238

A. D. WALLACE

Let $U = U_0 \cup W$ and $V = V_0 \cup W$ so that $A \cup L(A) \subset U$ and $A \cup M(A) \subset V$ and, moreover, $U \cap V \subset W$. If we put

$$W_0 = U \cap L_0(U) \cap V \cap M_0(V),$$

then W_0 is the desired set. For W_0 is open in virtue of a preceding remark, and it is clear that $A \subseteq U \cap V$. It is readily seen that

$$L(A) \subset B$$
 if and only if $A \subset L_0(B)$.

From this we infer that $A \subset W_0$. Now the intersection of R-convex sets is R-convex and it is easily seen that $U \cap L_0(U)$ and $V \cap M_0(V)$ are R-convex. This completes the proof.

I am greatly obliged to the National Science Foundation (U.S.A) for its support.

REFERENCES

[1] L. Nachbin, Topologia e ordem, Chicago 1950.

[2] A. D. Wallace, Struct ideals, Proceedings of the American Mathematical Society 6 (1955), p. 634-638.

[3] L. E. Ward, Jr., Binary relations in topological spaces, Anais da Academia Brasileira de Ciencias 26 (1954), p. 357-373.

THE TULANE UNIVERSITY OF LOUISIANA (U.S.A)

Reçu par la Rédaction le 9.5.1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

ON A PROBLEM OF V. KLEE CONCERNING THE HILBERT MANIFOLDS

BY

K. BORSUK (WARSAW)

In his talk at the conference on Functional Analysis in Warsaw, September 1960, V. Klee raised the following problem:

Is it true that every Hilbert manifold (i. e. a connected space locally homeomorphic to the Hilbert space at each of its points) is homeomorphic to the Cartesian product of an n-dimensional manifold (in the classical sense) and of the Hilbert space?

In the present note I give an example answering this question in the negative sense and I consider another analogous problem.

Let H denote the Hilbert space, i. e. the space consisting of all real sequences $\{x_n\}$ with $\sum_{n=0}^{\infty} x_n^2 < +\infty$, metrized by the formula

$$\varrho\left(\left\{x_{n}\right\},\left\{y_{n}\right\}
ight)=\sqrt{\sum_{n=1}^{\infty}\left(x_{n}-y_{n}
ight)^{2}}$$
 .

Let Q_n denote the open ball in H with centre $a_n=(3n,0,0,\ldots)$ and radius 1. Let B_n denote the boundary of Q_n .

It is clear that every open ball in H is homeomorphic to H; consequently every point of a Hilbert manifold has neighbourhoods with arbitrary small diameters, homeomorphic to H.

Obviously the Cartesian product of H by an n-dimensional manifold (i. e. by a connected space locally homeomorphic with the Euclidean n-space at each of its points) is a Hilbert manifold. In particular the spaces

$$A_n = H \times S^n, \quad n = 1, 2, \dots,$$

where S^n denotes the Euclidean *n*-sphere, are Hilbert manifolds. It follows that there exists a homeomorphism h_n mapping H onto an open subset G_n of A_n and one can assume that

$$G_n \subset A_n - (a_1) \times S^n$$
.

ON A PROBLEM OF V. KLEE

241

Setting

$$f_n(x,y) = (a_1,y)$$
 for every $(x,y) \in H \times S^n$,

we get a retraction f_n of space $A_n = H \times S^n$ to the sphere $(a_1) \times S^n$.

Let Y denote the space, which we obtain from the set $H \cup \bigcup_{n=1}^{\infty} A_n$ by matching each point $x \in B_n$ with the point $h_n(x) \in A_n$. This identification may be considered as a continuous map φ of $H \cup \bigcup_{n=1}^{\infty} A_n$ onto Y such that

If
$$y = \varphi(x)$$
 with $x \in (H - \bigcup_{n=1}^{\infty} B_n) \cup \bigcup_{n=1}^{\infty} (A_n - h_n(B_n))$, then $\varphi^{-1}(y) = x$.

If $y = \varphi(x)$ with $x \in B_n$, then the set $\varphi^{-1}(y)$ consists of two points x and $h_n(x)$.

If $y = \varphi(x)$ with $x \in h_n(B_n)$, then the set $\varphi^{-1}(y)$ consists of two points x and $h_n^{-1}(x)$.

Let us set

$$Z = \varphi \big(H \cup \bigcup_{n=1}^{\infty} A_n - \bigcup_{n=1}^{\infty} Q_n - \bigcup_{n=1}^{\infty} h_n(Q_n) \big).$$

Evidently Z is a connected space, locally homeomorphic to H at every point $z \in Z - \varphi(\bigcup_{n=1}^{\infty} B_n)$. In order to prove that Z is locally homeomorphic to H also at every point $z_0 = \varphi(x_0) = \varphi(h_n(x_0))$, where $x_0 \in B_n$, it suffices to show that there exists a neighbourhood U of z_0 in Z homeomorphic to an open subset of H.

Consider the set

$$P_n = \mathop{E}\limits_{x \in H} \left[1 \leqslant \varrho(x, a_n) < 2
ight]$$

and the inversion i_n defined in $H-(a_n)$ by the formula

$$i_n(x) = a_n + \frac{x - a_n}{\varrho(x, a_n)^2}.$$

Setting

$$\psi_n(z) = egin{cases} i_n [arphi^{-1}(z) \cap H] & ext{for every point} & z \, \epsilon arphi(P_n), \ h_n^{-1} [arphi^{-1}(z) \cap A_n] & ext{for every point} & z \, \epsilon arphi(h_n(P_n)), \end{cases}$$

we easily see that ψ_n is a homeomorphism which maps the open neighbourhood $U = \varphi(P_n \cup h_n(P_n))$ of the point z_0 in space Z onto the set $P_n \cup i_n(P_n)$, open in H. Thus the proof that Z is a Hilbert manifold is concluded.

Now let us observe that the homeomorphism h_n maps the closed ball $\overline{Q}_n = Q_n \cup B_n$ onto a closed subset of the space A_n . Manifestly the set \overline{Q}_n , as a convex subset of H, is an absolute retract (in the generalized sense, see [1], p. 358) and consequently there exists a retraction r_n of A_n to the set $h_n(\overline{Q}_n)$.

Now let us fix an index n_0 and let us set

$$\vartheta_{n_0}(x) = a_{n_0} + rac{x - a_{n_0}}{\varrho(x, a_{n_0})} \quad ext{for every point} \quad x \in H - Q_{n_0}$$

and

$$g_{n_0}(z) = \begin{cases} z & \text{if} \quad z \, \epsilon \varphi \left(A_{n_0} - h_{n_0}(Q_{n_0}) \right), \\ \\ \varphi \vartheta_{n_0}(x) & \text{if} \quad z = \varphi(x) \text{ with } x \, \epsilon H - \bigcup_{n=1}^\infty Q_n, \\ \\ \varphi \vartheta_{n_0} h_n^{-1} r_n(x) & \text{if} \quad z = \varphi(x) \text{ with } x \, \epsilon A_n - h_n(Q_n), \text{ where } n \neq n_0 \, . \end{cases}$$

One sees easily that g_{n_0} is a retraction of the space Z to the set $\varphi(A_{n_0}-h_{n_0}(Q_{n_0}))\supset \varphi(A_{n_0}-G_{n_0})\supset \varphi((a_1)\times S^{n_0})$. It follows that $\varphi_0\,f_{n_0}\varphi_0^{-1}g_{n_0}$, where $\varphi_0=\varphi|A_{n_0}-h_{n_0}(Q_{n_0})$, is a retraction of the space Z to the topological sphere $\varphi((a_1)\times S^{n_0})$. Consequently, for every natural n_0 , the n_0 -th Betti number $p_{n_0}(Z)$ is $\geqslant 1$ and we conclude that Z is not homeomorphic to the Cartesian product of H by any n-dimensional manifold.

Now let us call an ω -manifold every connected space which is locally homeomorphic to the Hilbert cube, i. e. to the subset Q^{ω} of Hilbert space H, consisting of all points $(x_1, x_2, \ldots, x_n, \ldots)$ satisfying the inequality

$$0\leqslant x_n\leqslant rac{1}{n} \quad ext{for every} \quad n=1,2,\ldots$$

By a theorem of Keller ([3], p. 757), the Hilbert cube Q^{ω} is topologically homogeneous, i. e., for every two points $x, y \in Q^{\omega}$, there exists a homeomorphism h of Q^{ω} onto itself such that h(x) = y. If we observe that, for the point $(0,0,\ldots,0,\ldots)$ of Q^{ω} there exists neighbourhoods (in Q^{ω}) with arbitrarily small diameters, homeomorphic to Q^{ω} , we conclude that every point of an ω -manifold has arbitrarily small neighbourhoods homeomorphic to Q^{ω} , because, for positive $\varepsilon \leqslant 1$ sufficiently small, the map f_{ε} defined by the formula

$$f_{\varepsilon}(x_1, x_2, \ldots, x_n, \ldots) = (\varepsilon x_1, \varepsilon x_2, \ldots, \varepsilon x_n, \ldots)$$

is a homeomorphism mapping Q^{ω} onto a neighbourhood of the point $(0,0,\ldots,0,\ldots)$ in Q^{ω} with arbitrarily small diameter.

K. BORSUK

242

An ω -manifold is said to be *closed* if it is compact. Evidently the Cartesian product of Q^{ω} by an n-dimensional closed manifold is a closed ω -manifold. Moreover the Cartesian product of Q^{ω} by a Euclidean ball, and more generally, by a compact n-dimensional manifold with a boundary, is a closed ω -manifold.

Let us observe that a closed ω -manifold is locally an absolute retract and consequently (by a theorem of Yajima [4]; see also [2]) it is a compact ANR-set. It follows that every closed ω -manifold is acyclic in almost all dimensions and the Betti numbers of it are finite. However there exist closed ω -manifolds which are not homeomorphic to the Cartesian product of Q^{ω} by any n-dimensional closed manifold. In fact, let P denote the plane set which we obtain by removing from a disk K of the interiors of two small disks K_1 , K_2 lying in the interior of K. The Cartesian product $M = P \times Q^{\omega}$ is a closed ω -manifold and the set P is a deformation retract of M. Consequently, $H_1(M, \mathfrak{A}) \simeq \mathfrak{A}^2$ and $H_n(M, \mathfrak{A})$ is trivial for every $n \neq 1$.

However those conditions are neither satisfied by any n-dimensional manifold M_n , hence nor by any space homeomorphic with the Cartesian product $M_n \times Q^\omega$.

P 335. Is it true that the Cartesian product of a connected and not empty polytope (or more generally, of a compact, not empty ANR-set) by Q^{ω} is always a closed ω -manifold?

P 336. Is every closed ω -manifold homeomorphic to the Cartesian product of a connected polytope by Q^{ω} ?

REFERENCES

- [1] J. Dugundji, An extension of Tietze's theorem, Pacific Journal of Mathematics 1 (1951), p. 353-367.
- [2] O. Hanner, Some theorems on absolute neighbourhood retracts, Arkiv för Matematik 1 (1950), p. 389-408.
- [3] O. Keller, Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum, Mathematische Annalen 105 (1931), p. 748-758.
- [4] T. Yajima, On a local property of absolute neighbourhood retracts, Osaka Mathematical Journal 2 (1950), p. 59-62.

Reçu par la Rédaction le 28, 9, 1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

SUR UN PROBLÈME DE K. URBANIK CONCERNANT LES ENSEMBLES LINÉAIRES

PAR

R. ENGELKING (VARSOVIE)

Le problème suivant a été posé par K. Urbanik:

P 337. Est-ce qu'aucun ensemble compact de nombres réels n'est non-dense dans toute somme finie de ses images de translation?

Ce problème peut être formulé en ces termes: a-t-on

$$A - \overbrace{(A^{a_1} \cup \ldots \cup A^{a_n}) - A} \neq 0$$

pour tout $A \subset \mathcal{R}$ compact et tout système a_1, \ldots, a_n d'éléments de \mathcal{R} ? Le but de cette communication est d'établir le théorème qui suit et qui constitue une solution (affirmative) du problème pour n=2: Théorème. Si $a \in \mathcal{R}$, $\beta \in \mathcal{R}$ et l'ensemble $A \subset \mathcal{R}$ est compact, on a

$$(1) A - \overline{(A^a \cup A^\beta) - A} \neq 0.$$

La démonstration fera l'usage essentiel de deux lemmes et d'un théorème dû à Ramsev.

LEMME 1. Si un ensemble $A \subset \mathcal{R}$ n'est pas un ensemble-frontière dans \mathcal{R} , on a (1) pour $a \in \mathcal{R}$ et $\beta \in \mathcal{R}$ quelconques.

Démonstration. On a $\mathcal{R} - \overline{\mathcal{R} - A} \neq 0$ par hypothèse, $\mathcal{R} - \overline{\mathcal{R} - A} \subset C$ C A toujours et $A^a \cup A^\beta \subset \mathcal{R}$ par définition. Par conséquent, $0 \neq \mathcal{R} - \overline{\mathcal{R} - A} = A \cap (\mathcal{R} - \overline{\mathcal{R} - A}) = A - \overline{\mathcal{R} - A} \subset A - \overline{(A^a \cup A^\beta) - A}$, donc (1).

LEMME 2. Soient $M \in \mathcal{R}$, $p \in \mathcal{R}$ et $\{p_i\}$ une suite telle que l'on a pour tout i = 1, 2, ...

$$(2) p_i \epsilon^i \mathcal{R}, |p_i| < M,$$

$$(3) p_i = p - (k_i \alpha + l_i \beta),$$