

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 1

SOME REMARKS ON SYMMETRIC RELATIONS

B7

A. LELEK (WROCŁAW)

Let X be a set, R-a symmetric relation defined in X and a-an ordinal number. We consider the following conditions:

- (s_{α}) If $Y \subset X$ and $s_{\alpha} \leq \overline{\overline{Y}}$, there exist $y_1, y_2 \in Y$ such that $y_1 \neq y_2$ and $y_1 R y_2$.
 - (s_a^*) If $Y \subset X$ and $\kappa_a \leqslant \overline{\overline{Y}}$, there exists a $Z \subset Y$ such that $\kappa_a \leqslant \overline{\overline{Z}}$ and

$$\kappa_{a} \leq \overline{\{p : p \in Z \text{ and } zRp\}}$$

for every $z \in \mathbb{Z}$.

 (k_a^*) If $Y \subset X$ and $\aleph_a \leqslant \overline{\overline{Y}}$, there exists a $Z \subset Y$ such that $\aleph_a \leqslant \overline{\overline{Z}}$ and

$$\overline{\{p\colon p\:\epsilon Z\; ext{and}\; znonRp\}}$$

for every $z \in Z$.

(k_a) If $Y \subset X$ and $s_a \leqslant \overline{Y}$, there exists a $Z \subset Y$ such that $s_a \leqslant \overline{Z}$ and the conditions $z_1, z_2 \in Z$, $z_1 \neq z_2$ imply that z_1Rz_2 .

Therefore (s_1) can be called the condition of Souslin and (k_1) — the condition of Knaster (cf. [2] and [4]). They have an application to the ordered sets theory (see [2]), where the relation R is defined in a family of sets and x_1Rx_2 means that $x_1 \cap x_2 \neq 0$.

It is obvious that each of these four conditions is stronger than the preceding one, i. e.

$$(k_a) \rightarrow (k_a^*) \rightarrow (s_a^*) \rightarrow (s_a)$$

for every α .

The implication

$$(s_0) \rightarrow (k_0)$$

has been proved by Sierpiński [3]. It follows that for a = 0 all our four conditions are equivalent. It has also been proved by Sierpiński [3] that $(s_1) \to (k_1)$ is false. Thus we can write

$$(s_1) \not\longrightarrow (k_1)$$
.

It has been proved by Dushnik and Miller [1] that

$$(s_0) \rightarrow (k_a)$$

for every a, and by Knaster [2] (1) that

$$(k_1^*) \to (k_1)$$
 and $(s_1) \to (s_1^*)$.

The last implications will be generalized in the present paper: we shall prove (2) that

$$(k_{a+1}^*) \to (k_{a+1})$$
 and $(s_{a+1}) \to (s_{a+1}^*)$

for every α .

The following diagram contains all these results:

$$(s_0) \longrightarrow (k_a) \longrightarrow (k_a^*) \longrightarrow (s_a^*) \longrightarrow (s_a)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Proof that $(k_{a+1}^*) \to (k_{a+1})$. Let $Y \subset X$ and $\kappa_{a+1} \leqslant \overline{\overline{Y}}$. It follows from (k_{a+1}^*) that there exists a $Z \subset Y$ such that

(1)
$$\aleph_{a+1} \leqslant \overline{\overline{Z}}$$

and for every $z \in Z$ the set

(2)
$$P(z) = \{p : p \in Z \text{ and } z \operatorname{non} Rp\} \cup \{z\}$$

has a power $< \kappa_{a+1} + 1 = \kappa_{a+1}$, i. e.

$$\overline{\overline{P(z)}} \leqslant \kappa_{\alpha} \quad \text{for} \quad z \, \epsilon Z.$$

We shall define for every ordinal number $\beta < \omega_{a+1}$ an element z^{β} such that

$$(4) z_{\beta} \epsilon Z - \bigcup_{i < \beta} P(z_i) \text{for} \beta < \omega_{\alpha+1}.$$

Indeed, let z_1 be an arbitrary element of the set Z. Having defined the elements z_i for $\iota < \beta$ we shall define z_β . For this purpose it is enough

to show that the set in formula (4) is not empty. Suppose it is empty, i. e. $Z = \bigcup P(z_i)$. We obtain

$$\overline{Z} = \overline{\bigcup_{\iota < \beta} [P(z_{\iota}) - \bigcup_{\varkappa < \iota} P(z_{\varkappa})]} = \sum_{\iota < \beta} \overline{P(z_{\iota}) - \bigcup_{\varkappa < \iota} P(z_{\varkappa})} \leqslant \sum_{\iota < \beta} \overline{P(z_{\iota})} \;.$$

It follows by virtue of (3) that $\overline{Z} \leqslant \kappa_{\alpha} \cdot \overline{\beta}$. But we have $\beta < \omega_{\alpha+1}$, which implies $\overline{\beta} < \overline{\omega}_{\alpha+1} = \kappa_{\alpha+1}$, i. e. $\overline{\beta} \leqslant \kappa_{\alpha}$. Thus we obtain $\overline{Z} \leqslant \kappa_{\alpha} \cdot \kappa_{\alpha} = \kappa_{\alpha}$ contrary to (1).

Therefore the points z_{β} such that (4) holds are defined. Let Z' be the set of all those points (where $\beta < \omega_{a+1}$). It follows from (2) and (4) that $z_{\beta} \neq z_{\beta'}$ for $\beta \neq \beta'$. Hence $\overline{Z}' = \overline{\omega}_{a+1} = \kappa_{a+1}$ and $Z' \subset Z \subset Y$ by virtue of (4).

Now let $z_1, z_2 \epsilon Z'$ and $z_1 \neq z_2$. Thus we have $z_1 = z_{\beta_1}, \ z_2 = z_{\beta_2}$ and $\beta_1 \neq \beta_2$. We can assume that $\beta_1 < \beta_2$. Condition (4) implies that z_{β_2} non $\epsilon P(z_{\beta_1})$, which by virtue of (2) means that $z_{\beta_1}Rz_{\beta_2}$, i. e. z_1Rz_2 . Therefore (k_{a+1}) is proved.

Proof that $(s_{a+1}) \to (s_{a+1}^*)$. Suppose (s_{a+1}^*) is not true. It means that there exists a $Y \subset X$ such that

(5)
$$\mathbf{x}_{a+1} \leqslant \overline{\overline{Y}}$$

and for every $Z\subset Y$ satisfying the inequality $\kappa_{a+1}\leqslant \overline{Z}$ an element $q(Z)\,\epsilon Z$ exists such that the set

(6)
$$Q(Z) = \{p : p \in Z \text{ and } q(Z)Rp\} \cup \{q(Z)\}$$

has a power $< \kappa_{a+1} + 1 = \kappa_{a+1}$, i. e.

$$\overline{\overline{Q(Z)}} \leqslant \aleph_{\alpha}.$$

Let $Z_1 = Y$. Thus $\kappa_{a+1} \leqslant \overline{Z}_1$ according to (5).

Now let $1 < \beta < \omega_{\alpha+1}$ and for every $\iota < \beta$ let the set Z_{ι} be defined os that $Z_{\iota} \subset Y$, $\kappa_{\alpha+1} \leqslant \overline{Z}_{\iota}$ and the sets $Q(Z_{\iota})$ are disjoint. We put

(8)
$$Z_{\beta} = Y - \bigcup_{\iota < \beta} Q(Z_{\iota}).$$

We shall prove that $\kappa_{\alpha+1} \leqslant \overline{Z}_{\beta}.$ Indeed, suppose the contrary, i. e. that

)
$$ar{ar{Z}}_eta \leqslant leph_a.$$

⁽¹⁾ In [2] the relation R of special kind is considered, but it is not essential (cf. [4]).

⁽²⁾ In the proofs the axiom of choice will be used.

26

A. LELEK

From (8) we obtain $Y = Z_{\beta} \cup \bigcup_{\iota < \beta} Q(Z_{\iota})$, where the sets in the sums on the right are disjoint according to (8) and to the hypothesis concerning the sets $Q(Z_{\iota})$ for $\iota < \beta$. Thus

$$\overline{ar{Y}} = \overline{ar{Z}}_{eta} + \sum_{\iota < eta} \overline{\overline{Q(oldsymbol{Z}_{\iota})}} \leqslant oldsymbol{arkappa}_{a} + oldsymbol{arkappa}_{a} ar{eta}$$

by virtue of (7) and (9). But $\beta < \omega_{a+1}$ implies $\bar{\beta} \leqslant s_a$. Hence $\bar{Y} \leqslant s_a + s_a \cdot s_a = s_a$, contrary to (5).

From (6) we have $Q(Z_{\beta}) \subset Z_{\beta}$. That means according to (8) that the sets $Q(Z_{\beta})$ and $Q(Z_{\iota})$ are disjoint for every $\iota < \beta$.

Therefore the sets Z_{β} (where $\beta < \omega_{a+1}$) are defined so that $Q(Z_{\beta})$ are disjoint and $\kappa_{a+1} \leqslant \overline{Z}_{\beta}$ for $\beta < \omega_{a+1}$. Put $z_{\beta} = q(Z_{\beta})$ for $\beta < \omega_{a+1}$.

Now let $\beta < \beta'$. Since $z_{\beta} \in Q(Z_{\beta})$ and $z_{\beta'} \in Q(Z_{\beta'})$ by virtue of (6), we have $z_{\beta} \neq z_{\beta'}$ and $z_{\beta'}$ non $\in Q(Z_{\beta})$, that is $q(Z_{\beta})$ non $Rz_{\beta'}$, i. e. z_{β} non $Rz_{\beta'}$. Hence the set of points z_{β} (where $\beta < \omega_{\alpha+1}$) has a power $\kappa_{\alpha+1}$, is contained in Y, thus also in X, and z_{β} non $Rz_{\beta'}$ for every two of its distinct elements z_{β} and $z_{\beta'}$. This contradicts $(s_{\alpha+1})$.

REFERENCES

- [1] B. Dushnik and E. W. Miller, Partially ordered sets, American Journal of Mathematics 43 (1941), p. 600-610.
- [2] B. Knaster, Sur une propriété caractéristique de l'ensemble des nombres réels, Matematitcheskii Sbornik 16 (1945), p. 281-290.
- [3] W. Sierpiński, Sur un problème de la théorie des relations, Annali della Scuola normale Superiore di Pisa; Scienze fisiche e matematiche 2 (1933), p. 285-287.
- [4] E. Szpilrajn-Marczewski, Sur deux propriétés des classes d'ensembles, Fundamenta Mathematicae 33 (1945), p. 303-307.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 10, 3, 1960

COLLOQUIUM MATHEMATICUM

FASC. 1

VOL. VIII 1961

CARTESIAN PRODUCTS AND CONTINUOUS IMAGES

BY

R. ENGELKING (WARSAW) AND A. LELEK (WROCŁAW)

Studying the question whether the Cartesian product $A \times B$ of continua A and B is a continuous image of A provided that B is a continuous image of A, Sieklucki and Engelking have proved that the answer can be negative already for A = B, i. e. for topological squares (1). Their examples are the following:

- (i) $A = B = \emptyset$, where \emptyset is the condensed sinusoid, i.e. the sum of the curve $\{(x, y): y = \sin 1/x, 0 < x \le 1\}$ and the straight segment with end points (0, -1) and (0, 1),
- (ii) $A = B = \mathcal{B}$, where \mathcal{B} is the *countable brush*, i.e. the sum of the infinite sequence of straight segments with end points (0,1) and (1/i, 0) for i = 1, 2, ... and the straight segment with end points (0, 1) and (0, 0).

The purpose of this paper is to prove a more general theorem (2), which comprises the cases (i) and (ii) (see especially the corollary).

- Let X, Y and Z be arbitrary compact spaces and let p be the projection of Cartesian product $X \times Y$ onto X. We denote by L(X) the set of points of X at which the space X is locally connected and we put N(X) = X L(X).
- (1) If f(X) = Y is a continuous mapping, $y \in Y$ and $f^{-1}(y) \subset Int(V)$, then $y \in Int(f(V))$.

Proof. Suppose that $\lim y_n = y$ and $y_n \in Y - f(V)$. Then we have $f^{-1}(y_n) \subset X - f^{-1}f(V) \subset X - V$. Applying the compactness of X, let $x_n \in f^{-1}(y_n)$ and $\lim x_n = x'$. Then $f(x_n) = y_n$ and $x_n \in X - V$, that is $x' \in \overline{X - V} = X - \operatorname{Int}(V)$. Thus $x' \in X - f^{-1}(y)$ and hence $f(x') \neq y$, which contradicts the continuity of f.

⁽¹⁾ See P 290, Colloquium Mathematicum 7 (1960), p. 110, and P 290, R 1, ibidem, p. 309.

⁽²⁾ It is a result of a correspondence and discussion at the meeting on 16 December 1959 of the Wrocław Topological Seminar conducted by Professor B. Knaster.