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1° Bquation (1) possesses infinitely many solutions that are continuous

in the set
N1

U {(ﬂ/,, 1y Uy) w (b, bv-H)} .

20 If, moreover, numbers ¢, and d, (0<v<n) fulfill the velations
(18) dy = F(a,0), ¢ =Fb,d),
then equation (1) may possess solutions that are continuous ab the points a,
and b,. The number of solutions that are continwous in the seb (@1 yy)
U (by—1, Dyr1) and such that g(a,) = ¢, and ¢(b) =d, is given, aocowh‘n,q
to assumptions on the function f(x) and the devivative Fy(®,y) Eor/oy,
in table 3. As previously, the empty places denote the cases in which we are
not able to determine the number of continuous solutions.

f@) > () > w o) < w PHw) < w
. . M (G, @) | AN (@pdr, ) | D0 (Gopa, @) | 00 (G, o)
Table 3 ey >o (Pa)y<e [P >as | Pe) <o
in (ay, @oea) | In (as, @) | i (a0, @00) | 0 (a0, 01)
[Fylas, ) Fy(by, do)] > 1 inf. many | exact. one | inf. many | inf. many
| o, 9)Folf (@), Flw, 9))] > 1 at most one
in a neighb. of (m, &)
|Fylav, o) Fy(by, )] < inf. many | inf. many | exact. one | inf, many
|Fule, ) Fo(f (@), B, )] < 1 at most one

in a neighb. of (a, &)

Remark. In the case » = 0 one should take d = d, = ¢, and (a,, a—y)
v (b=1, by) = (ay, by). Then relations (15) reduce themselves to relations (14).
In the case v = n the seb (@41, Gne1) V (bn-1, Dny1) should be replaced by
the set {@u, ty—1) v (bu-1, bzp. In both these cases in table 3 only two
central columns are to be eonsidered.
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On continuous solutions of some functional equations
of the n-th order

by B. Cmoozewskr (Gliwice)

In the present paper we shall consider the following functional equa-
tions of the n-th order (for a definition of an order see M. Gherms-
nescu [2])

(1) p(@) = H(z, p[f(2)], ..., p[fal@)]) ,
(2) (P[fn ] = ( (m)i (p[fl(m)]: wery ‘P[fn——l(a7)]) B

In these equations flw) (4 =1, ., n), G(®, Yo, .o, Yn-1), H(%, Yy, .., Un)
denote known, real-valued functions of real variables, and ¢(x) denotes
the required function.

Bquations (1) and (2) are the particular cases of the equation

(3) F(z, p(@), g[fu@)], ..., @lfal@)]) = 0

(under suitable assumptions equations (1), (2) and (3) are equivalent).

J. Kordylewski and M. Kuezma proved in [5] that equation (3)
possesses an infinite number of solutions that are continuous in the open
interval (a, b). In that manner the authors received for the case of equa-
tion (3) the result, analogous to a part of their results for the equation

(4) F (2, ¢(2), plf(@)]) =

which they had published in [4].

M. Kuezma has expressed the conjecture that for equation (3)
are true also theorems about solutions continuous in the one-sided
clogsed interval (a, b> (or (a,d))—analogous to the theorems regarding
the solutions of equation (4) (see [4] and [6]).

Theorems 1-3 of the present paper (being the contents of §2) cor-
roborate partially M. Kuczma’s conjecture for equations (1) and (2).
In the proofs of these theorems we make use (in essential manner) of
results contained in the quoted paper [5]. In § 1 we formulate the assumyp-
tions and quote the results of the papers [5] and [7], in the formula,hon
as we shall need for the considerations in § 2.
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§1. Let f(2) be an invertible function. We shall denote by f¥(x)
(k=0, &1, +2,...) the k-th iteration of the function f(2), i.e. we put
o) =g, o) =[], FH@)="{He)l,

for k=0, &1, 42, ..
- One can prove the following:

LevmA 1. Let us suppose that the function f(w) is continuous and
strictly increasing in an interval {a, b>, and swuch that f(a) = a,f(b) =b
and f(z) > z for © <(a,b). Then, for each » e (a,b), the sequences {f™(@)}
and {f ™)} are monotone, and

lim /(@) = b,

M—>00

limf ™) = a .
M-

This lemma wag proved in [7].

Now we shall introduce the following assumptions about the functions
fiy @, H appearing in (1) and (2).

(I) The functions fix) (¢=1,..,n) are defined, continuous and
strictly increasing in the interval <a, b); fila) = a, f(b) =b (i =1, .., n)
and

2 < fi(®) < fi(®) < fu-1(®) < falw)  for

(II) The function H (%, ¥y, .., Ys) is defined and continuous in

a cube 2 <a, b) % {¢a, f5}" and fulfills the inequalities
a<H<p in Q.

(III) The function G(z, ¥y, ..., Yn-1) i8 defined and econtinuous in
the cube 2 and fulfills the inequalities

a<@G<f in Q.

ze(a,d), 1=2,..,n-2,

Below we shall formulate two lemmas. Those lemmas are in fact
somewhat modified variants of the theorem proved in [5]. The proofs
of those lemmas, which may be given in quite similar manner as in [5]
(compare the remark ITI in [5]), we omit.

LevmA 2. Under assumptions (I) and (XI), for any x, € (a,b), there
exists an infinite number of solutions of equation (1) that are continuous
in the interval (a, fa(2o)>. These solutions are given by the formulae

_ p() for @ € <ao, falwo))
H(m: plf(@)], -, ‘P[fﬂ(m)]) for @ e <@gy @uiya),

where oL m,) (i =1, 2 y )y and w(x) is an arbitrary function con-
tinuous in the interval {2y, fo(@e)> and such that

a<yp@) <B for @elm, falm))

p(ay) = H(mo, p[f(@o)l; .. 'P[fn(‘”o)]) .

(8) o

and
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Let us put
(6) k(@) Efalfala(@)]
The function k() fulfills the assumptions of lemma 1, as one can easily
verify (compare [5]).

Levua 3. Under assumptions (I) and (IIX), for any @, € (a, b), there

ewists am infinite number of solutions of equation (2) that are continuous
in the interval {®,, b). These solutions are given by the formulae

y (@) for  ®em,, f‘n(mo)) 3
(N ol =16 (@), olfa @], ¢ [Af"@)], .-, ¢ [faa(f(@)])
for @ e<mi; miya),

where wigkf_l[fn('wo)] (t=1,2,..), and p(x) 4s an arbitrary function
continuous in the interval {w,, fa(®,)> and such that

a<p(@) < for e lmy, fulwm)>

and
Y[falwo)] = G(wo; LACYIRINSTE- ) PR "/’[fn—l(%)]) .

In the sequel we shall accept one of two following assumptions:
(IV) There exists a number d fulfilling the equation
d=H(b,d,..,4d)
and the inequalities
(8) a<d<f.
(V) There exists a number d fulfilling the equation
d=@Gp,d,..,a
and inequalities (8).
‘We shall prove the following:

LEMMA 4. Under hypotheses (I), (II) and (IV), if there ewist numbers
e>0,7>0, ;=0 (1=1,...,n) such that the inequalities

n
(9) 0< Y a=g<1,

g=1

n
(10) |H(w! Y1y ooy yu)—H(wf@u ,%)l éz%]y‘“y‘l
) > =1
for  we<b—n, b, Yn,Yield—e,d+ted,
hold, and also
(11) |H (2, d, ...

t=1,..,n

yd)—H(b,d, ..., &)| < (1—g)e
9%
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holds for x e (b—un, by (1), then there exists ewactly one solution y(w) of
equation (1) which 15 continuous in the interval <b—n,b) and assumes the
value d for x = b, i.e. p(b) =d.

Proof. We shall prove that

1° There exists exactly one solution y(z) of equation (1), continuous
in the interval <b—n, by, fulfilling the inequality

(12) lp@y—d|<e for welb—n,bd)

and such that y(b) = d.
2° Hach solution ¢(x) of equation (1) which is continuous in the
interval (b—n, b) and assumes the value d for # = b, fulfills inequality (12).
The assertion of lemma 4 follows immediately from 1° and 2°.
At first we note the following assertion

(18) [H(®ythy..,yn)—d[ < e for melb—n,b),

Yield—e,d+e) (i=1,..,n).

Essentia'lly, on aceount of assumption (V) and inequalities (10) and (11)
we have

IH(.’L‘, Yy ooy Yn)— 8| = |H (%, Y1, -y yu) — H(D, d, ey d)|
S|H@, Y1y oy o) —H(z, d, ..., D)+ |H(z, d, ..., )—H(b, d, ..., d)|

ud n
< alyi—d+(1—g)e < e D ait(l—gle=-¢.
=1 i=1

Here we shall give only a sketch of the proof of assertion 1°. This
proof is analogous in details to the proof of a theorem of M. Bajrakta-
revié (see [1]).

Let us put BLp—1n, b5, FE {d—¢,d+¢ep. Inequality (10) holds
in the Cartesian product B x F". Let us compose a space of functions w(x)
which are continuous in the set F and map the set B into the set F. It

is a eomplete metric space (after an introduction of a suitable metric).
The transformation

V() & H (5, p[A@)], ..., yI/a(o)]

i3 continuous (consideiing assumptions (X) and (II)) in this gpace (on
account of (13)). As it follows from inequalities (9) and (10), ¥(y) is also
the transformation of a contraction. Hence, on account of Banach’s

) (*) On account of the continuity of the function H at the point (b, d, ..., d) there
ex.mts a- J.m.mbs?r 7 >0 su‘ch that inequality (11) holds for o e (b— 17, b. Lemma 4
will remain valid if we omit assumption (11) and replace the interval <b— 7, b in the

. . a
them_s by thz? interval (b.~ nl,‘b), where 7, = min (5, 7,). We have assumed the ine-
quality (11) in order to simplify the lemma’s announcement and proof.
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“fixed point principle’’, we infer that there exists exactly one function ()
defined and continuous in the interval <b—=n, by, fulfilling equation (1)
and inequality (12).

It remains to prove that »(b) = d. Let us suppose that p(b) = d; # d.
Since the function v () fulfills equation (1) for # = b, we have (considering
assumptions (I)) the equality

dy=Hb,dy, ..., dy) .

On the other hand, it follows from (12) that d, e (d—e, d+¢), and the
application of inequality (10) yields

ldy—d| = |H(b,dy, ..., d)—H(b,d, .., &) < ¢|d,—4d|.

Hence ¢ >1, and we run into a contradiction to inequality (9). This
completes the proof of assertion 1°.

Now we pass on the proof of assertion 2°.

Let a solution ¢(w) of equation (1) be continuous in the interval
(b—n,b> and let p(x) fulfill the condition: ¢(b) = d. The function ¢(z)
is continuous at the point z = b, then there exists a positive numbe}; 7,
such that the inequality

(14) lp@)—d| <o

holds for z e ¢b—7, b>. If 7 = 7, the assertion 2° is proved—consequently,
let us suppose that there is 7 < 7. Let us put 2,2 b—% and z_; Zf%(=,)
(i =1,2,..). There exists a natural number I, such that z_; < b—n.
Consequently (compare formulae (5)) the function ¢(2) will be expressed
for # e ¢(b—mn, 2,) by the formulae

(18) @(@) =H (2, p[A(#)], ..., ¢[fal(2)]) ,

For @ e (&1, ), there is fi(x) € (wy, fulty)) C (o, b) (j =1, ..., n), hence
inequality (14) holds for ¢(fi(#)] (j =1, ..., ). In virtue of (18) and (15),
inequality (14) holds for # e (#_;, b). Now we repeat this reasoning con-
secutively for the intervals {w_s, #_;); ..., {T—y, T_z41). We draw a con-
clusion that inequality (14) holds also for # e (., b), therewith we have
¢b—mn, b) C {w_q, b).

Thus we have proved that the function ¢(x) fulfills inequality (12).
This completes the proof of assertion 2°.

me(m_i,m_ﬂ.l) (’i:l,...,l) .

§ 2. Now we shall prove

TEROREM 1. If the assumptions of lemma 4 are fulfilled, then equa-
tion (1) possesses ewactly one solution ¢(x) that is continwous in the interval
(@, by and fulfills the condition @(b) = d.

Proof. On account of lemma 4, there is exactly one continuous
solution (®) of equation (1) in the interval <b—n,bd)>, and therewith
p(b) = d.
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Let @, € <b—7, b), then also fa(a,) € <b—, b) (lemma 1) and <z, fa(a,))
C {b—n, b). In the interval (a, fa(®o)> the continuous solution of equa-
tion (1) is uniquely determined by the function y(x). This follows from
lemma 2 (formulae (5)). We put o(z)Zyp(@) for 2 e {falo), B>, and thug
we obtain the solution of equation (1), continuous in the interval (a, b>.
It is obvious that we have found all such solutions, which proves the
theorem.

It is interesting that for equation (2) we obtain a quite different
thesis, while assumptions are analogous to the agsumptions of theorem 1.
Namely, we shall prove

THEOREM 2. Under hypotheses (L), (III) and (V), if there ewist numbers
e>0,7>0, 0,20 (i =0,1,..,n—1) such that the inequalities

n~1

Sa-

i=0

<1,

n—1

 Ynet) = 6@, Fo, oo, Pos) | < ) ilya—Ti

1=0

(1@ |G (@, Yo, ...

for  ®elb—9y,b>,
hold, and also
amn |Gz, d, ...
for e <b—mn, b> (?), where
(18)

Yo,Yie{d—e, d+e) (t=10,1,..,n—1)

=G, d, ..., )| < (B—By)e
h<d<1,

then every solution g(x) of equation (2) which is continuous n the interval
(@, b) and for which there ewisis a point wye (b—1n, b) such that

(19) le(@)—d|<e  for e o, fn(wo))
fulfills the condition
(20) ]ir;q p@)=d. 7

Proof. Let us put

&Ly = k'—l[fﬂ(wo)] v By = falw) (v = 1,2,..,

where the function k() is defined by formula (6). We have @y = By = ful@,).

Let @(x) be a continuous solution (in the interval (@, b)) of equa~
tion (2) and let ¢(w) fulfill inequality (19). For » ¢ {@y, b) the function p(»)
is glvan, according to lemma 3, by formulae (7).

We shall prove that for @ e (@, b) the inequality
(21) () —d| < de
holds. The proof will be by induction.

(*) For assumption (17) see remark *)-
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1) For € {Z,, %;) we have from (7)
p(@) = ¢ (@), olf2 @)1, o [Lf @), s @ [facalfa'@)]) -

But fn'(#), filfn (®)] € @0, fulo)) (6 =1, ...
pothesis (I). Consequently

‘P[fﬂ (z)], @ [fz(

according to (19). Thus, making use of relation (22), hypothesis (V),
and inequalities (16) and (17), we can write the following inequalities:

(22)

, n—1), ag it follows from hy-

@)] ed—e,d+ep  (i=1,..,n—1),

(23)  |pla)—d| = |G(fx (@), olfa @), e[flfa @)y o @[ famslfa@)]) =
—-G(b,d,...,d)]él(}( n (@), ¢[fn (w)]"'w‘nv[fn—l(f; (m))])—G(f;l(w), 7“'7‘1)‘"\'
+G (@), dy ey () — G, A, ..., D) < ag|@lfz (@)]—d] +
+ 3 alp i) - a+@—0e <o 3 art(3—t)e = e.

i=1

Tn this manner we have proved that inequality (21) holds for @ e <&, %s).

2) Let us suppose that inequality (21) holds for ze {&yy ®p). We
shall prove that this inequality holds also for @ e <@, #p+1)-

For @ e (X, Tp41) the solutlon ¢(x) is expressed by the same for-
mula (22), but now fri ), filfa (@))€ Lo, @p) (E=1,..,n—1). As it
follows from the inductive hypothesm, for we (mo,mp) inequality (19)
holds, whence we have

olfa (@)1, o [filfa(

Consequently, we can write again inequalities (23), from whence we
infer as in 1) that inequality (21) holds for # e (%, @p+a), and, as a con-
sequence of the inductive hypothesis, for @ e (@, Zps1)-

From 1), 2) and lemma 1 we deduce that inequality (21) holds
for @ e (&, b).

The sequence {#} is increasing and lima‘o,=b (lemma 1). The

)]e(d—a,d—i—s} (t=1,..,n—1).

function G(z,d,...,d) is continuous at the pomt % == b. 0011sequ§ntly
we can choose from the sequence {#,} the sequence {@})}, @F = dn,,
B <t < ... < @ < @1 < ... 80 that the inequalities

| < (@—10) e

(24) |G(@,d, ..., d)— (B, .y G)

hold for we <x¥,b) and »=1,2,...
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Now we can prove by induction the following inequalities

(%) lp(w)—d| <9"s  for  wedw},b), »=1,2,..

For v=1 inequality (x) follows from inequality (21), because z¥ > @y,
Let us assume inequality () for » = p > 1. In a similar manner as in
the proof of inequality (21), making use of this hypothesis and inequality
(24) for » = p, we obtain according to (23) the inequality

lp(@)— ] < I edy -+ (9—D) P& = PH¢

for @e {fa(z3),d). But @} < fa(@h) < @psr hence (@hi1,b) C (), b)
and inequality () holds for » = p+1. Consequently it holds for each
natural ».

At last, let us take an arbitrary number > 0. We can find (ac-
cording to (18)) a natural number »(g) such that

Pe<s for v2(E).

Of course; the sequence {&¥} is also increasing and lim a¥ = .
V=00

Whence, and from inequality (x) we infer that

lp(@)—d| <& for wmedlaky,b).

This completes the proof of the theorem.
COROLLARY. Under the assumptions of theorem 2 there ewists an in-
finite number of solutions of equation (2), continuous in the interval (a, b>.

.Proof. Let us take an arbitrary solutions ®(x) of equation (2) that
fulfills the assumptions of theorem 2. Let us define as & supplement this
solution as equal d for x = b, ie. let us put

pd)=4d.

In this manner we have obtained the solution of equation (2) that is

continuous in the interval (a, b, as it follows from hypothesis (V) and
equality. (20).

For equation (1) and the interval {a, b) one can prove a theorem
analogous to the theorem 2. Namely, let us agsume that

(IV’) There exists & number ¢ which fulfills the equality

¢=H(a,c,..,o0)

and the inequalities '
a<e<f.
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We have

TrEOREM 3. Under the hypotheses (I), (II) and (IV'), if there ewist
numbers e>0, 6> 0, a; >0 (¢ =1,...,n) such that the inequalities

n
Dlai=6<1,

ie=1

n
[ B (@, sy ooes Ya) = H (@, Gy ooy Ta)| < D, i~

T=1

for  xela,a+dd, Y, Jeele—e, e+ (i=1,..,n)

hold, and also

|H(®,¢,...,c)—H(a,e,...,0)| < (0—0)e for zela,at8> (3,

where
b < 8<1;

then every solution ¢(x) of equation (1) which s continuous in the interval
(a, b) and for which there exists a point @, € (a, b) such that fu(x,) e (a, a-+ 8>
and

» € {Zq, fn(mo))

lp@)—c| <& for

fulfills the condition
lim ¢(2) =c¢.
z—ra-t+
This theorem may be proved in a quite similar manner, as theorem 2.
We obtain also
CoROLLARY. Under the hypotheses of theorem 3 there exists an infinite
number of solutions of equation (1), continuous in the interval {a,b).
For equation (2) and the interval <{e, b) one cannot obtain, making

use of the method applied in the present paper, a theorem analogous to
theorem 1. Namely, in this case, lemma 4 is false. This problem remains

open.

Remark. J. Kordylewski [3] considered the equation
(25) F (0, 9(®), o[f(@)], p[F(@)], ..., @[f"(@)]) = 0.

In this equation instead of the functions fi(x) (¢ =1, ..., n), as in equa-
tion (3), there are succesive iterations of the same function f(z) (fulfilling
the assumptions of lemma 1).

(*) See remark (*).
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J. Kordylewski proved in [3] a theorem about the existence of con-
tinous solutions of equation (25), under assumptions (on the function F)
weaker than in the quoted paper [5].

If we ghall accept assumptions named in [3], then our theovems
will stay true for suitable particular cases of equation (25). Proofs do not
change in any essential manner.
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On some extensions of Cauchy’s condensation theorem

by C. T. RayacopAL (Madras, India)

1. Introduction. A. Alexiewicz ([1], p. 83) has proved by func-
tional analysis the following theorem, and has shown that the case by =1
of the theorem at once completes and extends the familiar condensation
theorem (test) of Cauchy ([1], p. 80).

THEOREM L. (1) Let @ >0,b0,>0 (n=1,2,..) be given positive
sequences and {en} an arbitrary positive sequence tending monotonically
to 0. Then the series

(&) Danew, (B)  Dbata
=1L n=1

are either both comvergent or both divergent if amd only if

(1) 0 < fipg Dot et tba

——— e < 00
oo @1+ lat ..ty !

i.e. the two limits in (1) are both finite and strictly positive.

This note gives a simple proof of Theorem I not depending on func-
tional analysis and deduces from the theorem the following extension of
Cauchy’s condensation test, due in effect to O. Szasz ([4], p. 1397,
Theorem 1).

TemoreM II. Let {f(n)} be a positive sequence quasi-monotonic de-
creasing in the semse that there is am a >0 such that

(2) frn41) < (L+am)f(n) for

Let {1z} be amy scquence of positive integers such that

n > nla) .

(3) An/’OO ) mvn—ln/}ﬂ—l < 00,
N+00

() Added 17th October 1960. After I had sent the MS of this paper to
Professor Alexiewicz, I found in the review of his paper [1] by D. Gaier, in Zbl. fiir
Math. 77 (1958), p. 277, a proof of the simpler ‘if’ or sufficiency part of Theorem I in
the case b, = 1 which is the same as the proof in this paper.
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