C. H. CUNKLE AND W. R. UTZ

222

THEOREM 21. If R is equicontinuous on \overline{xR} and $xR_{\omega} \cap xR_a \neq 0$, then $xR = xR_{\omega} = xR_a$ and R is recurrent at x.

Proof. Assume $xR_{\omega} \neq 0$ and let $y \in xR_{\omega}$, $\varepsilon > 0$ be arbitrary. By hypothesis there is a $\delta > 0$ such that whenever $\varrho(y,u) < \delta$, then $\varrho(yr,ur) < \varepsilon$ for each $r \in R$. Since $y \in xR_{\omega}$, there is an unbounded increasing positive sequence $\{r_n\}$ such that $\varrho(y,xr_n) < \delta$ from which it follows that

$$\varrho[y(-r_n), xr_n(-r_n)] = \varrho[y(-r_n), x] < \varepsilon,$$

so that it is seen that $x \in yR_{\alpha} \subset \overline{yR}$. Now since $y \in xR_{\omega}$, a closed and invariant set, then $\overline{yR} \subset xR_{\omega}$, and therefore $x \in xR_{\omega}$ which is also closed and invariant so that $\overline{xR} \subset xR_{\omega}$, and it follows that $\overline{xR} = xR_{\omega}$.

Since $x \in xR_{\omega}$, then $x \in xR_a$ from Theorem 19, and similarly $\overline{xR} = xR_{\alpha}$. The proof is identical in case $xR_a \neq 0$.

All of the results in this section are established in the same manner when G is any simply ordered group, with appropriate modifications of the definitions.

REFERENCES

- [1] A. Edrei, On iteration of mappings of a metric space onto itself, Journal of the London Mathematical Society 26 (1951), p. 96-103.
- [2] E. E. Floyd, A nonhomogeneous minimal set, Bulletin of the American Mathematical Society 55 (1949), p. 957-960.
- [3] W. H. Gottschalk, Almost periodicity, equi-continuity and total boundedness, ibidem 52 (1946), p. 633-636.
- [4] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society Colloquium Publications, vol. 36, Providence 1955.
- [5] M. Morse and G. A. Hedlund, Symbolic dynamics, American Journal of Mathematics 60 (1938), p. 815-866.
- [6] G. E. Schweigert, A note on the limits of orbits, Bulletin of the American Mathematical Society 46 (1940), p. 963-969.
- [7] Chien Wenjen, Quasi-equicontinuous sets of functions, Proceedings of the American Mathematical Society 7 (1956), p. 98-101.
- [8] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, vol. 28, New York 1942.

UTAH STATE UNIVERSITY UNIVERSITY OF MISSOURI

Reçu par la Rédaction le 1, 4, 1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

PROBLEMS ON SEMIGROUPS

13.

A. D. WALLACE (NEW ORLEANS, LA.)

- **P 326.** Is it possible to construct a continuous associative multiplication on the closed *n*-cell $(n \ge 2)$ such that the boundary consists of exactly those elements satisfying $x^2 = x$?
- **P** 327. Is it possible to construct a continuous associative multiplication on an n-sphere in such a way that (i) every element is the product of two elements, (ii) there is a zero-element.

For n = 1 the answer is negative, see [3].

- **P 328.** If G is a compact totally disconnected metrizable group does there exist a compact connected-acyclic one-dimensional metrizable space T and on T a continuous associative multiplication with a two-sided unit such that the maximal subgroup of T which contains the unit coincides with G and such that G is the set of endpoints of T?
- If G is the Cantor group the answer is affirmative (unpublished). A related question has been considered and solved by Koch and McAuley (also unpublished).
- **P 329.** Suppose that Euclidean n-space R^n is supplied with a continuous associative multiplication with unit and that there exists a compact connected subset G of R^n which contains the unit and which is a subgroup of R^n under the given multiplication. Is it possible that G can be "self-linked" in any reasonable way? (Cf. [1] for n=3).
- **P 330.** If S is a compact connected locally connected metrizable one-dimensional semigroup with unit, then it is known that S is either a dendrite or contains exactly one simple closed curve which coincides with the minimal ideal of S. (The details of the proof are unpublished but see [6]). Is there an analogous proposition for higher dimensions?
- P 331. If S is a compact connected commutative semigroup with unit, all of whose elements satisfy $x^2=x$, does S have the fixed point property?
- **P 332.** If S is a compact semigroup then the minimal ideal K of S is a retract of S in the sense of Borsuk (see [9]). Examples will show

224 A. D. WALLACE

that K need not be a deformation retract of S even if S has a unit, but in this case it is known that K and S have the same cohomology (see [5]). Does this last result hold if the assumption that S have a unit is replaced by the assumption that S = ESE where E is the set of those elements satisfying $x^2 = x$?

- P 333. It is a corollary to the result in P 332 that a compact connected semigroup with zero and unit is unicoherent. Is there a proof of this using only set-theoretic topology? A similar question arises concerning the result stated in P 330.
- **P 334.** Suppose that S is a compact semigroup and let B denote the "boundary" of S is some suitable sense. For example, S might be homeomorphic with a subset of Euclidean n-space and B might be the ordinary boundary of S. The set B is known to play an important part in the determining the properties of S. (See [7] and [4].)
- (a) If every element of S has a square-root in S does every element of B have a square-root in B (Problem of H. H. Corson)?
- (b) Under some interpretations of "boundary" it is known that if S has a unit, then the unit lies in B (see [8]). Are there other useful interpretations of "boundary" for which this is true?
- (c) If one assumes that the multiplication is commutative on B, are there agreeable conditions under which it may be shown to be commutative on S? (Cf. [2], where S is a dendrite and B is the set of endpoints of S.)

REFERENCES

- [1] M. L. Curtis, Self-linked subgroups of semigroups, American Journal of Mathematics 81 (1959), p. 889-892.
- [2] W. M. Faucett, Topological semigroups and continua with cut points, Proceedings of the American Mathematical Society 6 (1955), p. 748-756.
- [3] R. J. Koch and A. D. Wallace, Admissibility of semigroup structures on continua, Transactions of the American Mathematical Society 88 (1958), p. 277-287.
- [4] P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Annals of Mathematics 65 (1957), p. 117-143.
- [5] A. D. Wallace, Cohomology, dimension and mobs, Summa Brasiliensis Mathematicae 3 (1953), p. 43-54.
- [6] Topological invariance of ideals in mobs, Proceedings of the American Mathematical Society 5 (1954), p. 866-868.
- [7] Differentiability of continuous multiplications, Research Problem 10, Bulletin of the American Mathematical Society 61 (1955), p. 93.
 - [8] The Gebietstreue in semigroups, Indag. Math. 18 (1956), p. 271-276.
- [9] Retractions in semigroups, Pacific Journal of Mathematics 7 (1957),
 p. 1513-1517.

Reçu par la Rédaction le 19.8.1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC, 2

НЕКОТОРЫЕ ЗАМЕЧАНИЯ О т-КОЛЬЦАХ

Б. ГЛЕЙХГЕВИХТ (ВРОЦЛАВ)

В этом сообщении даются некоторые замечания, относящиеся к τ -кольцам, рассматриваемым автором в работе [2], т. е. к кольцам, которые, вообще говоря, не предполагаются ассоциативными и в которых существует такой элемент τ , что равенства

$$(i) x(yz) = (x(\tau z))y,$$

$$\tau(\tau x) = x$$

выполняются для всех x,y и z, принадлежащих к данному кольцу. В работе [2] было доказано, что если R есть τ -кольцо, то τ не является левым делителем нуля в R; в то же время τ является правой единицей кольца, притом единственной, откуда спедует, что в R может существовать лишь один элемент τ , удовлетворяющий условиям (i) u (ii). Там-же было доказано, что для любых $x,y,z\in R$

$$\tau(xy) = yx,$$

$$(2) (xy)z = x(z(\tau y)).$$

Основные результаты, полученные в [2], заключаются в следующем:

Если R_{\circ} ассоциативное кольцо с инволюцией (см. [3] или [5]), содержащее единицу, и если $\mathcal{K}(R_{\circ})$ обозначает множество R_{\circ} с обычным в кольце R_{\circ} сложением и умножением

$$(3) xy = y^* \circ x,$$

где \circ обозначает умножение в R_{\circ} , a*-инволюцию, то $\mathfrak{K}(R_{\circ})$ является τ -кольцом, в котором роль τ играет единица кольца R_{\circ} .

Далее доказывается теорема о точном представлении τ -колец: ∂ ля каждого τ -кольца R можно построить такое кольцо R_{\circ} , обладающее вышеуказанными свойствами, что $R=\mathfrak{K}(R_{\circ})$.