisfying the initial condition 4(0) =e.

IL Now we will deal with a linear system of differential equations
and some method of successive approximations to which—as will be
shown later on—the iteration process described above is introduced.
Let us note some fundamental facts concerning a system of differential
equations of the form

(M @ = A)w+](),
where the matrix 4(t) and the vector-function f(¢) are continuous in the

interval {0, a)>. Let us denote by X (¢) the normed fundamental matrix
of system (7). The matrix X (t) satisfies the differential matrix equation

(8) XY =ANX

and the initial condition X (0) = I, I—unitary matrix. Put

C() X7,

where ¢ is a parameter. The matrix X (¢, £) with an arbitrarily fixed &
with respect to ¢ satisfies equation (8) and the initial condition X (£, &) =1I.
The solution of system (7) satisfying the initial condition #(0) = ¢ is
expressed by the formula (cf. [6])

X, 8=

4
(9) (1) = X(t)-c+ [ X(t, &)f(£)ae.
If A(t) = const then ’
X(t)y=e, X(t,8)

= X (t—§&) = g4t

(10) .
a(t) = edt- o+ [ eat-0f((&)dk

Next the following determination of norm is used:

4l =ngax[f|a,-k|],

It can easily be verified that the norm thus defined has the followi ing
properties:

aj =0,

ol = macx e

Il4+Bl <[4]+1Bll, [AB| <[4 (B,

(11) ; ,
lagh<ial-ioh, | [ a@as]| <[ 1aena.
o 0
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Consider a system of differential equations of the form *
(12) o =A{)x+B(@)x + (1)

where matrices 4 (t), B(t) and the vector-function f(t) are eontinuous in

the interval <0, a)
Let A(f) be an arbitramily chosen matrix which is continuous in the
interval <0, a). The matrix 4 (f) is presented as

A@) =AW +A(),
where _
A =A@)—A@).

The normed fundamental matrix of the system
(18) o =A(t)w

is denoted by X (). Put X(¢, &) = X () X~*(&). According to formula (9)
we say that the system of equations (12) with the initial condition #(0) = ¢
is equivalent to a system of differential-integral equations of the form

i t

(14) a=X@)-c+ [ X, Of®)as+ [ X(t, HA(H)a(§)dE+

0 0

+ [ Xt, §B(E)o’ (£)ds .

4
(15) my=X(t)-c+ [ X(t, HF (£)dE.

With respect to (9) one can see that a, satisfies the equation
(16) ¥ = Az +i()
and the initial condition #,(0) = ¢. System (14) is then of the form
i 12
(7 @ =2+ f X(t, §)A(H)w(8)as + f X(t, 5)B(Ha'(§)aE .
0 o

Assuming that the matrix B(f) has a bounded derivative in the interval
0, a) we get

t
J Xt, &) B(&)w(£)dk
L)
T, HBE(E)| — f?[X(t 8B (6))a(8)ds
B(tya(t)— X (1) c—fEE[X(t,E )B(E)w(8)dé .
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According to (18) formula (17) is of the form
¢

(19) @ = o+ B(t)a+ [ Dit, Hw(©ds+ X )b,
0

where

= - = o =
D, & =X, S)A(f)”a_g[‘x (t, &) B(&)],
It can be seen that the systems of equations (14) and (19) are equivalent
under these assumptions.
We solve system (19) by the use of the successive approximations
method putting

b=—B(0)c.

o = X,

(20) t
Om =0y + B s+ [ Dty Eomon(HA+Z WD, m=1,9, ..
0

In order to test the convergence of a sequence {z,} we consider—as
usual—the geries

21)

(=<
)’1
2 (@m—Tm) .
m=1
Introducing lefter symbols

(22) G =max|z,—nl, M =max[|f)(t, &, XK =max|B()|
o<i<a o<i<a o<i<a
[EN2=7
we get the egtimate

m

1t — @l < & [ > (“;’”)Km-ﬂ Lllfél] .

8=0

(23)

Indeed, asstme that the estimate is right for some m > 0 which is a na-
tural number; then aceording to (11) we have

'
W= B} <[ B | g1 — Bl + J “5(% - | Bmr— om|| d&
¢

<o) 3 (1) B ] $h(m) aeee Y

8=0 gm0
m+1

_ M+1\ omesss (ME)°

- 5 ()i

which, together with the application of the mathematical induction rule,
proves formula (23) for ‘any natural number m.

icm®
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The series

S% m o

(24) G[Z Z(m) e ( ALty ]
s 8!
m=0 §=0

is a majorant for series (21) for any ¢ € <0, a)>. The necessary and sufficient
condition of the uniform convergence of series (24) in the interval <0, a)>
is that K < 1. If this condition is satisfied than one can easily verify
(cf. [4]) that the sum of series (24) is

(25)

Q@ o M
i~k *P\1=x)-
We conclude that a sufficient condition of uniform convergence of series

(21) is that the inequality K < 1 be satistied. These considerations allow
us to note the following theorem:

THEOREM 2. If 1° a matriz B(t) has a bounded derivative in the interval
<0,ay, 2° max|B()|| < 1, then a sequence {xm} defined by formula (20)
o<i<a .

uniformly converges in the interval <0, ay to the solution of the system of
equations (19), and thus to the solution of system (12) with the initial condi-
tion x(0) =ec.

CONCLUSION 2. If the asswmptions of theorem 2 are satisfied for amy
a> 0, then the sequence {wn} is nearly uniformly convergent in the interval
{0, o0).

Let us notice next that .

@(0) = ¢, : '
2Zn(0) = @4(0) + B(0) y—1(0) + X (0)b = ¢ + B(0) &1 (0)— B(0) ¢, m=1,2,...
whence we obtain

2m(0) =¢, m=0,1,..

According to (18) we have
i
@) [ X, HBE@zE
’ :
= B)an)~X O BO)e— [ S, OB @on().
0
From relations (20) and (26) we infer that the following relation is satisfied:

i i
@) na=00+ [ X(t, O X(E)an(@ds+ [ X, B(O)wnE)E,
[1] 1]

m=0,1,..
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From relation (2

Tmir(t), m = 0,1, ..., satisfy a system of differential equations

(28) o = A& +1(t) + At @+ Blt) o,

and the initial condition @,4.(0) = ¢.
Now put

(29) ¥y = T, m=0,1,..

~
Zmt+1 = Ppp1— Ly

CoNCLUSION 3. If the assumptions of theorem 2 are satisfied, then
the sum of the series

78

(30) Tm

m=0

i

is a solution of system (12) satisfying the initial econdition x(0) = e¢.
From (28) and (29) it follows that the vector-functions %y,
m=10,1,.., satisfy the system of equations

(31) o =A@+ A{) B+ BH) Tin

and the initial condition @4.(0) = 0.

Notice. The simple example given in paper [4] shows that when
assumption 2° of theorem 2 is not satisfied, then series (30) can be divergent,
ag it is in the example.

The conclusions inferred with respect to system (12) are used in
part IV of the paper to prove theorem 1. This fact supports the necessity
of considering system (12), whose form is little artificial.

III. The iteration process described in part II is a modification of
Picard’s method of successive approximations.
If we assume in the above considerations that

B(t)y=0, A@)=0,

then we obtain the common Picard method of successive approximations.

In this part it is asswmed that B(f) = 0. The iteration process
mentioned above can be more useful than the Picard method.

In many cases with an appropriate choice of matrixes 4 (t) series (30)
can converge more rapidly than an appropriate series formed by the use
of the Picard method. This fact hag a great practical importance.

In the Picard method the first approximation is mostly equal to the
initial condition and therefore it does not refer to the form of the dif-
ferential equation itself, determined by the matrix A(t); it is mostly
qualitatively different (its behaviour at t->co) from the exact solution
and owing to that it is the cause ¢f the slow convergence of the sequence

7) according to (17) we conclude that vector-functions -

icm
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of successive approximations. The modified iteration process prevents
such situations. It is to be remembered that the matrix A(t) must be
chosen so that equation (16) be solvable, and therefore in practice it is

generally assumed that 4 (1) = const, e. g.:

a

o1 f -
I =~J A)@  or A=—j Ay,

a ®

0

where the matrix 4 (f) is periodical, o being its peuod Now we will carry
out some estimations, which will explain the method under discussion.

Assumprions H,.

1° Matrix 4 (t) and a vector-function f(t) are continuous and bounded
in the interval <0, oo).

2° A(t) = const, B(t) =0, te{0, co).

3° Roots A;, i =1,2,..,n, of the characteristic polynomial of the
equation
(32) @ = Az
have their real parts negative.

‘When the agsumptions H, are satisfied, then there exist such constants
¢, >0 and a> 0 that

(33) IXOI < Cie=t,  t20.

When %; # 4; for 4 # j then a = min |Rek|; otherwise

0 <a<min|Rek.
Put
(34) F= sup [fO)I, I,

0<i<+o0

= sup [[A@)-
o<t<-+oo

According to (27) and (10)

(35) mm—_th- Z(E) i (£)dE, - m=1,2, ...
From relations (13), (29), (33), (34), (35) we easily obtain
m -

\ ~ —at ) Co oF at)”

(30) ”mm” = (CLJ’ l)me t{‘;f,,—l_ + am-H[ 2_(’&_')]}
=0

or
Qr ~ m —al (Jzt O).J[l e
37) 1ol < (O G2 - (S20)T
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where
Cy = Cilef .
If, moreover the inequality
C, A
(38) —1a—1 <1

is satisfied, then the series

N Cg™ B (C M, \mH
M, —ab Ve iy et Snind 3
Z[(OIMJ) ¢l +Ml< o ) ]

m=0

(39)

is the convergent majorant for series (30). The sum of sevies (39) is

CF

(40) Coe—bt 4 5 b= CM,—a>0.

3
Thus under these assumptions we have the estimate

O.F

(41) lofl < Gt £ 2=, 120,

which allows us to formulate the theorem:

THEOREM 3. If inequality (38) is satisfied where the constants a, Cy,
M, are determined by relations (33) and (34) respectively, then the asymptotic
stability of the zero solution of the equation

o = Az
causes the asympiotic stability of the zero solution of the equation
o =Ad@t)x.

Theorems of this type can be found in papers [7] and [8], but here
the meaning of the respective constants a, C\M; is determined exactly
and consequently the theorem has greater practical importance.

If the assumptions H, ave satisfied and the solution of equation (12)
is bounded for ¢>0, then one can easily obtain the following error

estimate:
S 0,3\ ) (at)f
(42) ”w—Z% <K(—l§—l) o=t [e‘*‘— > (i;‘f,)—] , 130
4 <
where =0

K= sup |a@)].

0<t<+0
From inequality (38) and velation (41) it follows that
O, F

K <0+ B

Then we can note:

icm®
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ConcrLusioN 4. If the assumptions H, and inequality (38) are satisfied,
then from (42) we obtain

Hx_Zma-

i=0

(43)

3 m+1
e GBS, 1o

It ought to be stressed that estimate (43) is uniform for the whole straight
¢ > 0. Estimates of this type are not obtained by the use of the normal
Picard method. The estimates (42) and (43) allow us to maintain that in
cases when the assumptions H, and (38) are satisfied the modified itera-
tion process is more rapidly convergent than the normal Picard iteration
proeess.

IV. Proof of theorem 1. Equation (3) can be written in the form

3

(44) L(t)i' + R(t)i+8(t) | i(z)de = f(2),
where ’
[Lu(t) Lm(t)] [an Rm(t)]
Lit)y=| - - « « « .« , R@)=|-----.- ,
Ly(t) Lna(t) Bp(t) . Bualt)
[Sn(t) Sm(t)}
Sy=4{- - - .. .
Sa(t) o Sun(t)
Put
|1
(43) at)= [i@ar.

0

By introducing a new unknown vector-function g¢(¢) the differential-
integral equation (44) can be transformed into an equivalent differential
equation of the second order of the form

(46) Lt)g'+E@) ¢ +8)g=10).
Let L, E, § be arbitirarily chosen constant matrices, det.L 0. Put

Lit)=L-I(), R@#)=E-RE@®), 8 =8-8@)

where

Ewy=I-14), Ru)=FE—R@, A)=3-8@).

Equation (46) is of the form
@) ¢'+IL7'Ry+L7'8¢ =L'R(t)¢' + LB g+ L)+ L L(t)g” -

Introducing new unknowns
& =¢,

’

y=q .
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24

and putting

B ——LR, R=ILITEw, 5=-L'5, $=L'8w),"
L =LL(t)
we obtain a system

(48) y =Ry + Jo+ L)+ Ry+ Se+Ly",

T =y.
We write system (48) in the form
(49)- ¢ = Do+ De+g+ &'
where

W s (R s _[RI] ._[L0 (LY
”‘[m]’ D”[Io]’ D“[oo’ “=lool Y=o |
It can be seen thatr equation (44) with the initial condition 4(0) = ¢ is
equivalent to equations (46) and (47) with the initial conditions ¢(0) =0,
¢'(0) = ¢ and to equation (49) with the initial condition 2(0) = ¢* = [g] .
For equation (49) we can use the iteration process described in part 1I.
We then form a sequence {2} using the relations
=Daytyg, 2(0)=c*,
1 = Dznwl“‘ﬁzm‘l‘ (“z;ﬂr? Zm+1(0) = 0,

According to theorem 2 and conclusion 3 we assert that a series of the
form i

m=0,1,..

(30) D em

uniformly converges in the interval (0, a> to a solution of equation (49)

satisfying the initial condition #(0) = ¢*; if 1° matrix ¢(f) has a bounded

derivative in the interval <0, ), 2° max [|€(1)|| < 1. One can see that
o<i<a

vector-functions #, ¥, such that
[
%o
Y =Ry+ Sa+y,
o =y

satisfy the system

and the initial conditions @,(0) = 0, y,(0) == ¢, and that the vector-func-
tion ¢, = &, satisties the equation

Lg"+ Rq' +8q =

icm
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and the initial conditions ¢(0) = 0, ¢'(0) = ¢. Finally the vector-function
1y = go satisfies the equation :

Rgf
o

and the initial condition 7(0) = ¢, which means that it satisfies equation
3 ) Similarly vector-functions .1, Ym+1 Such thab

=[]
1 =

Tm+1
satisfy the system

Y =Ry + v+ RYm+ Sm-+ Ly,
o =y

and the initial conditions #(0)
= &1 Satisfies the equation

=4(0) =0, and a vector-function ¢m+1

Lq" + By + 8¢ = Rgn+ S+ Ly,
and the initial conditions

Im+1(0) =0,  @n11(0) =0

finally a vector-function m4:1 = ¢+ satisfies the equation

1
Li' + Ri-- j ()t = Ri+8 [ inm)de+ Lify, m=0,1,...
0

0
and the initial condition 4p,.,(0) = 0, which means that it satisfies equa-
tion (4).

One can see that a converse argument is also valid. The convergence
of series (50) is equivalent to the convergence of series (6). Considering
the fact that the existence of a bounded derivative of the matrix &(¢)
is equivalent to the existence of a bounded derivative of the matrix L ()
and

max ||¢ (1)]| = max||Z7 L] = max |[L"{L—-L)|
<i<a I<iga <i<a

we conclude that theorem 1 is proved.
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