26 ¢. Jankiewicz

Die Gleichungen (65) stellen n Identitéten im Raum X7 dar; die
(leichungen (66) geben in diesem Raum ¢ starke potentielle Erhaltungs-
sitze, die einer jeden Lieschen Gruppe @, entsprechen. Die Gleichungen
(67) weisen auf die Existenz von Potentialen.

Die Gleichungen (62) und (63) sind erfiillt filr Funktionen ;(&;) und
@a(&;), die Buler-Lagrangeschen Gleichungen 6.4/6p4 = 0 gentigen. Da wir
N +n unbekannte Funktionen und N unabhingige Gleichungen haben,
kénnen wir ;= & annehmen. Dann bekommen wir aus (62) und (63)

(73) oL fon; =0,
2
(74) 9 =— oy Pt
wo
(75) TE =635+ wuis0n i5

Die Gleichungen (73) stellen im Raum X} o schwache potentielle
Erhaltungsséitze dar, die einer jeden ILieschen Gruppe entsprechen. Die
Gleichungen. (74) weisen auf die Existenz von Potentialen.

Zum Schluf wollen wir bemerken, daf die kanonischen Erhaltungs-
séitze im Raum X7 und die schwachen potentiellen, der Gruppe @, ent-
sprechenden Erhaltungssétze voneinander unabhingig sind.

Herrn Prof. Slebodzifiski méchte ich fiir wertvolle kritische Hin-
weise hoflichst danken.
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On a certain boundary problem for Laplace equation

by Z. SzarypT (Krakéw)

This paper contains the solution of a problem which has been raised
by prof. G. Pichera in his course of lectures on the theory of singular
integral equations which he have had in Instituto Nazionale di Alta
Matematica in Rome in the years 1958-59.

1. Denotations. We denote by X a curve lying in the complex
2-plane (¢ = z-+iy) and we assume that it admits a parametric represen-
tation # = 2(s), where z(s) is a function of the class C" on the interval
0 <5 < I, satisfying the conditions

=1 (0<s<1I),

_ dr(s)
T dsk

8=0

dkz(s)

S (k=0,1,..

y 1)

8=L

and such that 2(s,) = 2(8,) With 8; < &, if and only if 8, =0 and 8 = L.

We denote by 2 a domain whose boundary is the eurve 2; we den(fte
Dby n, the normal vector of X at the point divected towards tpe interior
of @, and by », the unit vector of the same direction at the point z of X.
~, denotes the curve which is parallel to X at the distance |r| from X and
is situated inside £ when 7 > 0 and outside £ when r < 0. The type e
will denote a positive number. We see that X, C Q. )

The equation of the curve Z, can be written briefly

2 = a(s+mz(s)  (0<s<I)
or by setting 2 = @, -+1y, We can get the equation of Z, in the form

(1) oy = a(8)—ry(s), U=y +ral(s) (0<s<I)

without loosing any generality.
The element of the arc of Z, will be denoted by ds,., If the curve X' is

of the class 0% we have

(2) ds, = {[a'(s)—ry" (8P +[y'(8) +ra"(s)FyFds .

“
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The corresponding domain whose boundary is the curve Z, is de-
noted by £,.

Let us denote by m an arbitrary non-negative integel We say that
a function F(z) is of the class C™(Z) if the function ¢(s) = f[#(s)] is of
the class ¢™ on the interval ¢ <s <L and

drp(s)| _ dFp(s)]
dsk |3=0- sk

(k=0,1,..,m).

g=L

We gay that a function p(2) is of the class 0™, if the function p*(@, y)
= p(-+dy) is of the clags O™

2. We will now formulate the problem, called for brevity problem I,
which is the object of the present paper.

Let Dn(Z) be the Banach space of functions %(2) of the class ¢™(.X)
with the norm

||uf = L nmx

x| 25 wle(o)]

Let F and @ be elements of the conjugate space D4(Z) to the Dy(X),
i.e. let F and @ be distributions of order < m, satisfying the condition

(3)  G(loglz—¢|)— F(—]og]z ;]) =0, whenever (e Z,2¢02 =0 u X.
We investigate the function of the shape
) w(2) ———-G (log|z—Z])— (an log |z —C|) , lteX.

Of course, % i harmonic inside Q. Problem P then arizes

PROBLEM P. We have to investigate under certain assumptions on the
reqularity of X, whether the following relations hold:

() Lim [ p(s)u(z)ds, = F(p),
=0 Z,
R ou
(®) tm [ 967545, = ),

p(2) being an arbitrary function of some defined regularity class.

This problem may be considered as a generalisation of a problom
solved by L. Amerio [1], on the distributions. Namely, assuming that
the summable functions f({) and g() satisfy the condition

(7) flogvlz—q.g(g)dsc— fg—izlog[z—cl.f(c)ds; =0
x - . . i .

lm On a certain boundary problem. for Laplace equation 29
where z ¢ 2, and introducing a function %(z) )
N"'—Lf __v.,_“fa !
® \”(”)‘-72“{2 tog 2] 4Gy~ | oz logle—tl-f(t)as)

harmonic inside 2, L. Amerio :broved (*) that for almost all 2* ¢ X the
following conditions hold

. ~ .. on
lim @) =), Lm0 g
3-52%(0n 1) eoar(onng) Mg+

In the case m = 0 we apply the theorem of Riesz Whlch staﬂses that
the distributions F and @ are of the ghape.

Fo)= [o0()da, G)= [o()ap,
. =

E

=

a(¢) and B(¢) being the two functions of bounded variation such that
floglz—ﬂdﬁ— f—?—log|z—~clda =0 for 2¢0.
ong
z z N
Then problem P consists of proving that the function %(z) defined by

1 2
w(z) = %{ flog!z—-t]dﬂ— !%log|z~{:]da}
satisfies the conditions
im fp z)u(~ ds, = fp {)da,

-0
4 zg

lim p(e) 2 s, = f () ap
2, b

p(2) being an arbitrary function of some defined regularity class.

It follows that the problem P in case m = 0 constitutes an integral
formulation of the mentioned Amerio’s problem.

The solution of the problem P is given in the following

THEOREM. Let m be an arbitrary non-negative integer. Let X be a closed
single curve of the class C™*%, lot F and G be elements of the space Dy(E)
of distributions of order < m, and let

9) G(log|z—£])—1’(£—log]z——é‘|>=0, whenever 2¢ Q.
¢

Then the function w(z) defined by (4) satisfies the Laplace equation in
the interior of Q and the conditions (B) and (6) for an arbitrary fundiion p(z)
which is of the class ™' if m > 0 and of the class C® if m = 0.

() Cf. [1]. A' more simple proof of this result was given by G. Fichera [2].
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The proof of this theorem will be given in several steps.

LuMMA 1. Suppose T is a closed single curve of the class C2, and denote
by s; the curvilinear coordinate of the point e Z. Let ¢(z, () be a function
defined for 2 € Z,, L ¢ Z and continuous together with its derivatives

k

(10) "’—?if‘,;—c—) (h=1,..,m)
88;

in the cartesian product Z, X 2.

By these assumptions we have for every continuous function p(z) and
every functional H e Dy(X) the equality

[ 9 Hlp(, O1ds, = H [sf P02, 0)ds,) .
Zr T

The proof of this lemma is based on the definition of the integral.
Here we make uge of the linearity and continuity of the funectional H and
the uniform continuity of ¢(z,¢) and its derivatives of the shape (10)
in the eartesian product X, x Z.

LuaMMA 2. Let F and G be two linear continuous functionals on Dy(X)
satisfying the conditions (9).

The following conditions expressed by the formulae (11) (14) are suf-
ficient so that a function w(z) defined by (4) satisfies (B) and (6)

. Ok
(11) 191—21183: [Z‘J p(2)log|z—C|ds,— jp(z Nog |2— C|ds_e] =0,

Z—g

(12) wbas [fp —logi~—51dse fp(z —10g|z ﬂds_QJ

3"?(2:),
o8f
(13) g%[zg'p(z)%loglz—cldsg—J;p(z)ggzlogrz—ﬂds—a]
=2nak;:$;).,
(14) g%[g'p(z)g’% @%%'ﬂdse—xfep(z)% et g |-,

where k= 0,1, ..., m and the convergence is wniform with respect to { e X.

icm®
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Proof. It follows immediately from (9) that the function u(2) defined
by (4) satisfies for ¢ > 0 the relations

(15) I, =0,
(16) ‘ fpw)g_;_‘_ds_gz 0.

By lemma 1 we obtain from (15)
amn J p(z)u()ds,
Sl fp (¢)1og 2] ds,— j p(e)log |s—¢|ds—q| ~
—-2;1"[ fp(z ) puc Log le—Clds,— fp(z)——loglwﬂds-e]

Starting from the definition of the derivative it is easy to show in
view of the continuity and the linearity of the functionals F and @ that
for z¢ Z, and |r|> 0 we have

*Gaogly_gl)— (871 log |e— Cl)
8

%F(%—C—logiz—é‘l) =F(é%: 5%1og1z—c|).

Hence in view of (16) and lemma 1 we have

1®) [ e tas,

5

( 2
=§1— [ fp )———10g|~_£]ds - Jp(z)%loglz—ﬂdg_e]_

~—~——F[ fp(z B

- 08 |l de— j P&) 5
The assertion of lemma 2 follows immediately from (17), (18) and the
assumption that F e D}(2), & e Dp(Z).

LemMMA 8. Assume that for each value of the parameter r from the
interval r, < r < 1y, where 1, < 0 <1y, 1y < 75 and for each value of o from
the interval a < o < b, 0 < a < b< L, the function @3, o) satisfies the fol-
lowing three conditions:

an Em —log |z —C[ds,g].


GUEST


32. Z. Szmydt

(1) guls, 6) s a Junction in s that is defined and continuous at all po'mts
of the interval 0 < s <L ewcept at most for s =o.
(il) There emists such a constant ¢ that

whenever 1, <1 <1y 6 K0 Lb, s#£0.

(%(’97 G)I <6
(ili) For each 8, 0 <6 < L2
lm (s, 0) = @8, o)
70

uniformly for a <o <b, 08 L, |s—o| >6.
With these assumptions

L L
lim [ g(s, o)ds = | qufs, o)ds
-0 ‘ 0

wniformly on the interval a < o <b.
The proof of lemma 3 will be omitted.

LeMMA 4. Assume that q(s) is a funciion of the class G", periodic
with the period L, and the functions g(s, o), y(s, 6) are of class C" in the
st 0<<s <L, a<o<b, a<b, and further, assume that there ewisis
a constant B > 0, such that

g(s,0)=B for 0

s<L, a<o<b.

AN
N

Let us denote

Yo(8;0) = p(8,0),  go(s, 0) = g(s, 0),
41 +3Y1'-1 97—1 +agy‘~1 G

pils, o) = L T g, o) = im0

=1,..,n).

Assume that

vill, 0) _ 940, o)
w9 9 40,0 for a<o<b, j=01m .

9i(L, o) _ 9,0, o) . < ;

W, o)~ g0, 1 esosh o i=1.,m.

Under these assumptions the function ¥(o) defined by the formula
EIJ a f 8 2(8, 9)
=] a2

has the continuous derivatives up to the order n. It will be shown that ﬂw

fpﬂ_owmg formula for the derivatives dh ) (k=1,

ey ) holds

SESafrare

=0 7=0 ay,..,q

d"‘l’( 0')

(20)

icm
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where A% .. are the appropriate constants (2), 0 < up <
@ +2ay+ ..+ Koy = k— (i -+).
Proof. When k=1 and coefficients A3, Ag', A3

k, for h=1, ..,k

are defined by
Ag“:_l, Aglzly -A(1)0=15

the validity of (20) follows from the relation

r
(ZW(G) F o [2 ve , & v
(21) v GJ q(s) [50‘9 5 0, ds— ’ Q(s) ‘ZS
3 1
Yi_ Yo N1 (Q Yo
= §) |[4=—tm 22 ds+ == .22ds
Gf al )[.‘lo Yo (]o] ds g

and this, in turn, is true in virtue of (19) and of the periodicity of the
function ¢(s) with the period L.

Let us assume that (20) is valid for %=1, ...,m, where m < n.
Let us differentiate both sides of (20) with % = m and let us apply the
partial integration as in (21). Writing for the sake of simplicity X in place

m m—i

of 3 3 3 with o+ 2ay+...+may=m~—(i-+j), the following equa-

1=0 §=0 ag,e.,tim
tion will be obtained:

g[8 v\ [gmen
AN e Jm
'#EA“"“C""O dst+1 g, (go) m(go) do+
i B2 -
+ > - mn dst\\ go o 9o/ \Yo, o
i g\ (@i)"h—x (ﬂ)%_l(gh+l)ah+‘ (ﬂ)ﬂmx
F%Z * (!]o) ) % %o 70

x (gm_&».gz)}ds.
Jo G0 Go

dm+1!p( )
dom+1

It is easy to show that the right-hand side of this equation can be
written in the form

M-+ mer1—4 L i
53 S ae Rt
{=0 §=0 Qiyee,@p4l go _(]o go

(%) The numerical values and the number of the constants Afjl g 27O here indiffe-
rent. We need only the fact that these constants are finite ‘and that for every I the

linear combination on the right-hand side of (20) containg a finite number of terms.

Annales Polonici Mathematicl XTI 3
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where AZ,,_GM are the appropriate constants, Oy 205 oo A (M A1) Oy
=m+1—(5-+4), @ >0 for 4 =1, ..., m-+1. Hence it follows that (20) is
valid with & = m -1, which completes the proof of lemma 4.

LEMMA B. Assume that for each 7, 1] < g0y Qo> 0, the function g,.(s)
is a periodic function with the period L and of the class O" and the functions
(8, 0), 4(s, 6) are periodic functions in 8 with the period L and of the
class C° on the domain —oo < s < oo, a <o < b, 0<a<b< L. Further,
we assume that . p

s
(22) 1333‘1 0(5) _T0(3)

(F=0,1,..,m),

uniformly with respect to 8, 0 < s < L, and that there ewist functions M (s, o),
N{(s, 0), P(s, o), Q(s, 0), R(s, o) of the class C" on the domain — oo < § < 00,
a<o<b and a positive constant A such that
(23) 78, 0) = M(s, 0)(s— )2+ N (s, o) (s—o)7+ P(s, 0)r?,
(24) ge(s, 0) = [R(s, 6)+2rQ(s, a)](s—o)*+71",
(28) R(s, o) +2rQ(s,0) =4 for 0<s<L, a<o<b, 7] < go-

Let

) L
o= [ a0 Das < r<a).

gil($, o)
Then

(26)

do* dao®
uniformly with respect to o, a <o <b.
Proof. Let us denote

V(S5 ) = yu(s, 0),

]im[dk%(a)—dwj”"(g)] =0 (k=0,1,..,%),

grl($, 0) = g,(3, o),

. M1 | Ve
(27) Vri(8, 0) =_,}%§“l Jf‘";—;’l; .
(j=1,..,m),

3_,%,7'—1
o0 '’

9ri(8, 0) =_3_gg_%:._1 +

for —co< 8 < o0,a<Lo<h

We note that all the agsumptions of lemma 4 concerning the func-
tions q(s), g(s, 0), (s, o) are satisfied also by the functions ¢.(s), g.(s, 0),
(8, 0), (0 < || < go), correspondingly.

Thus, setting for |r| > 0
Yl qu
9+(8, o)

B k=i ;
it Oy P [P\ (Ge\*e
B 7 {7 ¥ ¥ T
ey )= D) S 3 4t B 2o e (o)

=0 j=0. a5,y

Pro(8, 0) = gu(5)

)

(28)
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for k=1, ..., n, the following equation will be obtained:

@¥ (o)

L
(29) EL =f¢,k(s,o)ds (k=0,1,..,n).
0

To prove (26) it is sufficient to show that uniformly in o, a <o <9,
we have ’

L L
(30) hgl[j pa(s; O)ds— [ pals, o)ds| =0 (k=0,1,..,n).
@ 0 0

The proof of condition (30) is based on lemma 3. Putting » = 0 in (27)
and (28) we define the functions y(s, o), gos(s, ¢} (j = 0,1, ..., n) in the
domain —co < 8 < o0, @ < o < b, and the functions pyi(s, o) (j =0, 1, ...,n)
in the domain —co<s < 0,0 < 0o<b,8#¢+kL (k=0, +1, +2,...).

It is evident that the function em(s, o) (7| < g,) satisfies the as-
sumption (i) of lemma 3. In order to show that the second assumption
of this lemma is satisfied by these functions also, we introduce the
functions :

Mn(8,0)=.M(.S‘, G)a NO(8’0)=-N(376)) Po(s,a)zP(s, ),
Rys; 0) = B(s,0), Qufs, 0)=¢(s,0),

oM, oM;_ ON;, | oN;_
(31) Mys, o) = 3.; 1+ 3; 1; Ns, 0')-:_#1 +__a.%‘_1’
oP,_, 0P, 00, 90,
Pys,0) = 6; ]+—#, Qj(s,a)=—_—%;1+____g;17
oR;_ oR;_ .
By(s, 0) = —= L4 aiyl (G=1,..,m)

and we denote by C their maximal value on the domain 0<s <L,
4 < o<b. Then from (23)-(25) will be obtained the following inequa-
lities

yri($, o)

< (s— o) +|r][s—o|+* ¢

9n(s, 0) Ao C=+VA+4)0/4
(52) (j=10,1,..,m),
Z:g: 3 < (3278)310;1@;3 Cc1420)0/4 (G=1,..,m)

that are valid for 0 < s <L,a < o< b,8# 0, |r| < g
It follows from (32) that the functions gu(s, o) (|r| < ¢, 6 =0,1, ..., n)
are uniformly bounded in the gét 0 <s<L,a<o<b,s Fo. )
3*
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It is easy to see that

Hm?ri(sy o) = yos(8, 0), lino‘gri(sa ) = (oi(8, 0)
7

uniformly in 0 <s <L, a<o<b
Thus in view of (25) it follows that for each 6, 0 < 8 < L/2, the follow-

ing condition hold uniformly in e <o <b,0<s < <L, |s—o|= ¢

Yri(8, 0) 70;’(8 o) “Gri(8, 0) _ gos($, 0)
-0 grol$y 0) T g0ol8; 0)1 o0 (8, 0) Gool8, 0)’
and hence, in virtue of (22)
Him p(s, o) = pals, 0)  (k=0,1,...,m),
>0
umfounly ine<o<h,0<s<KL,|8—0l>

- It follows from lemma 3 that umformly in ago<b

L L
(33) lfinoxf ouls, 0)ds = [ pus, o)ds  (k=0,1,..,m).
] 0

In view of (33) we obtain the assertion (30) which completes the
proof.

For further applications we generalise lemma 5 as it follows:

LemMmA 5*. Let us admit the assumptions of lemma b with a>0,
b <L, and denote by W) the function

L
Ms,
!{,0(0) f Qo(s) R((S‘ ::) ds .
Thus the following conditions hold uniformly in a <o <D

lim &Y (0) d*¥(o)

e do®  dok (k=0,1,..,n).

Proof. It follows from (23), (24), (27) and (31) that

Yoi(8, 0) = My(s, o) (s— o), X
(G=0,1,..,m),
(34) 9os(8, 0) = By(8, 0) (s — 0)?, .
Rys, 0) = R(s, 0)

in the domain —co< 8 < o0, a < o < b.
Let us observe that the functions yg;(8, ¢), goj(8,0), § =0,1,..,n,
are periodic in s with the period L. Hence

35) TOI(L7“)=701(03‘7), go;(L,a)=g0,v(0,c), a""éo'<by 7'=0,1,m,'”.
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In view of the assumption a> 0,b < L it follows from (25), (34)
and (35) that for each o, a <o <b

MAL, 0) _yulL, o) _ yoi(0, 0) _ M0, o) o1 L
Ry(L,0)  guL,0) gu(0,0) R0, 0) F=0,1,..,m),
BAL, o) _ goilLy @) _ g0s{0, o) _ Ri(0, o) (=1 n)
Ry(L,0) gL, 0) g0, 0) Re(0,0) y ey M)

Thus all the assomptions of lemma 4 concerning the functions ¢(s),
g(s, o), (8, o) are satisfied also by the functions gs), R(s, o) and M (s, o)
regpectively.
Let @m(s,0) (k=10,1,..,%) be the functions defined in the proof
of lemma 5. It follows that (see (34))

L
J*¥Po(a
oo ) =Df pols, o)ds (b =0,1, ..

» 1)y

and hence, in virtue of (29), we obtain from (33) the assertion of lemma 5*.

DEFINITION. Let X be a simple closed curve of the class O™ (see
part 1, Denotations). We say that 2z = z(s) is a parameiric normal re-
presentation of the curve X if z(s) has the following properties: z(s) is
a function of the class O, it is a periodical function of period I, [2/(s)] =1
and z(s;) = 2(s;) for 0 <; <s, <L if and only if s, =0 and s, =1L. .,

LEMMA 6. Let X denote a simple closed curve of the class 0" and w, ()
a function defined for { e X and 0 <7 < o, such that for every parametric
normal representation z = z(c) of the curve

(36) g limw,[2(0)] = w2 (0)]
730
uniformly in the interval L[5 < o <4L[5.
Then
(37 Hfolwr(C) = y(£)

uniformly convergent as to £, e Z.

Proof. Supose 2z = 2(o) is a certain parametric normal representation
of the curve Z. Let us denote by X, the arc described by the point

z2=2(c) when L/b<<o<<4L/b.
According to the hypothesis (36) we have
(38) limw,(£) = wo(£)
70

and the convergence is uniform as to §,{ e Zj.


GUEST


38 Z. Szmydt

Let us put
(39) T=0—L2, #"7)=2(r+L/2).
It is easily seen that

g=2M1), 0<7t<L,

is a parametric normal representation of the curve Z'also. It vesults there-
fore from our assumption that
(40) 1imwr[z*(r)] = wo[#*(7)]
and the convergence is uniform ag to = in the interval L/b < v < 4L/5.

Let us denote by Z, the arc of the curve 2 described by the point

=¢g¥1), when L/b<t<4L/0.
Now it turns out from (40) that
(41) limw,(£) = wy(£)

70

and the convergence is uniform as to ;e Z,.
It follows, however, immediately from (39) that

T=Xu .

Hence in view of (38) and (41) the velation (37) which was to be proved,
follows easily.

The following condition will often be 16]_)0&1;0(1 in further lemmas.

ConpiTioN H(h, k). We say that a function p(z) and a curve X
satisfy the assumption H(h, k), where h k are mnon-negative integers,
if p(2) is a function of the class C* and X is a closed single curve of the
class Ck,

LemMA 7. Let m be an arbitrary mnom-negative integer. We assume
that a function p(2) and a curve X satisfy H (0, 2) if m = 0 and H (m, m+1)
if m > 0. By this assumption we have

(42) llm—[ fp(z)log\z—fldsa fp 1oglz~4‘!d8~o] =0
—e
(b=0,1,..,m)
the convergence being uniform with respect to e X.

Proof. We ghall prove (42) by induction. We shall show first that
it holds for m == 0.

Let g,> 0 and let b > 0 be a constant such that

(43) ()| <b  for zeZX., |r|<o
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We denote by Z;s the are of the curve X contained in the circle
of the centre ¢ ¢ X and the radius 6, and we denote by Z.,s the part of
the curve Z, obtained from the translation of Zy;in the normal direction.

" It is easy to show that for each &> 0 there exists a J.> 0, such
that for arbitrary ¢ e X the following inequality

| [ logle—tlas| <esb  (r|<e
I8,
holds. Hence in view of (43) we obtain
(44) | [ p@ogle—tlas|<en  (r| <an.
EAXR

We note further that
lim|z, —¢| = [¢—¢| uniformly with respect to ze X,le 2,
>0

and
len—C] = |2 =¢|—7=6/2 for 7] < 6/2,

It follows that

ze X— 2;’56 .

limlog |, —¢| =log|¢—¢| uniformly in #e X Zpp,le X
>0

and since (see (1) and (2))

. . ds,
lmp(s) =p(e), LmZr=1
r—0

uniformly in ze X
o A8

there exists a number g;, 0 < g; < g, such that

(4B) l f p(=)log|z—¢|ds,— f p(z)loglz—i[ds.<e/3

2Ty 0,0, ~Zp5,

for each e 2 and |r| <
It follows from (44) and (48) that for £ ¢ 2 and |r| <
following inequality:

o, we have the

l fp(z)log]z*clds,— fp(z)loglz—é‘lds! <e
2. z

and so lemma 7 has been proved in the case m = 0.
Tet us assume that it is valid for m = k> 0 and assume that p(z)
and ¥ satisfy the condition H(h+1,%+-2). It is easy to prove that if
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2plos, denotes the derivative of g in the direction of the tangent to the
curve Z, we have for o> 0

%[zg.p(z)loglz—i{dsoﬂ ‘J'Q)(z)log z——«l\ds_a]

-

dsy

) o N ¢ .
= J P () [iTsElOg |&-—&| - Z’%-]og [z
A .

. P e T
- “J p(2) [%;10g|5””“‘~[ Ve log |z —¢||ds. |
.J_Q -

op . T tap ) ol .
- ‘f%:logiw—ug{d%»~ ““ ;j;q-m-.—;’-log |g--&|ds. .
¥, x7,
Putting (see (1) and (2))

(46) a(s) = DIE:R

filss 0) = ['(s)—

p[e(s) v (2(s)

@'(o)}[@(8) —ry’'(s) —@(0)] -
+ Ly () =y ()1Ly (8) +ra' () —y (o)1,

(47 (8, 0) = w(0)FF--[y (s) --ra'(s) -y (o),

[w(s)—73/'(s)—
Jil) =

p

ap X
&;log‘ j2—C|ds, ,

Wh_ere o = §; denotes the value of the parameter corrvegponding to the
point { of the curve X, we can write this equation in the following form

a%{zfp(z)’log le—¢|ds,— J p(2)log |z—~,€|ds~_,~,}
X 2

_f% L)

Hence it follows that

anu[ f?’ ()log |&— | dg,— J

—-e
=:2%’%U e

[J €)—

f 0 f:_",.__ gy B I8 =T ).

(®)log |z

|

[ isal,

3 h J"'D( )]

icm

On a certain boundary problem for Laplace equation 41

Since the function &p/és, and the curve X satisfy H(h,h+2), in
view of our inductive assumption it follows that uniformly with respect
to feX

(49) hm——[J ST B =0 (k=0,1,..,%).
o0 8;
Let
¢ his,0)
o (s,
(50) ¥,(0) j wls) o s

It will be proved that for each & =0,1, ..., &

13
(51) lim 222 (o) — P ()] = 0
uniformly with respect to o, L5 < o <4L/5.

The proof of (51) will be based on lemma 5. To this aim we note
that ¢,(s) is a function of the class C* which satisfies (22) with » = h and
is periodic with the period I, and the functions fi(s, o), g:(s, o)

1. are of the class O in the get —oo < 8§ <oo0, —00 < 6 < oo and
periodic as to s of period Lj

2. they can be expressed in the form

f.(s, 0) = MM(s, 0)(s— o) -- N (s, 0)(s—0a)7,

(s, 0) = [R(s, o) + 2rQ(s, o)](s—of +1%,
where M (s, 0), N (s, o), R(s, o), @(s, o) are the functions of the class cr
in the domain —oo < § < o0, —oo < ¢ < oo, defined respectively by

1 1

= f 4"'[o-+T(8—0)ldr- j a'[o+7(s—o)]dr+
0

[

M(s, o)

+ [ yTo+r(s—o)ldr- [ ylo+(s—a)ldr,
[} 0

1

N(s, o) =a'(s) f y”[a-%—-r(‘s—a)]dr—y’(e)fa;"[o'+r(s~a)]d1:,
0 0

1 1
R(s,0) = {f m’[a—i—r(sb—o)]dr}z—{—{f y’[a—!—r(s—a)]dt}z,
Q(s, 0) =
f(r—l) {m’(s) fy”[s+u(s——a)(r~1)]d-u—g/’(s) fw”[s+'zb(s~cr) (z—l)]d«u}dr
] 0 0
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Let us note that B(o, o) =1 and that (see (47))

Bs, — o) = gos, 0) = |e(s)—2 .
It follows (8, 0) (8 0)" = go(8, 0) = |2(s) —2(0)?

R(s,0)>0 for 0<s<L, LB <o<4L/5

and because (s, o) is bounded in the domain 0 < s <L, 0 < o < L, it
is easy to prove the existence of the constants g, > 0 fmd 4 > 0 such that

(82) R(s,0)+2Q(s,0) >4 for |r|<g, 0<s<I, L/b<o<ALf5.

From these properties of the functions ¢.(s), fu(s, o )y 9(8, 0) and 111
virtue of lemma 5 with n=1h,e = L/5,b = 411/6 and. y,(s, 0) = f,(8, o)
(P(s, 6) =0} we obtain the equations (51).

dv_o]

Let
o1
238?“[ j P z)log]z—é‘]dsa Jp
[J —J-o(5)].

Z

(83)  wy(0)

—e

9 o
We find from (48), (50) and (53) that

wel2(0)] = ,L[Y’( o) —¥_(0)]
and since (51)
(54) limw,[2(0)] =0

o0

uniformly in the interval L/5 < o 4L/5.

As the parametric normal representation » = 2(0), 0 < o< L of the
curve X was chosen arbitrarily, it follows by the re]amlon (54) in virtue
of lemma 6 that :

(85) limw,(Z) =0

20
and the convergence is uniform in 7,7 e .
From (55), (49) and (83) it follows at once that

6 ,LH[ jp(z Nog|e—¢|ds,— fp 10g[zmt,|¢78_0] =0
—Q
uniformly as to ¢ e 2 This accomplishes the proof of lemma 7.
Lemwa 8. Let m be an arbitr ary mon-negative integer, and let us as-

sume that if m = 0 a function p(2) and a curve X satisfy E (0 ;
¢ 1 y d
m>1 they satisfy H(m—1,m). fy Z(0;1), and if

Then uniformly in ¢ e X we have for 5=0,1,..,m

(56) 10151—82—[][1) (2)log |2 — | dw, — ffp 1og]~—~é']dr~] =0.
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Proof. It is easy to observe that lemma 8 is true for m = 0,m = 1.
Let us assume that it holds for m = u, x> 1, and let us assume H (4, u-+1).
Tt is now sufficient to prove (56) for k¥ = u+1 so the assertion of lemma 8
ig proved for all m.

In virtue of Green’s theorem we have

z%” p(#)logle—L|dr
f f [p(#)log |e—{[1dv: + f f B 1og)e—gr,

= J (z)cos(n ~,w)loglz«—l\ds,-}—Jf@gﬂ;ﬁlog[z——é]cl-t:;,,
‘QT

ffp (»)log |2 —|dr,

= f;p(z)cos(m,y)log]z—:ldsr—}-J‘J‘?%logw——é‘]drz
Zp 2

and so it follows that

67 ai”:l[ffp (2)log [z —¢|des— fj Z)loglz——ﬂdrz]
&

"'_" e(é)’{‘a“ 9(5)7

‘where
Dy(0)

=u'( [fp (»)cos (ny, #)log |z—C|ds,— _}pz)cos(m, x)log |z— C]ds_Q]

g

| p(2)c0s(ne, y)log |o—¢|ds—y] ,

]

[ff Ploglzééldrz ffaplog]z wag]
’ Ufa?log‘z £|dw— ffggloglz—g‘ldrz].

Tt is easy to see that the pair (p(2)cos( (ng, ), Z) and the pair
(p(2)cos(ng, ), Z) both satisty H(u, p+1). Hence we conclude by
lemma 7 that by ¢ £ we have

[ fp ) cos (ny, y)log [2—|ds,—

F(l) =

(58) hm——— W{(8) =0

-0 68;

and this convergence is uniform for { ¢ L.
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Since the pairs (9p/ox, ) and (8p/dy, Z) both satisfy H(u—1, u4-1),

it follows from our inductive assumption that

&
(59) Lim ~— Wy({) =
o0 685
the convergence being uniform by (e 2.
From (57)-(59) it follows that (56) is valid for % = u--1, which
completes the proof of lemma 8.

LeMMA 9. Let a function p(=) and the curve X satisfy the condition

H(m+1, m+1), whenever m > 0, and H(2, 2), in the case m == 0.

Then we have

lim—s [ fp(z ———1og|~——g‘|d~:0 - Jp(~ —10g|~~~€[ds_a]

0->0 a‘ ¢ E

p: (F=0,1,..,m),

the convergence being uniform by e X.
Proof. In virtue of Green’s theorem we have

or 9 . 0 .
(60) K?Lofp(z)—a—%—zlog\z—g“]dse~ vfp(z)%;log]z~5ldsa,,]
-
(s [ potoe ozl
P L;{amlog [g—¢]|ds, ‘kij Aplog!,,—t\drzj -
(]
ok ap .

6+ 2 1) +2n T2
3;

9 p(g)"}.fJ‘Aplog\z——é‘idrsl
a_, ’

a 1,
‘where
" 9y . )
K (&) = Jgleoglz-—ﬁdsa—- j%log[z—é[ds_“
z =, o
I’Q(C)=ijP10g|~’”"‘C|de—J j Aplog |z~ ¢ |du, .
n Q__o

It follows frown lemma 7 applied to 8p/dn, that for every &, 0 = k < m
we have

(61) ‘ hm——-K W(8) =0
[ag! as;

the convergence being uniform for ¢ e X.
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Similarly, lemma 8 applied to 4p and X yields
(62) Lim— L&) = 0

which holds uniformly for { e Zand k= 0,1, ...
directly by the formulae (60)-(62).

LaMma 10. Assume that the pair (p(2), X) sabisfies
if m>0 or H(2,2) if m =0. Then we have

, #. Then lemma 9 follows

H(m--1,m-+2)

o0 395

WIPINE S SN .
(63) hm—-—[ J p(z) — log|z—&|ds,— Jp(:)——l‘oglz—g]ds_g]
s any =, ang

. D ok
T (@)
the convergence being uniform for e 2.

Proof. Let 0 <%k <m, 0 <o < g, and let us put

ok 2 . 2.
wor(8) =5§7{ fp(z) [alog\z—il-i-alog]z—ﬂ] ds,—
¢ Z, oy (4

7} 2 )
— vfp(z) [a-.’—%loglz——ZH— a—n-;log]z——f:]] ds_,} .
“—e

On account of lemma 9, in order to prove lemma 10 it needs only
be shown that for each %, 0 <%k < m,

(64) limwg(Z) = 0
o0

the convergence being uniform for (e Z.
It is easy to see that

ho(s, 0)
(8, 0)

©5) [ 2)[—10g|z~s|+——1og]z q](zs_fq,

=r

where the function g.(s) is given by (46), g.(s, o) by (47), and ks, o) is
defined by the formula

(s, o) =y (o) —y'(s)]- [w(s)—ry'(s)—a(a)]+
+[@'(s)—#'(0)]ly (s) +-ra'(s) —y(0)] .

We note further that

h(s, o) = [(s— 0)*U(s, o) +7(s—=0)V¥ (s, 0)],
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where

U(s,0) = [ @"'[o+7(s—a)ldr- [ ylo+r(s—0)ldv—
0 [}

1

——fy”[a+r('s——a)]dr- fm’[a-l--r(s—-a)]dr,

Vs, 0) =y'(s fy"[o—{-r s 0)]dv + x'(s) fw”[a-{- (8~ o)]dz .

It follows by lemma 3- with % = m, e =L/5,b = 4L/5 and y.s, o)
= h(s,0) (M(s,0)=Uls,o0), Ns,0)=Tl(s,0),P(s,0) =0) that we
have for k=0,1,..,m

L
(66) tim i [q ()89 g 5)

3‘7" 9o($, 0) g-o(8, 0)

bt g, g
uniformly in the interval L/5 < o < 4L/6 (see (52)).
It follows from (65) and (66) that for any &, 0 <k < m

limwg[2(o)] = 0
o0

uniformly as to o in the interval I/b < o <4L/56. The represontation
2 =2(0), 0 < 0 <L of the curve X having been chosen arbitrarily, the
relation (64) follows by lemma 6 and from it lemma 10.

Lemma 11. Assume that the pair (p, X) satisfies H(m--2,m--2)
if m >0, or resp. H(3,2) if m = 0. Then we have

3 31 o Al — ’
s f o & 2 [ B

>0 63; e Ny My

(b =0,1,..,m)
the comvergence being uniform for { e 2.

Proof. Let P, be the domain whose boundary counsisis of both
curves X, and Z_,, ie.

P, =0_,—0,

Assuming that the function »(z) and the curve X gatisfy tho condi-
tion H(m, m-+1) we shall prove that we have the uniform convergence

(67) 19130158—:[[ ~1og1z iz =0 (k=0,1,..,m).

icm®

On a certain boundary problem for Laplace equation 47

In the case m = 0 the validity of (67) is evident. If m > 0 it follows
from lemmas 7 and 8 and from the following formula

ffv(z)a—aﬁ;loglz—i[drz
PQ
=[]

fq)(z)[y’(é)‘—%log[z—C[—-w’(C)%log]z*C!]dr,

e

=—y'({) [ fpl (2)log |2 —C|ds_,— Jpl(z log|z— L‘[ds]

10g|a C[-{-mr(c)%logfz——&']]drz

i
——

y

ffwl 2)log{z— C|drz+w(§‘)ffwz Vog |2—¢|dr,+

+w'(c>[ [ manogle—tias-— [ pe(z)loglz—ﬁdse],
=5, =z
where
Da(8) = v(2) o8 (ng, @),

() =28 o) =

Po(2) = v(2)cos(n,, y) ,
v (2)
oy

In order to prove lemma 11 we first note that due to Green’s theorem
we have

fp(z ———1og|z—;°|dsg fp() 1og|z Llds_g

ong on,

a"c{ _{P —10g|z g|ds,— fp -——10g|z C|ds__g}

/4
am{ .f@ log|#—¢|ds,—

fap 10g [#—| @8 g + 279 (O) — ffdp(z)log[z—-ﬂdr,}

_32’

on, om; loglz Z|ds,— f%— a—n—log]z——ﬂds_e—{—

Q

+9 fpra log|z—¢|dr, .
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Thug in- virtue of lemma 10 and (67) with v == Ap, lemma 11 im-
mediately follows. ‘

Our main theorem is a direct consequence of the above proved
lemmas. Indeed, from lemma 2 it follows immediately that this theorem
is a consequence of (11), (12), (13), and (14), and these, in turn, follow
from lemmas 7, 10, 9, and 11 respectively.

;
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On the asymptotic coincidence of sets filled up by
integrals of two systems of ordinary differential
equations

by C. OLEOH (Krakéw)

Introduction. In many papers concerning the asymptotic beha-
viour of solutions of ordinary differential equations the following problem
hag been congidered.

One has a system of differential equations

{0,1) dy/dt = F(y,t)+e(y, 1)

(y i8 a vector ¥y, ..., Yn, ¥ is real variable, F(y,t) and e(y, t) are vector-
functions) which arose from the perturbation of the system

0,2) - de|dt = F(x, 1) .

The Dbehaviour of solutions of (0,2) is supposed to be known by some
means (often system (0,2) is a linear one) and the perturbation e(y,1)
becomes small ag ¢—--oco. The problem consists in establishing, under
the appropriate assumptions concerning the perturbation, asymptotic
relations between the solutions of (0,1) and those of (0,2). More exactly,
one wishes to establish that for every solution #(f) of (0,2) there is
a solution y(¢) of (0,1) which is, what we may call “agymptotically
near” to x(t) (as t—+o0). Of courge the term ‘‘asymptotically near’
hag different meanings according to the aims we have in particular
considerations.

For instance, we may say that «(t) is asymptotically near to y(¢) if
their characteristic numbers are equal, i.e. if

(0,3) lim sup (In|y ()ift) = Lim sup (In|a@®)]1)

(see [2] and [4]), or if the following condition is satisfied
(0,4) y(t) = @(t)+n(t) where |5(t)] = o(la(t)])

(see [9]) or, in the case (0,2) ik a linear system, |n(t)| = o(#'¢*") where u
and o are constants determined by z(t) (see [3]).
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