

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

REMARKS ON TOTALISATION OF SERIES

BY

K. KRZYŻEWSKI (WARSAW)

This paper contains some remarks concerning totalisation of series introduced by A. Denjoy in [1] and [2]. I give the definition of totalisation of series directly based on totalisation of functions (the Denjoy integrals). Next (Theorem 1 and Theorem 2) I give the necessary and sufficient condition of totalisation of series which is an analogue to the descriptive definition of the Denjoy integrals. A similar condition was given by A. Denjoy in [1] and [2]. I shall use the notation and terminology of [3].

Let W be a denumerable subset of real numbers and $f(w) = a_w$ be a real function defined on W. We shall say that $\{a_w\}$ is a sequence defined on the set of indices W. Further, let $\Pi = \{P_w\}$, $w \in W$, be a family of closed disjoint intervals ordered by the relation:

$$(P_{w_1} < P_{w_2}) \equiv \left(\prod_{x_1 \in P_{w_1}} \prod_{x_2 \in P_{w_2}} (x_1 < x_2) \right).$$

We shall write $H \sim W$ if for each pair w_1 and w_2 belonging to W the condition $w_1 < w_2$ is equivalent to $P_{w_1} < P_{w_2}$.

Let us now define a function $f_{W,\Pi}$ on the set of all real numbers R as follows:

$$f_{W,H}(x) = \begin{cases} \frac{a_w}{|P_w|} & \text{for} \quad x \in P_w, \\ 0 & \text{for} \quad x \notin P_w. \end{cases}$$

A series $\sum_{w \in W} a_w$ will be termed D-convergent (D_* -convergent) if there exists a family $\Pi \sim W$ such that the respective function $f_{W,\Pi}$ given by (1) is D-integrable (D_* -integrable) on R. We shall prove (Theorem 1) that if a series $\sum_{w \in W} a_w$ is D-convergent (D_* -convergent), then $f_{W,\Pi}$ is D-integrable (D_* -integrable) on R for each family $\Pi \sim W$ and the definite D-integral (the definite D_* -integral) of $f_{W,\Pi}$ over R is independent on the family H.

The number $(D) \int_R f_{W,H}(x) dx$ (the number $(D_*) \int_R f_{W,H}(x) dx$) will be termed the sum of the series $\sum_{w \in W} a_w$ and it will be written

$$(D) \sum_{w \in W} a_w = (D) \int_R f_{W,H}(x) \, dx \qquad ((D_*) \sum_{w \in W} a_w = (D_*) \int_R f_{W,H}(x) \, dx) \; .$$

First we shall prove some lemmas.

LEMMA 1. If a function F is VBG (VBG_*) on a set E (on an interval (a,b)) and φ is a non-decreasing function on a set E_1 (on an interval (a_1,b_1)) such that $\varphi[E_1] \subset E$ ($\varphi[(a_1,b_1)] \subset (a,b)$), then the function $F(\varphi)$ is VBG (VBG_*) on the set E_1 (on the interval (a_1,b_1)).

The proof of this lemma is obvious.

LEMMA 2. Let F be a function ACG on a measurable set E and let $E_1 \subset E$. The conditions:

- (a) $F'_{ap}(x) = 0$ almost everywhere on E_1 ,
- (b) $|F[E_1]| = 0$,

are equivalent.

Proof. Since the set E is expressed as the sum of a sequence of bounded and closed sets B_n and a set of measure zero such that F is AC on each B_n , we may clearly assume that the set E is closed and bounded and F is AC on it. In this case, let a and b denote the bounds of the set E and F_1 be the function which coincides with F on the set E and is linear in the intervals contiguous to E. The function F_1 is evidently AC on the interval [a,b]. Since F and F_1 coincide on E, we have $F'_{ap}(x) = F'_1(x)$ at almost all points of this set. Let us now assume that the condition (a) is satisfied. It is easy to see that then $F'_1(x) = 0$ at each point x of $G \subset E_1$ such that $|E_1 - G| = 0$. Therefore on account of a well-known theorem we have $|F_1[G]| = 0$. Since F fulfils the condition (N), we easily obtain (b). Conversely, let the condition (b) be satisfied. In view of the definition of F_1 , we have at once $|F_1[E_1]| = 0$. Now, by [4], Theorem 38.2, p. 213, we obtain $F'_1(x) = 0$ almost everywhere on E_1 and therefore $F'_{ap}(x) = 0$ almost everywhere on E_1 . This completes the proof.

THEOREM 1. Let $\{P_w^i\} = \Pi_i \sim W$ for i=1,2. Then D-integration $(D_*\text{-integration})$ of the function f_{W,Π_1} on R is equivalent to D-integration $(D_*\text{-integration})$ of f_{W,Π_2} on R and the respective integrals are equal.

Proof. Let f_{W,Π_1} be D-integrable (D_* -integrable) on R and F_1 denote an indefinite D-integral (D_* -integral) of f_{W,Π_1} . Further, let $M(\Pi_i)$ and $m(\Pi_i)$ denote, for i=1,2, the supremum and infimum of the set $\sum_{w \in W} P_w^i$.

There exists a non-decreasing function φ on the interval $(m(\Pi_2), M(\Pi_2))$ which satisfies the following conditions:

(i) φ is linear in P_w^2 and $\varphi[P_w^2] = P_w^1$ for each $w \in W$,

(ii) $\lim_{t\to m(\Pi_2)\to 0} \varphi(t) = m(\Pi_1)$ and $\lim_{t\to M(\Pi_2)\to 0} \varphi(t) = M(\Pi_1)$.

We shall prove that $F_2 = F_1(\varphi)$ is indefinite D-integral (D_* -integral) of f_{W,H_2} on the interval $(m(H_2), M(H_2))$.

First we shall prove that F_2 is continuous. To show this it is enough to prove that F_2 is continuous at t_0 such that $\varphi(t_0-0) < \varphi(t_0+0)$. But then the interval $(\varphi(t_0-0), \varphi(t_0+0))$ and the set $\sum_{w \in V} P_w^1$ are disjoint, therefore F_1 is constant on the interval $[\varphi(t_0-0), \varphi(t_0+0)]$ and so the continuity of F_2 at t_0 is obvious. We shall now show that F_2 fulfils the condition (N). It is easy to see that it is enough to prove that F_2 fulfils the condition (N) on $A_2 = (m(\Pi_2), M(\Pi_2)) - \sum_{w \in V} P_w^2$. On account of Lemma 2, we have $|F_1[A_1]| = 0$ since $F'_{1ap}(x) = 0$ almost everywhere on $A_1 = (m(\Pi_1), M(\Pi_1)) - \sum_{w \in V} \inf(P_w^1)$. We also have $\varphi[A_2] \subset A_1$, and therefore it follows that $|F_2[A_2]| = 0$. This completes the proof that F_2 fulfils the condition (N) on $(m(\Pi_2), M(\Pi_2))$. In view of our Lemma 1 and Theorem (6.8) of [3], p. 228 (Theorem (8.8) of [3], p. 233), it easily follows that F_2 is ACG (ACG_*) on $(m(\Pi_2), M(\Pi_2))$.

We shall now prove that

(iii) $F'_{2ap}(t) = f_{W,\Pi_2}(t)$ almost everywhere on $(m(\Pi_2), M(\Pi_2))$.

Since $F_1'(x) = f_{W,H_1}(x)$ at each point x of $\sum_{w \in W} \operatorname{int}(P_w^1)$ and in view of (i), we see that (iii) is valid almost everywhere on $\sum_{w \in W} P_w^2$. On account of Lemma 2, since $|F_2[A_2]| = 0$ and since F_2 is ACG on A_2 , we obtain that (iii) is also valid almost everywhere on A_2 . In the case of D_* -integral, since F_2 is almost everywhere derivable in the ordinary sense (as the function ACG_*), we may replace F_{2ap}' by F_2' in (iii). Further, in view of (ii), we have

 $\lim_{t \to m(H_2) + 0} F_2(t) = \lim_{x \to m(H_1) + 0} F_1(x) \quad \text{ and } \quad \lim_{t \to M(H_2) - 0} F_2(t) = \lim_{x \to M(H_1) - 0} F_1(x) \,.$

Therefore f_{W,Π_2} is D-integrable (D*-integrable) on $(m(\Pi_2), M(\Pi_2))$ and

$$\begin{split} (D) \int\limits_{m(H_2)}^{M(H_2)} f_{W,H_2}(t) \, dt &= (D) \int\limits_{m(H_1)}^{M(H_1)} f_{W,H_1}(x) \, dx \\ &\qquad \qquad ((D_*) \int\limits_{m(H_2)}^{M(H_2)} f_{W,H_2}(t) \, dt = (D_*) \int\limits_{m(H_1)}^{M(H_1)} f_{W,H_1}(x) \, dx). \end{split}$$

It is easy to see that this completes the proof of Theorem 1.

It is evident that if a series $\sum\limits_{w\in \overline{W}}a_w$ is D_* -convergent, then it is also D-convergent but as like as for D_* -integral and D-integral the converse

is false. To show this it is enough to give an example of a function which is D-integrable on R but is not D_* -integrable such that it is constant on each I_n of a sequence $\{I_n\}$ of closed disjoint intervals and vanishes beyond the $\sum\limits_{n=1}^{\infty}I_n$.

Example. Let $\{I_n\}$ be the sequence of intervals contiguous to Cantor's set C. There exists a one-to-one correspondence between the intervals I_n and the rational numbers of open interval (0,1) so that, denoting by $r(I_n)$ the number which corresponds to the interval I_n , the relation $I_n < I_k$ is equivalent to $r(I_n) < r(I_k)$. Let us now put $a_n = 1/q_n$, where $r(I_n) = p_n/q_n$ and p_n and q_n are relatively prime natural numbers. It is easy to see that (a) $\lim_{n \to \infty} a_n = 0$. We shall show that (b) for every portion P of C, $\sum_{k=1}^{\infty} a_{n_k} = +\infty$, where $\{I_{n_k}\}$ is the sequence of all different intervals contiguous to \overline{P} . For this purpose, it is enough to prove the following proposition: if p and q are arbitrary natural numbers and $\{r(I_{n_k})\}$ is the sequence of all different rational numbers of an open interval the ends of which are equal to $r(I_p)$ and $r(I_q)$, then $\sum_{k=1}^{\infty} a_{n_k} = +\infty$. To see the last observe that $\sum_{n=1}^{\infty} 1/p_n = +\infty$, where $\{p_n\}$ is the sequence of all different prime numbers. Let us now define a function f as follows:

where $\{I'_n\}$ and $\{I''_n\}$ are arbitrary sequences of closed disjoint intervals such that $I'_n < I''_n$ and $I'_n + I''_n \subset I_n$ for each n. The function f is evidently D-integrable on I_n and $(D)\int_{I} f(x)\,dx = 0$ as well as $O(D;f;I_n) = a_n$.

Now it suffices to apply Theorem (5.1) of [3], p. 257, to see that f is D-integrable on [0,1] and therefore also on R. But f is not D_* -integrable on R, since it follows at once from (b) and from the second part of Theorem (1.4) of [3], p. 244, applied to the closed set C that f is not D_* -integrable on [0,1].

THEOREM 2. If a series $\sum_{w \in W} a_w$ is D-convergent (D**-convergent), then there exists a real function S on R which satisfies the following conditions:

(1) $\lim_{t\to\infty} S(t)$ and $\lim_{t\to\infty} S(t)$ exist and are finite,

(2) S is continuous at each point $t \notin W$ and continuous on the left at each point $w \in W$, moreover $S(w+0) - S(w) = a_w$ at each point $w \in W$,

(3) S is VBG (VBG_*) on R and |S[R]| = 0,

$$(4) \lim_{t \to +\infty} S(t) - \lim_{t \to -\infty} S(t) = (D) \sum_{w \in W} a_w \; (\lim_{t \to +\infty} S(t) - \lim_{t \to -\infty} S(t) = (D_*) \sum_{w \in W} a_w).$$

Proof. It is easy to see that it is enough to prove our theorem in the special case in which the set of indices W is everywhere dense in the set of all real numbers. We shall therefore assume that the set W has this property. On account of our supposition, we have $H \sim W$, where $H = \{[e_w, d_w]\}$, $w \in W$, is the family of all intervals contiguous to Cantor's set C. Let us now define a function φ as follows:

$$\varphi(t) = \sup_{w \leqslant t} c_w.$$

The function φ satisfies the following conditions:

(a) φ is increasing and $\varphi[R] = (0, 1) - \sum_{w \in W} (c_w, d_w),$

(b) $\lim_{t\to-\infty} \varphi(t) = 0$, $\lim_{t\to+\infty} \varphi(t) = 1$,

(c) φ is continuous at each point $t \notin W$ and $\varphi(w+0) = d_w$, $\varphi(w-0) = \varphi(w) = c_w$ for each $w \in W$.

Let F be an indefinite D-integral $(D_*\text{-integral})$ of $f_{W,H}$ on R. We shall show that the function $S = F(\varphi)$ is the required one. In fact, it is easy to see that this function satisfies the conditions (1), (2), (4). On account of Lemma 1, S also is VBG (VBG_*) on R. Since evidently |F[C]| = 0 and $\varphi[R] \subset C$, it follows that S also satisfies the condition (3), and this completes the proof.

We shall now prove the converse of the preceding theorem:

THEOREM 3. If for a sequence $\{a_w\}$ there exists a function S which satisfies the conditions (1), (2), (3) of the preceding theorem, then S is uniquely determined up to an additive constant and the series $\sum_{w \in W} a_w$ is D-convergent

 $(D_*$ -convergent) as well as the condition (4) is satisfied.

Proof. We may make the assumption concerning the set of indices W similar as in the proof of Theorem 2. Further, let Π and φ mean the same as in the proof of Theorem 2 and φ^{-1} be the inverse function of φ . Let us now define a function F as follows:

$$F(x) = \begin{cases} \lim_{t \to -\infty} S(t) & \text{for} \quad x \leqslant 0 \,, \\ S\left(\varphi^{-1}(x)\right) & \text{for} \quad x \in (0\,,1) - \sum_{w \in \mathcal{W}} (c_w,\,d_w] \,, \\ S\left(a_w + 0\right) & \text{for} \quad x = d_w \,, \, \text{where} \,\, w \in \mathcal{W} \,, \\ \text{linear in the interval} \,\, (c_w\,,\,d_w) \,, \,\, \text{where} \,\, w \in \mathcal{W} \,, \\ \lim_{t \to +\infty} S(t) & \text{for} \quad x \geqslant 1 \,. \end{cases}$$

It is easy to see that F is continuous on R. Further, on account of Lemma 1, it is VBG on $(0,1)-\sum\limits_{w\in W}\left(c_{w},\,d_{w}\right]$ and therefore also VBG on R. In the case of S being VBG*, it is necessary to use an additional argument to show that F is VBG_* on $(0,1)-\sum_{w\in F}[c_w,d_w]$, since F is evidently VBG_* on $(-\infty,0]+\sum_{w\in S}[c_w,d_w]+[1,+\infty)$. But this follows at once from the definition of function VBG_* , in view of O(F; [a, b]) = $=O\left(S;\left[arphi^{-1}(a),arphi^{-1}(b)
ight]
ight), ext{ where } a ext{ and } b ext{ belong to } (0,1)-\sum_{w\in\mathcal{U}}\left[c_w,d_w
ight]$ and a < b. Further, F fulfils the condition (N) on R. This follows from the second part of the condition (3). Now, on account of Theorem (6.8) of [3], p. 228 ([3], Theorem (8.8), p. 233), we easily deduce that F is ACG (ACG_*) on R. In view of the definition of F, we have $F'(x) = f_{W,U}(x)$ almost everywhere on R. In this way, since $\lim_{x \to a} F(x)$ and $\lim_{x \to a} F(x)$ exist and are finite, we have shown that $f_{W,H}$ is D-integrable (D_* -integrable) grable) on R. Further, let us observe that the condition (4) is also satisfied. If S_1 and S_2 satisfy conditions (1), (2), (3), then the respective functions F_1 and F_2 are ACG on R and have the derivatives equal almost everywhere on R. Therefore, on account of Theorem (6.2) of [3]. p. 225, it easily follows that F_1 and F_2 differ by a constant. The same clearly holds for S_1 and S_2 . This completes the proof.

Remark. Let us observe that in Theorem 2 and in Theorem 3 the condition (3) may be replaced by the conditions:

- (3') S is VBG (VBG*) on R and fulfils the condition (N),
- (3'') $S'_{ap}(t) = 0$ (S'(x) = 0) almost everywhere on R.

This easily follows from Lemma 2.

REFERENCES

- [1] A. Denjoy, Totalisation des séries, Comptes Rendus Hebdomadaires de l'Académie des Sciences, Paris, 209 (1939), p. 825-828.
- [2] Leçons sur le calcul des coefficients d'une série trigonométrique, Quatrième partie, Fasc. I, Paris 1949.
 - [3] S. Saks, Theory of the Integral, Warszawa-Lwów 1937.
 - [4] E. J. McShane, Integration, Princeton 1947.

Reçu par la Rédaction le 6, 6, 1960

COLLOQUIUM MATHEMATICUM

VOL. VIII

1961

FASC. 2

PROBLÈMES ET REMARQUES SUR LES CARRÉS DE CONVOLUTION

PAR

J.-P. KAHANE (MONTPELLIER)

Toutes les fonctions dont il s'agit dans la suite sont 2π -périodiques et sommables sur $[0, 2\pi]$. Le carré de convolution de f est

$$f*f(t) = \frac{1}{2\pi} \int_{s}^{2\pi} f(t-s)f(s) ds$$
.

Ainsi, si $f \sim \sum_{-\infty}^{\infty} c_n e^{int}$, on a $f*f \sim \sum_{-\infty}^{\infty} c_n^2 e^{int}$.

S. Hartman a posé le problème suivant (un énoncé restreint a paru dans [1], voir aussi remarque [2] de C. Ryll-Nardzewski):

Problème 1. Etant donné une classe de fonctions (par exemple L^p , C, $\operatorname{Lip} a$, ...) déterminer s'il est vrai ou non que toute fonction de la classe soit le carré de convolution d'au moins une fonction sommable.

Comme éléments de réponse, on a

1a) C'est vrai pour Lip a, a > 1/2.

1b) C'est faux pour L2.

En effet, 1a) est une conséquence immédiate d'un théorème de S. Bernstein selon lequel toute fonction de la classe $\operatorname{Lip} a, a > 1/2$, admet une série de Fourier absolument convergente ([4], p. 240). Et 1b) résulte d'un théorème de Banach sur les séries lacunaires ([4], p. 203): si $f \sim \sum_{1}^{\infty} a_k e^{in_k t}$ avec $n_{k+1}/n_k \geqslant 2$, on a $\sum_{1}^{\infty} |a_k|^2 < \infty$, c'est-à-dire que f*f admet une série de Fourier absolument convergente; donc il est faux que toute $g \sim \sum_{1}^{\infty} b_k e^{in_k t}$ avec $\sum_{1}^{\infty} |b_k|^2 < \infty$ puisse s'écrire f*f.

On peut poser un problème un peu plus général.

PROBLÈME 2. Etant donné deux classes de fonctions X et Y, déterminer s'il est vrai ou non que toute fonction de la classe X soit le carré de convolution d'au moins une fonction de la classe Y.