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On primitive recursive real numbers *
. by
R. S. Lehman (Berkeley, Cal.)

The concept of primitive recursiveness ean be used to give con-
structive versions of various classical definitions of real numbers. The
class R, determined by the analogue of Cantor’s definition in terms of
Cauchy sequences was called by Specker {9] the class of primitive recursive
real numbers. Specker also considered the class R, of real numbers with
primitive recursive decimal expansions and the class R, corresponding
to the Dedekind cut definition of real numbers. He proved that R;CR,
C®R,, where the inclusions are proper; and he obtained other resulfs
concerning numbers in these clagses. Further results have been obtained
by Péter [6], [7] and Mostowski [4].

The questions discussed in the present paper have as a common
feature the property that either the questions themselves or the methods
used here to study them are concerned with the regular continued fraction
expansions of real numbers. The present study began with an attempt
to determine whether the seemingly lawless expansion for = i3 primitive
recursive. (1) (See [5], p. 35, [3].) An answer to this question is furnished
by Theorem 1, which asserts that the class of irrational numbers with
primitive recursive continued fractions is identical with the class of pri-
mitive recursive real numbers which are recursively irrational in the
senge of Péter [6]. Since it is known that z is recursively irrational (see
Goodstein [1]), it follows that its continued fraction expansion is primitive
recursive. )

In Section 3 we use some results of Furwitz [2], concerning Farey
series and continued fraction expansions, to give an example of an irra-
tional number in R, which is not recursively irrational.

Mostowski [4] has asked whether the class R, is identical with the
clags of numbers with primitive recursive b-adic expansions for every
integer b > 1. In Section 4 we use a result from analytic number theory

* Part of the research for this paper was done under a Fulbright grant for research

at the University of Gottingen.

(*) The author is indebted to Professor Saul Gorn for the suggestion that the
vague question of whether there is a law for the continued fraction for n might have
a meaningful version in terms of recursive functions.
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concemhig the distribution of primes in arithmetic progressions to obtain
a negative answer to this question.

If one uses the concept of general recursiveness instead of that of
primitive recursiveness, then the definitions corresponding to those
mentioned above turn out to be equivalent. Mostowski [4] has, however,
shown that sifhiilar distinetions then arise when one considers sequences
instead of numbers. In the present paper we shall be exclusively concer-
ned with primitive recursiveness; therefore, to shorten statements, in-
stead of saying “primitive recursive’” we shall often say simply “recursive®.

§ 1. Throughout;; this paper we shall limit our considerations to
positive rational numbers and positive real numbers. An extension to
‘negative numbersi-would offer no real difficulty but would complicate
-the exposition somewhat. First, let us summarize the portion of the ele-
mentary theory of continued fractions which we shall use. For proofs
we refer to Chapters .1 and 2 of [3].

) Every positive irrational number o« has a unique infinite regular
continued fraection expansion of the form

a=2"by+1
b +1
[T
where the b, are integers, b, >0 and b, >1 (n=1,2,3,..). As is

customary, for the sake of brevity, we write o = [b, b, by, ...]. The
number b, is called the partial quotient of order n.

‘We consider the sequences p_y, Doy P1s Pas o-
determined by the recurrence relations

and oy, Qoy @15 Gos -

Ppa=1,
(11) Po=by,
Y Par = bnga Pt Dot

¢1=0,
Go=1,

Gni1 = bapifu+Quy (0=0,1,2,..).

“Thefraction pafgs is called the conwvergent of order m. Because of the re-
lation ¢
(L.2)

Palns—GnPay = (—1)t (0 =0,1,2,..),

“these fractipns are reduced fractions. The sequence {pa/g.} converges to
-the: number .a. In fact

PR I 1 p 1
0 ) R S g I Ty <. e =0,1,2
(1:8) gn(Gnia+ qn) * Gn InQntr » 1,2,
Agor o
{1.4) ‘&’<—2§<£5<...'<a<...<p—5<—p—3<~p—1.
R ) g N s g3 /38
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We shall use the following formula which together with (1.1) gives
a recursion scheme for computing the partial quotients (2): ’

(1.5) b1 = [’L—-——“‘l_ Hn—y

P ] (n=20,1,2,..).

The continued fraction convergents provide best approximations
to « in the following sense. If n> 1, 0 < 4 < Gny, 304 P/g % Pufgn, then

a2
qi

Also if p and ¢ are positive integers and

Pn

Q -

qn

(1.6) <

1

a—= <"2~g-é,

(1.7)

then p/g is equal to a ecomvergent to a.

§ 2. A sequence of rational numbers {a,} is said to be recursive it
and only if there are recursive funections p(n) and p(n) such that yp(n) > 1
and an, = g(n)fp(n). The sequence {a} is said to converge recursively if
and only if there is a recursive function z{m) such that

1
|@n— ans| < P for w,n*>1(m).
A real number r is said to be a recursive real nwmber if and only if there
is a recursive sequence of rational numbers which converges recursively
to 7.

Péter [6], {7] has introduced the concept of a recursive real number
being recursively irrational. We shall use a definition which is easily
proved to be equivalent to hers. We say that a real number « is recursively

irrational if and only if there is a recursive function v(n) such that for
all positive integers m and n

1

(2.1) TR

m
[ g
n

We say that the continued fraction expansion a = [by, by, by, ...] is
recursive if and only if b, is a recursive function of n. Qur first result i
the following theorem.

TEEOREM 1. An irrational number o has a primitive recursive continued

fraction expansion if and only if i is a recursive real number which is recursi-
vely irrational.

(*) By [#] we shall always mean the greatest integer which is less than or equal to .
B
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Proof. First we asgsume that a is a recursive real number which
is recursively irrational and prove that its continued fraction expansion
is recursive. By assumption there is then a recursive function »(n) such
that (2.1) holds for m, n = 1. We shall find it convenient to replace »(n)
by a reeursive function »*(n) defined by the recursion

v*(0) = »(0),
¥ (n+1) = max (»(n+1), v*(n)) .
It is then easy to establish that »*(n) is a monotone increasing function
and that (2.1) holds with » replaced by »*.

Next we define a recursive function u(n) by the equation

#(0) =1
pln+1) = »*((u(n) .

‘We can then prove that if pa/g. is the convergent of order n to «, then

(2.2) gm<pumn) (n=0,1,2,..).
Indeed, by (2.1) and (1.3) we have
—;l— < ' aQ-— Dn < 1 .
¥*(gn) qn Infnt+1

Hence, since ¢y =1 for 720, gny1 < v*(qn). Becanse g,=1 = u(0) and
because »* is monotone, the inequality (2.2) follows by induction.

Since a is a recursive real number, there are recursive functions
¢{k), p(k), and 7(m) such that (%) =1,

%’g —>a a8 k—co,
and
k ) 1
]% -zgk*g o for bk >(m).
Letting k*—co, we find that
(b 1
(2.3) [%—a! <z for  k>q(m).

Let a = [bg, b1, byy...] and let pafgn and ppii/gnyq be the convergents
to « of orders » and n-+1. Then if § is any real number for which

o — Pri1

a—p| <
|a—p| o

4

the partial quotients of order <« are the same in the expansions of a
and B. To see this, we observe that a lies between pa/gn and Puys/guss.
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Also « is closer 10 Ppy1/gn+ than it is t0 pa/gn. Hence B must lie between
Pufgn a0d Pnta/gas1, and since these two numbers have the same parfial
quotients of order < =, so must o and f. (See [5], p. 35.)

We apply this result with

pm L ot =<l 1)
The assumptions are satistied since by (2.1), (2.2), and (2.3)
Pri1 1 1 cp(w(n))
—_—— = = hand = “ﬁ .
la pave Eerrram ey prey R et
By (1.5) and (1.4) we have
- [w(w(O))] b [ plw(1) ]
*lvle@l” T by (o) = ()]
Po="bg s Py =bpy+1,
“©w=1, ¢ = bige

(2.4)
[I?n—lw(w(n+1))—qn-w(w(n+1))[
bn+1 =
|ga@ (@ (n + 1)) — Pay (0 (0 +1)|
n=1,2,3,..),
(n=1,2,3,..).

n=1,2,3,...),

Prt1 = Ung1Pn+ Pr—z
@1 = Dpt1@n+ Gn-1

The functions [a/b], [a—b], ¢, v, and o are all primitive recursive.
The scheme (2.4) is a combination of a simultaneous recursion with & course
of values recursion. Sueh recursions can always be reduced to primitive
recursions (see Péter [7], pp. 32-36). Consequently bs,pa, and ¢» are
recursive functions of #. This completes the proof that -a recursively
irrational recursive real number has a recursive continued fraction ex-
pansion. ) )

Next, we assume that a has a recursive continued fraction expansion
and show that it is a recursive real number which is recursively irrational.
Since b, is a recursive function, so also are p, and ¢, defined by the re-
lations (1.1). We know that the sequence {pa/gs} converges to a. Moreover,
it converges recursively; for if n,n*>m, we have by (1.4) and (1.2}

_ |Pmmir—Pmiagl 1 1

Pn _ Pn .
ImQm+1 Imlmir M

In  Gne
Henee by letting v(m) =m we see that a is a,_recursive real number.

< ’h _Pmn
Im Im+1
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Next we prove that o is recursively irrational. By (1.6) and (1.3)
we_know that for all integers p and all positive integers ¢ < ¢qn

? D 1
a—=|=iaqa—-= —————— |
[ Qn(Qn + Qn-x-l)
In particular, since # < ¢., we have
m 1
—— ————  for m,n>0.
T R ’

It we take
v(0) = gu(gn+ o1}  (n = 0,1,2,..)

then (2.1) will be‘sa.tisﬁe'd. Consequently a is recursively i.rration{a;l.

§ 3. A real number 7 is said to determine a recursive cut if and only
if the relation mj(n-+1) < r is vecursive (see Specker [9]). Péten [6] has
proved that the number e determines a recursive cut if and only if [na]
is recursive. . )

Péter [6] has. shown that if a recursive real number o is recursively
irrational then the sequence [na] is recursive. Let us give a short proof
of this fact based on the result that such a number has a recursive: contin-
ued fraction expansion. Since gu..> n, by (1.3) and (L.4) we have

G n 1
0 < na— P2 <=

Gon GonQonty  Gom

At least 1/g, must be added to UPsn/on t0 change its integral part. Hence,
[na] = [1Pon!gen] . ‘

If the continued fraction expansion is recursive, then p, and g, are recur-
sive; and it then follows that [na] is recursive. :

This result raises the question of whether there are irrational num-
bers « which determine recursive cuts but are not recursively irrational.
To answer this question we shall use some results of Hurwitz concerning
the connection between Farey series and regular continned fractions.

- For this section we shall limit.the discussion to irrational numbers a
for which 0 < a < 1. The Farey series of order » is a listing in order of
magnitude of all reduced fractions p/q for which 0 < p < ¢ and 0 < q < n.
Two fractions /s and u/v which are adjacent in the Farey series of order n
Temain as adjacent fractions in Farey series of larger orvder until the
order inereases to s+-v. Then in the series of order s+o the fraction
(r+u)/(s+v) is inserted between 7/s and wufv, .

We define a function x(n) which we call the Hurwity characteristic
of a. (See [2].) Let #(0) = 0. The Farey series of order 1 is 0/1,1/1. The
Faxey séries of order 2 is obtained by inserting the fraction 12 between 0/1
and. 1/1. I a < 1/2, then we let 2{1) = 0; if @ > 1/2, we let 2(1)=1. In

On primitive recursive real numbers lll,

general, after n—1 steps 2(n—1) hag bee.n determined and K ,]1&5 begn:
located between two adjacent fractions in some Farey series, say N:
and wjo. Then if « < (r+u)/(s+9»), we I.et z{n) = 03 a;I.Jdi lfl ﬂll{ls is an;
the case, we let y(n)=1. Observe that .1f the characteristic 1fs hnoxl;rn,‘ i
is easy to determine the position of a with respect to each of the Farey
Se‘mA.SI;‘rom the characteristic of e it is also Very‘ easy o jﬁh@_\the regul:iu:
continued fraction expansion of a. Suppose thgt the first b, Ivaluels 1:;
the gsequence {y{n)} are 0, the next b, values are 1, the' next by ;&tﬁa}t .
are 0, etc., where by =1 (i=1,2,3,..) Thgp Hurwitz prove

°T gg’,eb;rgif’e.”jn.e following theorem which giv.es' a new eharaeﬁeriz@tion
of the set of numbers which determine recursive 0111“;8.

THEOREM 2. An irrational number o belween 0' and l.determz.n%.
a recursive cut of and only if its Hurwite ch-t_w:actemstw y(m) 18 recursive.

Proof. First we deseribe formally the construetion of ?g(n) for a fgifrer}
irrational number a. Let ‘ \
etm,my=0 if ae<m/(nt+1), v
em,n)=1 if a>min+1).

b (vl(n) 1'3(71)) be the interval in which o has been located after the,
o(n)” 2,(m)
nth step of the construetion. Then we have s

200) =10, »(0)=0, »(0)=n0)=2(0)=1,

@1 g(n+1)=¢ ("’1(”‘) Fwg(n), w(n) -+ 2y{) — 1))

and

an T 1) = wy(n) oy (n 1) ve(n) -
v +1) = w(n) + g (n+1)v(n) , : ;

{3.2)

{

(
va(m -+ 1) = vy(m) + (1—;5(%—1—1)) »n(n), . .“
pa(m+1) = n{n) + (1= x(n+1))n(n) . S

Tt o determines a recursive cut, then the function o(m, ) is re’m(xirmz’eb;'
The equations (3.1) and (3.2) then define x(n), n(n), vo(m), va(n), and »,

i recurgive functions. . H
Slmuginsgg B;Zhjf hand, if e is an irrational numberl which has.a }'_qcu:‘tﬁwe
function yx(») as its characteristie, thep the equations (3.2)bde§1;1§u:;(i'r;)r,l
»y(n), v(m) and »(n) as recursive funetions. One can ‘pro(;re );/v AR
that max (sg(n), »(n)) > n. Consequently u(n)/n(n) an vo{nm)/7s


Artur


112 R. 8. Lehman

adjacent fractions in some Farey series of order greater than n. It follows
that there can be no number m/n for which
n(n) _ m
n(n) 0

()’
Henee [na] = [nw(n)v(n)], and it then follows that [na] is recursive.
This establishes that a« determines a recursive cut.

The following lemmsa, which is essentially Specker’s Lemma 11,
will be used in the proofs of Theorems $ and 4. By “u,” we shall mean
‘the smallest natural number & such that ...”". We shall use this operator
only when there is an « for which the condition holds.

LeMma 1. There is a primitive recursive function A(n) which takes

no values except 0,1, and 2, such that for every w there is an @ =n such
that A(x) # 2 but the function

ﬁ.(‘u; (@ = n & Afa) + 2))
8 mot & primitive recursive function of n.

Proof. Specker's Lemma IT asserts that there is a primitive recursive
predicate %(n) and a recursive funetion y{(n), taking only the values 0
and 1, such that for every = there is an « > » for which A(x) holds but

Yl =n & A(x)))

is not recursive. We let 4(n) = 2 if A(n) does not hold, and we let A(m)
= y(n) if A(n) does hold, Lemma 1 then follows immediately.
Observe also that the function

a(n) = pz (x> n & A(a) 2)
cannot be primitive recursive,

THEOREM 3. There is an irrational number o which determines a recur-
stve cut but is not recursively irrational,

Proof. We use Lemma 1 to define an appropriate Hurwitz character-
istie x(n). We let #(0) = 0. Tn general, if A(n) = 2 we let z(n+1) = y(n);
if A(n) #2 we let z2{(n+1) = 1—y(n). The function x(n) so defined is
recursive and hence by Theorem 2 defines a number ¢ which determines
@ recursive cut. Let

a'(n)z-,uz(m>n&).(a;)#2), ’
and let a = [0, by, by, by, ...]. According to Hurwitz's results the sequence
{x(n)} consists of b, 0's followed by b, 1%, ete. Consequently

n1

a(n):,uz(wg Zb,—&w;n&ﬂ.(m)#i’).

t=1 )
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If a were recursively irrational, it would have a recursive continued fraction
ni-1

expansion; and the function ) b; would thus be & recursive function
=1

of n. It would then follow that o(n) is recursive, contrary to Lemmsa 1.

Hence we conclude that « is not recursively irrational.

§ 4. Let b be an integer > 2. A real number 7 is said to have a recur-
sive b-adic expansion if and only if there is a primitive recursive function
y{n) such that

o0

7= 2 p(m)b™"
n=0

and 0 < y(n)<b for n=1,2,3,..

The following theorem answers a question of Mostowski [4].

THEOREM 4. There is an irrational number a which has a recursive
b-adic expansion for all b =2 but does not determine a recursive out.

In the proof of Theorem 4 we shall use the following lemma coneerning
primes in arithmetic progressions.

LeMmA 2. If 1 is relatively prime to & and if n> 0; let p(n, k,1) be
the n-th prime which is congruent 1o 1 modulo k. In all other cases let p(n, k, 1)
= 0. Then the function p(n,k,1) 48 primitive recursive.

Proof. The function p(n, &, I) is well defined by Dirichlet’s theorem.
Let (w, k, 1) be the number of primes p for which p < #and p =1 (mod k).
It is known (see [8], p. 144) that there is a positive number ¢ such that
if 7 is relatively prime to %, and 1 < k <logx then

w(z, k, 1) > C.

_r __
2klog®
We may assume C > 3. Taking o = @+, we find

(1 -+ ) Fn+C)

SemioE 0"

a (O, E, 1) >
since ¢%/24? > 1 when % > 3. Thus in a search to find the wth prime ?
for which p =1{modk) one need not search further than e*®+0), _T_Ius
vields a primitive recursive bound for use with the u operator in defining
p(n, k, 1) as a primitive recursive function. The completion of the formal
definition offers no difficulties.

Proof of Theorem 4. Since this proof is somewhat complicated,
we first give a rough outline of the proof. Using the funetion A(n)
of Lemma 1 we generate a recursive sequence of rational numbers
{p(n)/p(n)} which converges to a number a. This sequence is (}h?sen go
that for long stretches the same fraction appears repeatedly. This is done
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in such & way that the relation a< @(n)jy(n) is not recursive and so that
the numbers (n) are all primes. Moreover, the sequence ig chosen so
that all rational numbers which are ““good approximations” to « are in
the sequence. Roughly speaking, one can say that the only way a recursive
real number can fail to have a recursive b-adic expangion is by being
approximated too well by an infinite sequence of fractions of the form
a/b*. But since all good approximations to o have denominators which
are primes, no such sequence can exist; and a must, therefore, have a recur-
sive b-adic expansion.

For the exact proof we let A(n) be the recursive function described
by Lemma 1 and we let p(n, k, ) be the recursive function of Lemma 2.
We define simultaneously the functions o(n), p(n), £(n), g(n), =(n),
and ¢(n) as primitive recursive functions by the equations

p(0) =1, y(0) = 2, £(0) =0, 70 =1, ¢(0) =0, %(0) = 0;:
pn+1)=gn), pr+l)=y(n)
§m+1) =E&n), -pn+l) =nH) .
e(n+1)=g(n), xm-+1)=xn)+1
elrt1) =2a(m), ‘mn+i)=0 - = - 0 an
D mpl), nrin —py] £ A =0er 1,
¥(n+1) = plein)+3, p(n), n(n)
p(r+1) = [p(n+1)p(n)]-p(n) + &)

P +1) = plx(n)+3, p(n), p(n) -~ n(n))
P(n+1) = [p(n+Lp(n)]-¢(n) +p(n)— ¢

The numbers ¢(n)/y(n) form a sequence which we shall prove converges
to an irrational a. The number &(n){n{n) is the last member of the sequence
which precedes the number @(n)fp(n) and ditfers from it; o(n) is 0 or 1 de-
pending on whether &(n)/ (n) is less or greater than a; and x(n) is & counter
which keeps a record of how many earlier members of the sequence are
equal to ¢(n)fp(n).

We define a funetion f(n) by the equations

if . Any=2,

(4.1)
} i AMn)=1=9(n),

(n) ] i An) = g(n).

£2) f(0)=—-1, fm+1)= el > f(m) &iw)#2) (m=0,1,2,.).
Also, we extend the fanctions 4, ¢, and p by letting
M=1)=0, p=1)=0, p-1)=1.

Using this non-primitive recursive function f(n), we can eliminate &(n),
7(n), #(n), and g(n) from the scheme (4.1). For m >1 we obtain

(a3  PHmEL) =p(fm—jm—1)+2, (fim), p(f(m—1))),
~olttm 1)) = [p(flm-+ 1)) fyfom) g (f 0m) + 9 (f m—1))
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it A(f(m)) # A{f(m—1)}; and

y(fm+1)) = plf(m)—fm—1)+2, p(f(m)) , p(fem)) —p(f(m—1)),

(f(m~+21)) = [p(flm+1)) fplf )@ (f (m) +¢ (f ) — g (fm — 1)

it Af(m)) = A(f(m—1)).
Also we have

p(f(1) =2,
and if f{m—1) <n < f(m), then
pin) =p(im),  ¢(n) = g{fon).
From (4.3) it is readily verified by induction that y(f(m)) is a priine

for m > 1, sinee y(f(m—1)) is relatively prime to y(f(m)). Hence, by (4.4),
w(n) is a prime for all % > 0. Also by (4.3) we have for m > 1

e(f(1) = 1;

(4.4)

(4.5) tp(’ﬂm—}—l)) = (fim)—7(m—1) +2)p(f(m)) .

Now we prove that the sequence {p(n)jp(n)} converges to an irra-
tional number by constructing a ‘continued fraction for which each of
the numbers g(n)fy(n) is one of the convergents. Let

s et Affom) £ 2{fm1)
g =1, gt =1 e i ) = A(fim—1)) .
As usnal we get e .

Pa=1, ¢ga=0, p=0, 'gg=1; b=0. -

For brevity, let k = g(m). Then if l(f(m‘)) ” Alf (m— 1)) Wel let

(4.6) g = (i), r=e(fm),  bx = [guq-il,

and if A(f(m)) = A(f(m—1)) we let
4.7) '

G =p(f(m)—p(fm—1)), pe=g(fn)]—plim—1), b=[gae1,

g =p(i(m)), P ={f(m) bsr=1.

Now let us verify that when bp, p., and g, are defined in this way,
the relations (1.1) hold. If m =2 it follows from (4.3), (4.6) and (4.7)
that

p(f(m)) = p (f(m)—Flm—1)+2, Qg1 G 5
@(f(m)) =9 (7(m) | gi1] i1+ Pr—s -
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It Z(f(m)) # A(f(m~1)) we obtain

o= b1+ @iz s Pr= UaPr—1+Dis ;
and if A(f(m)) =2(f(m—1)) we obtain

G = by Gz Pr= bpPr—1+Pr—s ,
Givr=broaet+ o1y Pr-1=bps1Prt P .
Thus the recursion relation of (1.1) holds for n+1 > ¢(2). One can also
verify directly that the recursion relation holds for n=0 and 1 and
that the other equations of (1.1) hold. We let « be the corresponding-
irrational number, i. e. a = [0, by, b, b3, ...]. Observe that each of the
numbers ¢(n)fp(n) (n=0,1,2,..) is equal to seme convergent.

We shall need an estlmate for how closely o(n)fp(n) apprommates a.
First we prove by induction that

(4.8) p(fm-+1) = fm) (m=1,2,3,..).
By {4.5) we have
' v(1(2) = (f(1)+3) p(f(1) = f(1)
which proves (4.8) for m = 1, For m > 1 we assume the inequality with m.
replaced by m—1 and use (4.5) and the fact that f(m— 1) =1 to get:
p(flm+1)) > (f(m)—Flm—1)+2) f(m—1)
> f(m)—f(m—1)+2f{(m—1) > f(m),

thus completing the proof of (4.8).

The fraction p(f(m)) /p(f(m)) is a convergent to a. The next convergent:
plfm+1)  o{ftm+1)—p(fm)

is either or .
p(f(m+1)) p(fm + 1)) —yp(f(m))

Hence by (1.3) we obtain.

_ olfm) 1 1 1
w{fm) | p(f o) (p(fm+ D) —p(fm)) ~p{fem D)~ Fm)
for m =1, 2, 3, ... Consequently, in view of (4.4) we have for all » > 1.
49 p(n)
@) ")

Let b be any integer > 2 and suppose

L)

= D y(mp

n=0
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with 0 <p(m)<bd for #=0,1,2,.. We wish to prove that y(n) is
a recursive function. We have

p(0) =[a], pn+1)=["""a]—b[b"a].

Consequently, it is sufficient to show that [b" a] is a recursive function of ».
If possible, let ¢ be an integer for which

1

! a
4.10 <
(4.10) | e

G

By (1.7), a/b" iz equal to some convergent p;/q;. Furthermore, by (1.3),
b1 = 2; and, therefore, by (4.6) and (4.7) there is an m such that p; = @(m),
¢; = v(m). Also afb" = @(m)jp(m) is impossible if p(m) > b because p(m)
is a prime. Consequently, there are at most a finite number of » for which
there is an & such that (4.10) holds. Let N be the least positive mteger
which is greater than all such ». Then, by (4.9),

b 1

n ¢(4b2")_bn N
45 4P

P(40™")

Also, if #n >> N and o is any integer, then

b" 1
bn - = T ot
pramal > o ==

Hence
[B"a]) = [Dp(4b™fp(eb™)] i a= ¥,
["a] = (Db )pad™)] i n< N;

and from this it follows immediately that [d"«} is a primitive recursive
funection of z.

To complete the proof of Theorem 4, we show that a does not de-
termine a recursive cut, i. €. that the relation mj(n-+1) < ¢ is not primi-
tive recursive. Using (4.6) and (4.7) one can establish by induction thab
it A(f(m)) =0, then ¢(f(m))/p(f(m)) is a convergent of even order; and if
A{f(m)) =1, then g(f(m))/p(f(m)} is & convergent of odd order. It then
follows from (1.4) and (4.4) that

%< a if and only if Almle>n&Ailz)#2)=0.

Hence by Lemma 1 the relation @ (n)/w(n) < a is not primitive rt.acursive,
and thus the relation m/(n-+1) < a is also not primitive recursive.
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On the decomposition of Haar measure in compact
groups
by
R. Ranga Rao and V. S. Varadarajan (Calcutta)

0. Introduction. The behaviour of singularity under convolution
has always been an inberesting question. In particular, it may be asked
whether the convolution of singular measures is necessarily singular. How-
ever, Salem ([5]) has constructed examples of singular measures whose iter-
ates are absolutely continuous. In this paper we examine this question in
another direction. The main theorem of this paper asserts that the Haar
measure on any infinite compact abelian group can always be written
as the convolution of two singular measures. It is also proved that in
any non-discrete loeally compact abelian group there are singular meas-
ures whose convolution is absolutely continuous.

1. Background. Throughout this paper, with the exception of the
last section, we shall be dealing with compact abelian groups. For any
locally compact abelian group &, we use the symbol ig to denote the
Haar measure of G. If & is compact, lg is always normalized to have
Ag(GY = 1.

I @ is any compact abelian group, let B, and B denote the o-field
of Baire and Borel subsets respectively. If G is mefric B, = B and in
any case B, is the smallest o-field with respect to which all continnous
functions are measurable. The term measure will be used to denote prob-
ability measures on B,. Since every measure on B, has a regular unique
extension to B, we may regard the measure as defined on B itself and
assume its regularity whenever it is necessary. We will have occasion
to use the Riesz theorem. This asserts that if I is any non-negative linear
functional on C(@) (the space of continuous functions on @) with L(1) = 1,
then there exists a unique maesure p such that L (z) = fxdp forallae C(G).

A meagure p on a compact group @ is called singular it p([#])=0
for all # € @ and if there exists a set A such that p(4) =1 and le(4) = 0.
Singularity is a special case of orthogonality. Measures p and ¢ on G are
said to be orthogonal if there exists a set A with p(d) = ¢(G—4) =0;
in this case we write p L ¢. With this notation, p is singular if and only
p([#]) = 0 for all « ¢ @ and if p L ig. A measure p is said to be absolutely
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