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REMARKS ON TOTALISATION OF SERIES
BY
K. KRZYZEWSKI (WARSAW)

This paper contains some remarks concerning totalisation of series
introduced by A. Denjoy in [1] and [2]. I give the definition of totali-
sation of series directly based on totalisation of functions (the Denjoy
integrals). Next (Theorem 1 and Theorem 2) I give the necessary and
sufficient condition of totalisation of series which is an analogue to the
descriptive definition of the Denjoy integrals. A similar condition was
given by A. Denjoy in [1] and [2]. I shall use the notation and termi-
nology of [3].

Let W be a denumerable subset of real numbers and f(w) = tw
be a real function defined on W. We shall say that {a,} s o sequence defi-
ned on the set of indices W. Further, let IT = {P,), weW, be a family of
closed disjoint intervals ordered by the relation:

(Pwl <sz) E( H H (w1<w2))-
y6Pyy, TyePyp,
We shall write IT ~ W if for each pair w, and w, belonging to W
the condition w, < w, is equivalent to Py < Pu,-
Let us now define a funetion fiy , on the set of all real numbers B
as follows:
Wy
1) fw,u(®) = 1P|
0 for @¢Py.

for wePy,

A series ' a,, will be termed D-convergent (Dy-convergent) if there
weW

exists a family T ~ W such that the respective function fy ; given by (1)

is D-integrable (D,-integrable) on R. We shall prove (Theorem 1) that

if a series Zrl;aw is D-convergent (D,-convergent), then fy, is D-integra-
We

ble (D,-integrable) on K for each family /7 ~ W and the definite D-inte-

gral (the definite D,-integral) of fy- ;; over R is independent on the family H.
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The number f fw,n(@)de (the number f ) [ fw u(@)de) will be ter-
med the sum of the series D) &y, and it will be Wlltten
wel¥
LD ay = f fra@ds (D) D) 6y = (Dy) [ firul@)do).
wel¥ wer R

First we shall prove some lemmas.

LevMmA 1. If a function F is VBG (VB@,) on a set B (on an inter-
val (@, b)) and ¢ is o non-decreasing function on o set I, (on an interval
(ay, by)) such that o[B,1C B (@[(ay, b,)1C (a,D)), then the function I (p)
i VBG (VBG.) on the set E, (on the interval (o, by)).

The proof of this lemma is obvious.

LeEMMA 2. Let F be o function ACG on a measurable set B and let B, C H.
The conditions:

(a) Fop(w) = 0 almost everywhere on H,

(b) |F[E,] =0,
are equivalent.

Proof. Since the set F is expressed as the sum of a sequence of
bounded and closed sets B, and a set of measure zero such that F is A¢
on each B,, we may clearly assume that the set # is closed and bounded
and F is A0 on it. In this case, let ¢ and b denote the bounds of the set
E and P, be the function which coincides with # on the set T and is
linear in the intervals contiguous to E. The function F, is evidently AC
on the interval [a,b]. Since F and F,; coincide on B, we have F,,(2)
= Fi(x) at almost all points of this set. Let us now assume that the
condition (a) is satisfied. It is easy to see that then ) (#) = 0 at each point
% of @ C B, such that |B,— G| = 0. Therefore on account of a well-known
theorem we have |F,[G]] = 0. Since F fulfils the condition (N), we
easily obtain (b). Conversely, let the condition (b) be satisfied. In view
of the definition of F,, we have at once |F,[H,]| = 0. Now, by [4], The-
orem 38.2, p. 213, we obtain F;(¢) = 0 almost everywhere on %, and the-
refore F,,(z) = 0 almost everywhere on F,. This completes the proof.

TumoreM 1. Let {PL} = I~ W for i =1,2. Then D-integration
(Dy-integration) of the funciion fy m on R s equwalent to D-imlegration
(Dy-integration) of fir r, 0 B oand the respective integrals are equal.

Proof. Let fiy , be D-integrable (D,-integrable) on E and ¥, denote
an indefinite D-integral (D,-integral) of fy- ;- Further, let M (II;) and

m(IL;) denote, for ¢ = 1, 2, the supremum and infimum of the seti ) Ph.

weW
There exists a non-decreasing function ¢ on the interval (m (IT5), M (11,))
which satisfies the following conditions:

(i) ¢ is linear in P}, and ¢[PL] = P}, for each weW,
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(i) lm @) =m{l) and Hm @) = HJT,).
t—>m(ITy) +0 1M (IIg)—0

‘We shall prove that F, = F,(g) is indefinite D-integral (D,-integral)
of fwn, on the interval (m(I1,), M (II,).

First we shall prove that F, is continuous. To show this it is enough
to prove that F, is continuous at ¢, such that g(f,—0) < p(fe--0). But
then the interval (p(t,—0), @(f,+0)) and the séb 21—’1 are disjoint,

therefore F, is constant on the interval [(p(to—O),tp(to—{— 0)] and so the

continuity of F, at #, is obvious. We ghall now show that F, fulfils the

condition (N). It is easy to see that it is enough to prove that F, fulfils

the condition (N) on d; = (m(IL,), M (II,)}— > P}. On account of Lem-
wel¥

ma 2, we have |F,[4,]| =0 since Fip(x) = 0 almost everywhere on
Ay = (m(Iy), M{T,))— 2 int(Py). We also have ¢[4,]C 4,, and there-

fore it follows that |F_[A2]\ = 0. This completes the proof that F, ful-
fils the condition (N) on (m(I1,), M (II,)}. In view of our Lemma 1 and
Theorem (6.8) of [3], p. 228 (Theorem (8.8) of 3], p. 233), it easily
follows that F, is 4CG (A0Gy) on (7)7,(172), M (I1,)).

‘We shall now prove that

(i) anp = fw,u,(t) almost everywhere on (m(IT,), M (IT)).

Since Fi(#) = fw m (@) at each point z of th (Py,) and in view

of (i), we see that (iii) is valid almost everywhere on Z' P2,. On account
e

of Lemma 2, since |F',[4,]| = 0 and since F, is AOG on 4,, we obtain
that (iii) is also valid almost everywhere on 4,. In the case of D,-infe-
gral, since F, is almost everywhere derivable in the ordinary sense (as
the function ACG.), we may veplace Fiy, by F, in (iii). Fuarther, in view
of (ii), we have
Fy(t) = lim

2> M(IT7)~0

(), M (11,)) and

Hm and

Em(Ilg)+0

lim P (z)

&—m(IN) +0

lim  F,() =
> M(15)~0

Fy(z).

Therefore fy-p, is D-integrable (D,-integrable) on (m

M (1) M(Hl)
(D) [ fwum,®@ = (D) [ frmle
m(l!g) m(ITy)
M(115) M)
(D) [ frm,0d = (Dy) [ fom(@)d0).
m(ig) m(Ify)

It is easy to see that this completes the proof of Theorem 1.
It is evident that if a series ) a, is Dy-convergent, then it is also
wel¥

D-convergent but as like as for D, -integral and D-integral the *converse
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is false. To show this it is enongh to give an example of a function which
is D-integrable on R but is not D,-integrable such that it is constant on
each I, of a sequence {I,L} of closed disjoint intervals and vanishes

beyond the 3 I,,.
=1

Example. Let {I,} be the sequence of intervals contiguous to Can-
tor's set C. There exists a one-to-one correspondence between the inter-
vals I, and the rational numbers of open interval (0, 1) so that, deno-
ting by #(I,) the number which corresponds to the interval I, the
relation I, < I, is equivalent to »(I,) < »(I;). Let us now put a, = 1/g,,
where #(I,) = p./¢, and p, and ¢, are relatively prime natural numbers.
It is easy to see that (a) lima, = 0. We shall show that (b) for every

o0 T—>00
portion P of 0, 3 «,, = +oo, where {I,,‘k} is the sequence of all different
k=1

intervals contiguous to P. For this purpose, it is enough to prove the
following proposition: if p and ¢ are arbitrary natural numbers and
{r(I,,)} is the sequence of all different rational numbers of a,n open inter-

+oo.

val the ends of which are equal to »(I,) and r(I,), then 2 Oy, =

To see the last observe that 2 1/p, = oo, where {p,} iy Lhe sequence

n=1

of all different prime numbers. Let us now define a function f as follows:

Oy
— for zel,
[l ’
flz)y = 0 for 2e<R— Z R
aﬂr s
vl for wel,,

where {L’l}‘ and {I,/} are arbitrary sequences of closed disjoint intervals
sue.h that I, < I, and I,’b+ T ,’L’ C I,, for each »n. The function f is evidently
D-integrable on I, and f f@)de =0 as well as O(D;f; L) = .

Now it suffices to apply Theorem (5.1) of [3], p. 257, to see that f
is D-integrable on [0, 1] and therefore also on R. But f is not .Dy-inte-
grable on R, since it follows at once from (b) and from the second part
of 'I:‘heorem (1.4) of [3], p. 244, applied to the closed set ¢ that f is nob
Dy-integrable on [0, 1].

TEEOREM 2. If a series Znaw s D-convergent (D,-convergent), then

welW

there exists a real fumction 8 on R which satisfies the following conditions:

(1) tlim S(t) and tlim S(t) ewist and are finite,
] —+00

icm
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(2) 8 4s continuous at each point t¢W and continuous on the left at
each point weW, moreover S(w-+0)—S(w) = a, at each point weW,
(3) 8 is VB@ (VBG,) on R and |S[R]| =0,
(4) lim 8(t)— lim 8(t) = (D) Y @ ( im S(¢)— m S(t) = (Ds) 3 aw).
tr—co wel {00 tor—oo eIV

l>+oo

Proof. It is easy to see that it is enough to prove our theorem in
the special case in which the set of indices W is everywhere dense in
the set of all real numbers. We shall therefore assume that the set W has
this property. On account of our supposition, we have II ~ W, where
IT = {[Cw, A}, weW, is the family of all intervals contiguous to Cantor’s
set C. Let us now define a function ¢ as follows:

‘ @(t) = supey,.
wst

The function ¢ satisfies the following conditions:

(a) @ iz increaging and @[R] = (0,1)— 3 (Cu, dwl,

wel?

(b) tlin;wt) =0, tliianﬂ(t) =1,

(¢) @ is continuous at each point t¢W and p(w-+0) = dy, p(w—0) =
= p(w) = 6, for each weW.

Let F be an indefinite D-integral (D,-integral) of fir ; on E. We
shall show that the function § = F(g) is the required one. In fact, it is
easy to see that this function satisfies the conditions (1), (2), (4). On
account of Lemma 1, S also is VBG (VB@,) on R. Since evidently
|F[C]| = 0 and @[R]C C, it follows that § also satisfies the condition
(3), and this completes the proof.

We shall now prove the converse of the preceding theorem:

THEOREM 3. If for a sequence {a,)} there ewists a function S which satis-
fies the conditions (1), (2), (3) of the preceding theorem, then § is uniquely

determined up to an additive constant and the series > ay is D-convergent
welW

(D, - convergent) as well as the condition (4) is satisfied.

Proof. We may make the assumption concerning the set of indices
W similar as in the proof of Theorem 2. Further, let I7 and ¢ mean the
same as in the proof of Theorem 2 and ¢! be the inverse function of ¢.
Let us now define a function F as follows:

lim S (t) for #<0,
]
Slp~@) for  we(0,1)— ) (6w, du),
welW

F(z) = S(a,-+0) for o =dy,,where weW,
linear in the interval (¢,, dw), Where weW,
lim §() for w@=1.
t>to0
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It is easy to see that F is continuous on K. Further, on account of
Lemma 1, it is VB on (0,1)— 3 (64, dyy] and therefore also V.BG on R.
W

We
In the case of § being VBG,, it is necessary to use an additional argn-
ment to show that F is VBG, on (0,1)— > [0y, d,], since F is evidently
welV

VBG, on (—oo, 0]+ Y [0y dw]+ 1, +o00). But this follows at once
welW

from the definition of function VBG,, in view of O(F;[a,b]) =
=0(8; [p*(a), ¢ (b)]), where a and b belong to (0,1)— 3'[e,,d,]
wal¥V

and a < b. Further, F' fulfils the condition (N) on R. This follows from the
second part of the condition (3). Now, on account of Theorem (6.8) of
[3], p- 228 ([3], Theorem (8.8), 1. 233), we easily deduce that ¥ iy A0G
(A0G,) on R. In view of the definition of F, we have I'(w) = fy ()
almost everywhere on R. In this way, since lim F(z) and Hm F(z)
Ly 00 Lo

exist and are finite, we have shown that f;-; is D-integrable (lﬁrjinte-
grable) on R. Further, let us observe that the condition (4) is also satis-
fied. If §; and 8, satisfy conditions (1), (2), (3), then the respective
functions F; and F, are ACG on R and have the derivatives equal
almost everywhere on R. Therefore, on account of Theorem. (6.2) of [3],
p. 225, it easily follows that F, and F, differ by a constant. The same
clearly holds for 8, and §,. This completes the proof.

Remark. Let us observe that in Theorem 2 and in Theorem 3
the condition (3) may be replaced by the conditions:

(3" N is VBG (VBGy) on R and fulfils the condition (N)

(8") Bap(t) = 0 (8'(%) = 0) almost everywhere on R.

This easily follows from Lemma 2.

?
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PROBLEMES ET REMARQUES SUR LES CARRES
DE CONVOLUTION
PAR
J.-P. KAHANE (MONTPELLIER)

Toutes les fonctions dont il s'agit dans la suite sont 2n-périodiques
et sommables sur [0, 2x]. Le carré de convolution de f est

ot = 5 [ o)

Aingsi, 81 f~ 3 6,6™, on a faf ~ Z’cz it
—00

S. Hartman a posé le probleme suivant (un énoncé restreint a paru
dans [1], voir aussi remarque [2] de C. Ryll-Nardzewski):

ProBLEME 1. Fiant donné une classe de fonctions (par exemple LP,
¢, Lipa, ...) déterminer sl est vrai ou non gue toute fonction de la classe
soit le carré de convolution d'au moins une fonction sommable.

Comme éléments de réponse, on a

1a) C'est vraipowr Lipa, a > 1/2.

1b) Cest fauw powr L2

En effet, 1a) est une conséquence mmédlate d’'un théoréme de
S. Bernstein selon lequel toute fonction de la classe Lipe,a>1/2,
admet une série de Fourier absolument convergente ([4], p.240). Et
1b) résulte dun théoréme de Banach sur les séries lacunaires ([4],

D. 203): si f~ Za et avec w2, on a ) |ayl < oo, c'est-a-dire
1
que f«f admet une série de Fourier absolument convergente; done il
o 00
est faux que toute g~ Y be™ avec D |by* < co puisse s'écrire fif.
1 1
On peut poser un probléme un peu plus général.
ProsuiME 2. Eiant donné deuw classes de fonctions X et ¥, déter-

miner $%l est vrai ou non que toute fonction de la classe X soit le carré de
convolution @aw moins wne fonction de la classe Y.
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