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SOME REMARKS ON SYMMETRIC RELATIONS
BY

A. LELEK (WROCLAW)

Let X be a set, B — a symmetric relation defined in X and ¢ — an
ordinal number. We consider the following conditions:

() If YCX and s, <7, there ewist yy,y,cY such that y; # ¥
and vy, Ry,.

(5 If YC X and w, <7, there emisis a ZC ¥ such that 8, < Z and

8 <{p:peZ and zRp}
for every zeZ.
(B If YC X and », <7, there exists a ZC Y such thai 8, <Z and

{p:peZ and znonRp} < &,
for every zeZ.

(k) If YC X and s, <Y, there emists a ZC Y such that x, <Z
and the conditions 2y, 2,e Z, 2, 7= 2, imply that 2, Rz,.

Therefore (s;) can be called the condition of Souslin and (%,) — the
condition of Knaster (cf. [2] and [4]). They have an application to the
ordered sets theory (see [2]), where the relation R is defined in a family
of sets and @, Rr, means that @, ~®, #0.

It is obvious that each of these four conditions is stronger than the
preceding one, i.e.

(Fa) = (K2) — (5%) — (52)
for every a.
The implication
(80) = (Fo)

has been proved by Sierpiniski [3]. It follows that for a = 0 all our four
conditions are equivalent. It has also been proved by Sierpiriski [3] that
(84) — (k,) is false. Thus we can write

(81) #= (Fa).
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Tt has been proved by Dushnik and Miller [1] that
— (k)
for every «, and by Knaster {2] (V) that
(K5) (k) and  (s;) > (s1).

The last implications will be generalized in the present paper: we
ghall prove () that
(Fyr) =

(ka+1) a’nd (sa-}-l) g (S:-)—l)

for every a.
The following diagram contains all these results:

(89) — (hg) ——> (k) ——> (s2) — (Sa)
i R |
for fora—1 for
non-limit @ 00 * T non-limit a

Proof that (k) = (k1) Let YCX and o < < Y. It follows
from (k%,,) that there exists a Z C ¥ such that .

(1) Rgi1 < Z
and for every z<Z the set

(2) . P(z) = {p:peZ and znonRBp} v {2}
has 8 power < ¥y +1 =%, Lo

(3) Ple) <ha for zeZ.

We shall define for every ordinal number f < w,.; an element P
such that

(4) 2peZ—\J P( for

<

ﬁ < Wgy1-

Indeed, let 2; be an arbitrary element of the set Z. Having defined
the elements 2, for . < B we shall define ;. For this purpose it is enough

() In [2] ii,he relation ® of speeial kind is considered, but it is not essen-
tial (cf. [4]). ‘
(3} In the proofs the axiom of choice will be used.
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to show that the set in formula (4) is not empty. Suppose it is empty,

i.e. Z = |JP(z). We obtain
< B
?=gww—umm=§Pz—UHm<2ﬂa
< #<L =B n<t =B

It follows by virtue of (3) that Z <x,-f. But we have f < wa.1,
which implies f < @41 = Sep1, - @ f <x,. Thus we obtain Z < xprny,
= §, contrary to (1).

Therefore the points #z; sueh that (4) holds are defined. Let Z' be
the set of all those points (where § < @,,,). It follows from (2) and (4)
that 2z 7 2, for p # f'. Hence 7' = @41 = 8,41 and Z'CZCY by
virtue of (4).

Now let 2,, 2,¢Z" and 2, # 2,. Thus. we have 2z, = 25, 2, = 25, and
By # B, We can assume that 8, < f,. Condition (4) implies that 2z,
non e P (2, ), which by virtue of (2) means that z; Rz, i. . 2, Rz,. There-
fore (k,,.) is proved.

Proof that (s..1) = (s +11). Suppose (8341) i8 not true. It means
that there exists a ¥ C X such that

(5) ko <T

and for every ZC Y satisfying the inequality .., < Z an element
q(Z)eZ exists such that the set

(6) Q(Z) = {p: peZ and ¢(Z)Bp} {9(2)}

has a power < 8, -+1 ==x,4, L&

(
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Let Z, = Y. Thus »,; < < Z, according to (5).
Now lebt 1 < f < w,;; and for every ¢ < B let the set Z, be defined
osthat Z,C ¥, 8, < Z, and the sets @ (Z,) are disjoint. We put

8) - Zy = Y—-L‘)[?Q(Z,).
‘We shall prove that §,.; < Z,. Indeed, suppose the contrary, i.e.
that
) Z; <%,
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From (8) we obtain ¥ =Z;w (J@(Z,), where the sets in the sums
<f

on the right are disjoint according to (8) and to the hypothesis con-
cerning the sets Q(Z,) for « < g. Thus

Y =Zp+ D) Q(Z) < sotsof
<p

Ey virtue of (7) and (9). But f < w,, implies f <w,. Hence
Y < 8,808, = 8, contrary to (B).

From (6) we have @(Z;) C Z;. That means according to (8) that
the sets @(Z;) and Q(Z,) are disjoint for every . < f.

Therefore the sets ZJ, (where f << w,,;) are defined so that Q(Z,)
are disjoint and s, << Z; for § << w.py. Pub & = q(Zy) for g < Bgpy -

Now let § < f'. Since z;¢ Q(Z;) and 2p¢ Q(Zy) by virtue of (8), we
have z; # 25 and 2z none Q(Z), that is q(Zz)nonRz,., i. e. 25 non Reg. .
Hence the set of points z, (where § < w,y;) has a power &,.;, is con-
tained in ¥, thus also in X, and z;n0n Rep for every two of its distinet
elements z; and z;. This contradicts (s..q)-
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CARTESIAN PRODUCTS AND CONTINUOUS IMAGES

BY

R. ENGELKING (WARSAW) axp A. LELEK (WROCLAW)

Studying the question whether the Cartesian produet 4 x B of con-
tinna A and B is a continuous image of A provided that B is a continuous
image of A, Sieklucki and Engelking have proved that the answer
can be negative already for A = B, i.e. for topological squares ().
Their examples are the following:

(i) A =B=J, where & is the condensed sinusoid, i.e. the sum of
the curve {(#,¥):y = sinl/s, 0 < o <1} and the straight segment with
end points (0, —1) and (0, 1),

(ii) 4 = B = 9B, where 95 is the countable brush, i.e. the sum of
the infinite sequence of straight segments with end points (0,1) and
(1/i,0) for 4 =1, 2, ... and the straight segment with end points (0,1)
and (0, 0).

The purpose of this paper is to prove a more general theorem (2),
which comprises the cases (i) and (ii) (see especially the corollary).

Let X, Y and Z be arbitrary compact spaces and let » be the pro-
jection of Cartesian product X x ¥ onto X. We denote by L(X) the set
of points of X at which the space X is loecally connected and we pub
N(X) = X—L(X).

(1) If f(X) = Y ds a continuous mapping, ye¥ and f(y) C Int(V),
then y <Int (f(V)).

Proof. Suppose that limy, =y and y,e¥Y—f(V). Then we have
Fyn) C X—F71f(V)C X—V. Applying the compactness of X, let
Znef(yq) and lima, = 2. Then f(z,) =y and @,eX—V, that is
& X—V = X—TInt(V). Thus #'eX—f'(y) and hence f(x') 7y, which
contradicts the continuity of f. :

(%) See P 290, Colloquium Mathematicum 7 (1960), p. 110, and P290, R 1,
ibidem, p. 309.

(%) It is a result of a correspondence and discussion at the meeting on 16 De-
cember 1959 of the Wroctaw Topological Seminar conducted by Professor B. Knaster.
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