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General solution of the functional equation ¢[f(2)] = &(z, p(a))

by M. Kvczma (Krakéw)*

- The purpose of the present paper is to give the general solution of
the functional equation

(1) (P[f(a’)] = G(m,(p(m)),

under possibly weak suppositions regarding given functions f(x) and
G(z,y). In the particular case, where the function f(z) fulfils the con-
dition flf(#)] =z the general solution of equation (1) has Dbeen given
in my previous paper [1].

§ 1. Let E be a set of arbitrary elements, which we shall call points,
and let us assume that the function f(z) maps the set B onto itself

f(B) =B,
in a one-to-one manner.
DErINITION I. Every set A such that f(4) = A4 will be called a mo-
dulus-set for the function f(a).
We denote by f"(z) the n-th iteration of the function f(®), i. e. we
put
fn () == i
) =@, ) = @)

DErmNrrIoN II. For every x<H the set of the points of the form f*(x),
n=0,%1, £2,... will be called & cycle (1) determined by .

Two distinet cycles are always disjoint. I 4 is & modulus-set for
the function f(#) and myed, then the cycle determined by =, is con-
tained in A.

The notion of & eycle is fundamental for our further considerations.
Since the cycle ¢ determined by a point x, is the smallest modulus-set

* I should like to express here my most hearty thanks to Professor St. Golab,
who directed my work. I thank also Dr Cz. Olech for his valuable and interesting
remarks concerning this paper.

(*) The notion of a eycle has been introduced by 8. Lojasiewiez [2].
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containing @, we can consider equation (1) on the eyele C independently
of the rest of the set I. As we shall see in § 3, a solution of equation (1)
is on C uniquely determined by its value at the point .

Now we decompose the set I/ into the sequence of disjoint sets:

Bo={m:fi(w)=ua, fw) o for j =1,2,...,4—1}, i=1,2,...
By={o:f(w) £, j=1,2,..} =E-HE¢.
LevuA 1. Hach of the sets By, ¢ = 0,1,2, ... is a modulus-set for the
Sfunetion f(zx).
Proof. Let us fix an arbitrary ¢ >0 and let us take an arbitrary
point zeE;. We have
FUf@)] =f"(@) = fIf'(2)] = f(2),
and for 0 <j <1
FIf@)] = (@) = fIf (@)] # f()

because /(%) ==, and the function f(z) is single-vaiued. Thus f(x)eB;,
which proves that f(Z;) C E;. Similarly we prove that f(E,) C F,. Thus

@) fB)CH, for i=0,1,2,...

Since the sets F; are disjoint, | J B; = F and f(¥) = B, from relation (2)
1=0

follows
fB) =58, for 4=0,1,2,..,

which was to be proved.

Each of the sets I; consists of cycles determined by its points. Let
us denote (for every ) by B} a (fixed) set containing exactly one element
of every cycle contained in H; (here we make use of the axiom of choice).
We shall now define gets Bf (in the sequel we shall denote by @ the
empty set):

For 4 > 0:
o B for k=0,...,i—1,
‘ 4] for the rest of integers %.
For i = 0:

B S, k=0, 41,42,
The sets B are disjoint and fulfil the following conditions:

For ¢ >0:
3) fOEY) =B for ks —1 and ko£i—1,
fB) = H.
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For ¢ = 0:

(4) B =B, k=0, +1, 42, ...
Lastly we shall define sets B":

&g .
L0m, =0, 41,43,
=

The sets I are disjoint, |J E" = F (2.

=00

§ 2. Now let nus suppose that the set F iy a subset of gsome space X,
and let 5 be some other space (independent of X). Let G(z,y) be
o function defined in a subset 2 of the space X x & (the sign X denotes
here the Cartesian product), and agsuming values from 5. Let us denote
by @7'(z,y) the inverse function of the function G(w,y) with respect
to the variable y (provided it exists). We shall now define the sequence
of functions g,(», y):

gz, y) Ly,
B)  Gan(@,9) = G @), gal@, 9)], n=0,1,2,...,
Gn—1(2,y) e G_l[fnml(m):gn(m, y)1, n=0,-—-1,—-2,..

Formulae (5) have a formal character for the present. In fact, we do
not know whether the function G (z,y) is defined at the point (*(2),
gn(®,y)) and whether the function G'(»,y) is defined at the point
(/" (@), gn(®,9)). If we do not make any agsumptions with regard to
the function @, then in general they need not be defined.

For every integer » and for every fixed x<® we denote by £} the
x-section of the domain of definition of the function In(®, v), i e. the
set of values y such that the function g,(», y) is defined. More precigely,
we make an agreement that if QF = @ for a certain N > 0, then Q% =@
for every n >N, and similarly, if QY — @ for a certain N < 0, then
Q% = @ for every n < N. Moreover, we make an agreement that QF = @
for n < 0 only if the function G(u,y) is invertible with respect to y for
each fixed » belonging to the cycle determined by . Lastly we assume
that Q) = = for every welX.

The following formulae are evident:

(6) QZHC e for w0, 'CO for w<O.
The reader will easily verify the following

(*) Tt can be remarked that the upper indices run over the integers from — oo
t0 +oo, the lower indices run over the integers from 0 to -+ oo.
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LeMvA IT. For every n = 0,
gu[f (),
equal.

Swmlowly, Jor n <0, if one of the functions g,_,(x,y) and g,[f(

), )] s defmed then the other is also defined and they are both
equal.

if one of the fumetions g,,,(2,y) ond
G(w,y)] is defined, then the other is also defined and they are both

§3. We have undertaken the task of determining all functions p(x)
that are defined in the set B and assume values from. the space =, and
satisfy in Z the equation (1).

‘We shall assume the function G(z, y) to be invertible with respect
to y for each x<X,. Let us take an arbitrary x,¢® and let us write

Oy = (@), m=0,%1,+2,..
Let ¢(x) be an arbitrary solution of equation (1) in F and let
(M P (W) = Yo.

From equation (1) we have

(8) ‘P(wnfl) = G(mm ‘P(mn)) = G(ﬂ(%)) ‘P(mn))
Comparing (7) and (8) with formulae (5) we see that

(9) @ (®n) = gn (@0, Yo)-

Hence it follows that in order that the function ¢(x) be defined at the
point x,, the function ¢, (x,, ¥) must be defined for y = y,. If, moreover,
the cyecle {w,} is finite, i.e. m,eB; for a certain positive 4, then we have
from (9) .

9i (%0, Yo) = Yo-

Thus we have obtained some conditions for the values which can
be assumed by a solution of equation (1) in. B.

DerixrrioN ITI. For weE;, ¢+ = 1,2, ... we shall denote by V, the
set of all yeQl such that g;(»,y) = y. For wek, we put

{os]
v, & "h Q5.
Fom= — 00
" From the above considerations follows immediately
LevmyA ITI. Let us assume that the function f(z) maps the set B ondo
itself in @ one-to-one manner, and the function G(z,y) is invertible with
respect to y for each weEy. If a function ¢(x) is defined in the whole set B
and satisfies equation (1), in B, then the value of the function ¢(x) belongs
to the set V:

@(@)eVy.
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Thus the relation
(10) Vo#@ for aeR
8 a necessary condition that equation (1) possess a solution in .
We shall also prove
LemMA IV. Under the hypotheses of lemma III the set
B Z (5 V, #0).
is & modulus-set for the function f(x)
Proof. It is enough to prove tha,t it meE*, then also f(x)eB* and
=) eB*. We must distinguish two cases:
Case 1. weE;, i > 0. Let y, be an element of the set V.. Conse-

quently

(11) 9:(%5 Yo) = Yo.

Putting 7, e G(x,9,) and making use of (11) and lemma IT we get
Fo = ¢: (f(@), %),

which (according to lemma I) proves that yuer(w) Thus f(x
Using the implication

x) e B*,

weB* = f(x) eE'*

i—1 times, we obta.m Y
to the relation f*(w)eH".

Case 2. ze k. Let Yo be an element of the set V,. It means that for

every n the function g,(»,y,) is defined. Putting 7, z G(z, y,) we find
on account of lemma IT and of the invertibility of the function &(z, y)
that the function g, ,[f(z), 7,] is defined for every . It means that

z)eB*, which (since fiw) =m) 1s equivalent

?705100 "Q;c(z) = V/(ac): ie flz H.

Similarly, we can prove that 7, = ¢~ [~} (s),

Yo1eV, 1, Whence f}(z) e B".
This completes the proof.

§4. In what follows we shall assume that ¥V, = @ for s<E. From
lemma ITI it follows that this assumption is essential if we are to obtain
a solution of equation (1) in the whole set B. If this assumption is not
fultilled, i. e. if V, = @ for a certain z¢FE, then on account of lemma IV
we may restrict ourselves to the consideration of equation (1) in the
set B in which V, = @. '

We shall denote by ¥ the class of all functions y(z) that are defined
in B° and such that y(w)eV, for zeko.

Now we shall prove the following
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TurorEM. Let us assume that the function f(x) is a one-to-one mapping
of the set B onto itself:

(@) =

and the function G(xz,y) is invertible with respect to y for each ®eB, and
that V,, # @ for every meB. Then the general solution of equation (1) is given
by the formula

(12) wel",

p@) = ga(f " (@), p[f"@)])  for

where y(w) is an arbitrary function from the class ¥.

Proof. First of all we have to prove that the function ¢ () given
by formula (12) is defined for every seF, and further that it satisfies
equation (1). Let us take an arbitrary xeH. Since

oo o0
B =U U E;c ’
j=0 k=—c0
there exist indices ¢ and n such that z<E}. We must consider several
cases (depending upon the indices ¢ and ).

Cage 1. 4 > 0. Then we must have 0 < n < i—1. BEvidently vek,,
and then, according to lemma I, also f~"(2)eB;. From the definition of
the gety V, it follows that Vj—ng C (e -ng. On account of relations (6)
we have

Qiongy C Qhongy  for §=0,...,4
Hence i
Vit C Qp-nyy  for  =0,...,4.
Since 0 < n < 4, then in particular V;_,q C Qf—'”(w)y whence [f™" ()]

eQ%-ng, which proves that the function g,(f"(s),y) is defined f01
y = p[f "(x)], and thus the function ¢(x) is deflned To prove that it
satisfies equation (1) we shall consider two subcases:

(a) 0 < n < ¢—1. Then, according to (3), f(B}) = Bf*' and conse-
quently f(x)eE"*' C B"*'. Thus we have by (12)

elf@)] = gnialf" (F(@)s v [/ (F@)]) = g (1" (2), 1" (@)])-
But according to relations (5)
niai[f" (@), v @)]) = 6o, gu(F (@), p[F"(@)])) = (o, p(@)),

hence
‘ <P[f(w]—-G(w,tr(90)
which was to be proved.
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(b) » =14i—1. Then, according to (3), f(Ei™?) = B!, and  conse-
quently f(z)eB; C E°. Thus we have by (12)
(13) o [f(2)] = p[f(=)].
On the other hand,

&(z,9(@) = (o, gua (f4 (@), 11 (2)]).

But since zel;, o = f'(x). Hence
Glo, 9(@) = 6(f'(@), g:a(f@), vI@)])) = G(F (@)1, gialf(@), vIF(@)])
and according to (5)
(14) G (@, o)) = ¢:(f(#), v[f(@)]).

But y[f(®)]eVye and f(x)eE;. Hence
4 (f(@),; v [F@)]) = p[f @),
i. e., by (13) and (14)
plf(z)] = G(m?
which was to be proved.
Case 2. ¢=0. Then z<E, and f™

‘P(w))y

@)eH,. Consequently Vi-ngy
= ﬂ [ -n@), Whence it follows that w[f‘” (w)]eQ,—n(z) for each intéger %,

k=-1
and thus in particular ¢ [f~" (2)] Q7 n(z Hence it follows that the function
gu(f" (@), 9) is defined for y = w[f )], 1. e. the function () is defined.

‘We shall show that it satisfies equatlon (1).
The relation

9u(@, 9)
is equivalent to the relation

(13)

=g [fn(w), Inia (@, 9)]

gn+l(w’ y) = G[f"(w), gn(m1 ?/)],

which proves that the relation (15) is valid for every integer n (positive
and negative) provided the functions g,,,(z, %) and g,(x,y) are defined.

According to (4) f(BY) = E3*', and consequently f(z)< By C B™+.
Thus we have by (12)
PLf(®)] = Gnia{f" (@), p[F"(@)]).
On the other hand, we have by (15)
g (@), 9™ (@)]) = 6[0, gulf (@), v [F " (@)])) = G (o, p(@),
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whence

o[f(z

which was to be proved.

From the considerations of §3 it follows that formula (12) gives
the general solution of equation (1). This completes the proof of the
theorem.

Cororrary. Under the hypotheses of lemma IIL relation (10) s
a necessary and sufficient condition that equam'on (1) possess a solution
i the set H.

§ 5. From the hypotheses of the above theorem. the hypothesis of the
invertibility of the function G(z,y) can be dismissed if wo properly
extend the notion of an inverse function.

Dernition IV. Bvery function H(z,y) defined in some subset Q
of the set 2 (assuming the values from the space &) and fulfilling for

,'I/)EQ the relation @[, H(x,y)] =y will be called an inverse func-
tion of the function G(z,y).

Let {H,(«, y)} be the family of all inverse functions of the function
G(2, y). Let the index A run over a set A. (The set A can be, of course,
uncountable ) Using any of the functions H,(x, y) instead of the function
G~ (»,y) we can define with the aid of formulae () a sequence of func-
tions 9, (2, y). These functions depend of course upon the choice of the
function H,(x, y), and therefore we add to them an index A. Similarly,
the sets ;2 will depend upon A, and thus also the sets ,V, and the class
of functions ,%.

The following theorem can be proved:

Under the hypothesis that the function f(x) is a one-to-one mapping

of the set B onto itself, the general solution of equa,twn (1) is given by the
formula

2)] = G(w, p(@),

@) = agn(f (@), w[f "(@))) for aeB",
where ;p(w) is an arbitrary function from the cla,ss W, ded.

The necessary and sufficient condition that equation (1) possess a solu-
tion in the set B is that at least for one ied the rélation

Ve #=@  for wxekE

be: fulfilled.

§ 6. Now let us replace the condition f(B) = B by the weaker con-

dition f(E)C H. (But we continue to assume that the function f(x
invertible in the set E.)
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DerFINITION V. The elements of the set B— f(E) will be called prime
elements (®) of the set E. A cyele determined by a prime element(4) will
be called non-full.

Let us denote by E the set of all elements of non-full cycles, and
let us put Z L B—F. The set F is a modulus-set for the function fl=
In fact, let © be an element of the set Z and let us suppose that f(z does
not belong to E. It means that () belongs to a non-full cycle, i.e. there
exist an integer N and a prime element z, such that f(z) = f~ (%,). But
then z = fV (@), which means that x is an element of the same non-
full cycle, which is impossible since we E. Consequently f(z)eE. In the
same way it can be shown that f~'(x)<E.

Thus we can apply to the set & a.ll the considerations of the pre-
ceding sections. In pa,ltieulaa, we can define sets E", n =0, +1,.
and E;, 1=0,1,2,..., for 2¢F we can define functions g,(z, ¥), se’cs
Q% and V,. _ B

Now we shall define sets E". As a set E° we take the set of prime
elements F—f(F) and we put:

o f”(i«?;") for »n >0,
14} for n<0.
Bvidently
B= U E.
k=—o0

With the aid of formulae (5) we can definc alse the functions g,(z, y)
for n > 0 and el Similarly, for n > 0 and #<¥ we can define the sets

QF. We put

v, L N2 for

The definition of the class ¥ remains unchanged.
Now, if we put

EF OB, a=0, 41, +2,...

then formula (12) gives the general solution of equation (1) in the set E

under the conditionr that the function @(,y) is invertible with respect

(*) This name is due to the fact that these elements have no preceding_alements
in cycles, because the function f~!(x) is not defined in the set E—f(E

(* By a cycle determmed by a prime element x will be underatood the set
of points of the form f*(»), n = 0,1, 2,
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tions of § 5 remain valid, because the invertibility of the function & (s, y)
oceurs only for wel,.
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The present paper contains results regarding the existence of con-
e tinnous gsolutions of the functional equation

(1) F(w,tp(m),(p[f(m)],(p[fz(m)],...,(p[f"(w)]) =

in which the funetion ¢(#) is the unknown function, f(z) and F (@) Yo,
.y Yn) are given functions, and f’(x) denotes the »-th iteration of the
funetlon fl@), i.e. .

fo(m) =u,
(@) =f[fv_l(w)]; (@) =f_1[fﬁv+l<m):l: v=1,2,3,...
Bquation (1) is a generalization of the equation

(2) Fh(my @ (2), ‘P[f(m)]) =
which was discussed in [1], and iy a particular case of the equation

(3) F( » ¢(2), o [fi(®)], elfa(®)], . -7‘P[fn(a")]) =

(where the functions j,(m) (v =1,2,...,n) are known functions), which
was discussed in [2]. Equation (2) is a particular case of equation (3);
nevertheless the theorem on the existence of continuous solutions of
equation (3) does not, in the case of n = 1, pass into the corresponding
theorem for equation (2); the hypotheses made with regard to equation (3)
are stronger. M. Kuczma hag raised the problem of proving the existence
of continnous solutions of equation (1) under such assumptions (weaker
than the hypotheses on equation (3)) that in the case of n = 1 the theorem
should pass into the corresponding theorem for equation (2). The pre-
sent paper is a solution of this problem: we ghall show that under suitable
assumptions equation (1) possesses infinitely many continuous selutions.

We assume the following hypotheses regarding the function f(w)

(1) The function f(w) is defined, continuous and strictly increasing
in an interval <{a,b); moreover, let f(a) = a, f(b) =b, f(x) >z for
ve(a, b).
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