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On the decomposition of Haar measure in compact
groups
by
R. Ranga Rao and V. S. Varadarajan (Calcutta)

0. Introduction. The behaviour of singularity under convolution
has always been an inberesting question. In particular, it may be asked
whether the convolution of singular measures is necessarily singular. How-
ever, Salem ([5]) has constructed examples of singular measures whose iter-
ates are absolutely continuous. In this paper we examine this question in
another direction. The main theorem of this paper asserts that the Haar
measure on any infinite compact abelian group can always be written
as the convolution of two singular measures. It is also proved that in
any non-discrete loeally compact abelian group there are singular meas-
ures whose convolution is absolutely continuous.

1. Background. Throughout this paper, with the exception of the
last section, we shall be dealing with compact abelian groups. For any
locally compact abelian group &, we use the symbol ig to denote the
Haar measure of G. If & is compact, lg is always normalized to have
Ag(GY = 1.

I @ is any compact abelian group, let B, and B denote the o-field
of Baire and Borel subsets respectively. If G is mefric B, = B and in
any case B, is the smallest o-field with respect to which all continnous
functions are measurable. The term measure will be used to denote prob-
ability measures on B,. Since every measure on B, has a regular unique
extension to B, we may regard the measure as defined on B itself and
assume its regularity whenever it is necessary. We will have occasion
to use the Riesz theorem. This asserts that if I is any non-negative linear
functional on C(@) (the space of continuous functions on @) with L(1) = 1,
then there exists a unique maesure p such that L (z) = fxdp forallae C(G).

A meagure p on a compact group @ is called singular it p([#])=0
for all # € @ and if there exists a set A such that p(4) =1 and le(4) = 0.
Singularity is a special case of orthogonality. Measures p and ¢ on G are
said to be orthogonal if there exists a set A with p(d) = ¢(G—4) =0;
in this case we write p L ¢. With this notation, p is singular if and only
p([#]) = 0 for all « ¢ @ and if p L ig. A measure p is said to be absolutely
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continuous, p<<ig, in symbols, if p(4) =0 for every set 4 for which
A(4) = 0.

If p and g are two measures on &, their convolution, denoted by psq,
is the measure whose value for every set 4 ¢ B, is given by

(prg)(4) = [ p(A—w)dg(x).

If the group @ is abelian, it follows that pxg = ¢+p. If H and H' are
two compact groups, § & homomorphism (*) of H into H’ and p a measure
on H, the measure pf™* on H’ is defined by setting pf~(4) = p[67(4")]
for every Baire set A’ C H'. If 0 is onto I’ then Agf ™ = Ag.. If p and ¢
are any two measures on H, (pxg)0 ™" = PO x gf7".

2. Preliminary lemmas. Our method depends upon first facto-
rizing Haar measure into singular measures on certain simple groups
and then passing on to more complicated groups. To this end, several
technical devices are utilized. We summarize, in this section, those that
are essential for our purposes.

LEMma 2.1 (Weil). Let @ be a compact group, T a subgroup and
H = G{T. Then, for every measure p on H, there exists a unique measure p
on @, satisfying the relation

[tap = [ ap [ o+ yarelt)
@ H Iy

for every continuous function f on G.
Before proceeding to prove this proposition we make a few remarks
on its meaning. If f is comtinuous on @, [f(z41)dir(f) is a continuous
r

funetion on @ (the variable being #) and moreover this function is constant
on the cosets of T. It can therefore be regarded as a continuous function
on H and can be integrated with respect to p.

Indeed, for any fe O(G) we define L(f) as [dp [ f(w+t)dir(t). L is
7 F
a non-negative linear functional on O(@) with L(1) = 1 and hence there
exists a unique measure $ such that L(f) = [fdp for all fe C(6).
(23

LeMMA 2.2, Let the set up be as in the preceding lemma and let 0 be
the canonical homomorphism G-=H. Then, the correspondence p->p has
the properties:

@) p = p7%;

(il) 2¢ = Am;

er TN

(il) (peq) = p*q;

(iv) iéf p is singular on H, p is singular on @;

(v) ¥ p is absolutely continuous on H, b is absolutely continuous on G.

() By homomorphism we always understand continuous homomorphisms.
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The proofs are straightforward and are omitted.

Before proceeding to the next lemma, we introduce a few definitions.
Tet G be a compact group and 8, a descending sequence of subgroups.
We denote by H, the quotient group /8, and by v, the canonical homo-
morphism G—>@&/8y,. It is clear that Ha= Hu41/(Sn/Snsa) and hence H, is
a quotient group of H,.1. We denote by 8y, the canonical homomorphism
Hypi—Hy. A sequence {pn} of measures, with p, defined on H,, is called
consistent if pp = p,H.an for all #. A consistent sequence {p,} is said to
extend to o measure p on G if there exists a measure p on G such thatb
Pn = PTn ! for all n. Finally, a sequence of subgroups S, is called small
it 8, is decending and Q 8y = {e}.

LEyMa 2.3. Let G be a compact group, Su a small sequence of sub-
groups and {pn} @ consistent sequence of measures. Then, pn extends to a
uniquely defined measure p on G.

Tet A denote the set of all continuous functions which are constant
on the cosets of at least one S,. 4 is a subalgebra of C(&). Since ("] 8y = {e},

it follows easily that A separates points of @. Hence, by the Stone-Weier-
strags theorem A is dense in O(@).

TLet L, denote the linear functional | -dps on C(Hy). If fe A, then f
can be regarded as a continuous function on some H,. More precigely,
for each f « A, there exists an integer n and & ¢ ¢ C(Hy) such that f = gob,.
Define L(f) = La(g). The consistency of p, implies that L is well defined
on A. It is further non-negative and hence bounded on A. It can there-
fore be extended (since A is dense in C(@&)) as a unique bounded linear
functional on C(@). Further this extension is obviously non-negative
and hence there exists a unique measure p on @ such that L(f)= f fdp
for all fe C(@). Tt is clear that p is the unique measure to which the p,
extend.

Levva 2.4, With notations as in lemma 2.3, p is the Haar measure
on G if and only if p. 18 the Haar measure on Hy, for each n. -

The only if part is trivial. As to the if part, note that 4 is an invariant
collection of functions and that L on 4 ig an invariant linear functional
if I, on C(H,) is invariant for each n. It is then clear that the (unique)
extension of L to C(@) is also invariant and hence the corresponding
measure is the Haar measure on @.

LEMMA 2.5. With notations as in lemma 2.3, suppose that

(1) suppa([£]) >0 as n->co,
xeHy
(2) there exists a sequence Cn of sets, Cn C Hy, such that pg(Cn) =1
for all n while Ag,(Cn)—0.
Then, p is singular.
Fundamenta Mathematicae, T. XLIX, : 9
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By definition of p, p.=pr; for all n and hence for any z ¢,
2 ([#]) < Palea(@)] < suppn([y])—>0 a8 n—>0o, 50 that p([2]) = 0. Further if

Cp =15 Y(Ch), and O ﬂC’n, p(C) =1 since p(Gn) =1 for all n, while

26(0) = 0 since 14(0) < Ag(On) = Ag,(Cn)—0. This proves that p is sin-
gular. '

3. Special groups. We shall now prove that Haar measure can
be written as the convolution of two singular measures for some special
groups G. We use the symbol K ambiguously to denote either the multiphi-
cative group of complex numbers of modulus unity or the additive group
of reals ¢ with 0 < <1 with addition carried out modulo 1.

TeroREM 3.1. There exist singular measures u and v on K such that
uxy =lig.

Let H be the additive group of integers 0,1, 2 and 3, with group
addition carried out modulo 4. Let H, be the infinite direct product of H
with itself. Under the produect topology, H, is a compact group and g,
is the infinite direct product of 2z on H. Let uy and vz be measures on H
which assign masses § each to the points 0, 1 and 0, 2. It is easily verified
that Az = ugsvy. Let um, and vg, be the infinite direct products of ug
and vg respectively. It is clear that Az, = un+vg, and that Aw,, gz, and ve,
all vanish for single point sets. Let ¢ = {0,1} and D = {0, 2}. I we
define Cy =[] C and Dy =[] D, then um(Cy) = vy(Dy) = 1 and g (Cy)=
Aa(Do) = [] %= 0. This shows that iz, is orthogonal to both um, and vg,.

Consider now the map 0 of H, into [0,1] which sends the vector
(hy, Bsy ...) of Hyinto 3 'hy-47™ Even though this is not a homomorphism
of Hy into K, it is clear that for @ ¢ C, and y e D,, 8(z+4) = 0 (x) @0(])
where @ denotes addition in K. If therefore u= up ™" and » =™
then ,m v = g6 Now it can be proved by elementary arguments that
gt is Lebesgue measure on [0, 1] and hence it follows that prv = Ag.

Since 6 is one-one except at a countable set of points of H, (over
which Ag,, pa, and »g, all vanish), it follows that # and v are both ortho-
gonal to ix and vanish for all single point sets. In other words it follows
that x4 and » are singular. This proves the theorem.

The above construetion gives at the same time singular measures
on the additive group of reals whose convolution is absolutely continuous.

TeroREM 3.2. There are singular measures u and v on the real line B
whose convolution is absolutely comtinuous.

With the same notatlon as in the proof of the preceding theorem,
we observe that u = pg 67 is concentrated in 4 — [0, 4] and » = vz 6™
is coneentrated in B = [0, £]. But then for z < 4 and YyeB, oty=aDy
where + denotes ordinary addition and @ denotes a,ddltlon in K. This
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shows that px» is Lebesgue measure in [0,1], » denoting convolution
of measures on the additive group R. This proves the theorem,

The circle group is the simplest of compact connected groups. At
the other extreme we shall now examine certain compact totally discon-
nected groups. It is well known that a compact group & is totally discon-
nected if and only if its character group is a torsion group ([4}). In a certain
sense, the simplest infinite torsion group is the group Z(p=) of all numbers
m/p®, p being & prime, the group operation being addition carried out
modulo 1. In the rest of the section, X denotes the discrete group Z(p*)
and G the (compact) character group of X. For any integer =, X, wil
denote the subgroup of X congisting of all numbers of the form mjp».
X,CX,C... and these are all the subgroups of X. Another description
of X, is obtained by regarding it as the additive group of integers
0,1,2,..,p*—1, addition carried out modulo p=.

The Pontrjagin duality theory enables us to view @ and X in a per-
fectly symmetric manner. To this end we introduce the function (.,.)
such that for fixed z e X, (., #) is the character on G represented by x and
for fixed g e @, (g,.) is the character on X represented by g. We define
Ty as the annihilator of X, 1. e. Th=1{g: (g, ) =1 for all ¥ € X,,}. Ty is
a subgroup of @ and T, CTy. Since X, 4 X, (N Thn = {¢} so that T, is

n

a small sequence. Further, from duality theory it follows that G/T', and X,
are character groups of each other. X, being a finite group, its character
group is isomorphic to itself and hence G/T, is isomorphic to X,.

THEOREM 3.3. There are singular measures p and ¢ on G such that
lg=1p=q.

We write Sy = Ty and H, = G{S,. We denote by 1, and 8, respec-
tively the canonical homorphisms G->G/8, and H,.;—>H,. Our method
of proof consists in building up suitable consistent sequences of measures

on the Hy. H, is isomorphic to X;» as we noted above.

an—1

We first observe that every element of H, can be written as Z; 7:p*

=
with 0 <7 <<p—1 for all 4. This representation moreover is unique. Let
Ca be the set of all points in whose representation # =% =... =fpm_y =0
and let D, be the set of points in whose representation r, =1, = .. =
*en—2=0. Cp and D, each contain exactly p*** points, Cp~ D, =[0], and
Cu+Dp = Hy. Lebt pa be the measure with masses 1/p?*™* at the points
of O, (with zero masses at others) and ¢, the measure defined likewise
over Dy. It is easy to verify that pn*gs = lg,.

We shall now verify that p, and ¢. are consistent sequences. Ohoose
and fix the integer » and consider the groups H,,, and H,. From the
special nature of the groups, it follows easily that the kernel of the homo-
morphism 6,: Hy,yq—H, consists of the p* points 0, p2*, 2p2,..., (p** — 1) p?".

9!:
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ontl_g
If e H,,; has the representation 7:p% it ig then obvious that § ()
i=o »
on—1

has the representation (in H”),-;o 7;p'. Consequently O, is mapped into ¢,

and D, mapped into D,. Itis then not difficult to verify th -
at pp= 1

ol g e gt y Pn="Pni10y
The consistency of the sequences p, and g, implies that they extend

to measures p and ¢ on G. Bince Ay, extends to Ay and since pp g, = Ay
for all n, it follows that p*¢ = Ag. Since "

1
SU = e
Swp pa([e]) = sup gal[e]) = ~0
and since, by lemma 2.4,

A, (Cn) = g, (D) = -0,

on-1
P

lemma 2.5 implies that p and g are singular. This completes the proof
of the theorem.

4. The main theorem. In this section we shall prove the main
the(.)re‘m of this paper. Before proceeding to its actual proof, it is con-
venient to obtain a few preliminary propositions which elarify the relation
between the general compact abelian group and the special groups consid-
ered in the preceding section.

For the group-theoretic terms employed in the following lemmas
such as divisible group, reduced group ete., we refer to [2]. Two subj
groups of a group are said to be independent when identity is their only
common element.

LEm 4.1. If X is an infinite torsion group which is reduced, then
we can find two infinite sub-groups of X which are independent. 7

Xis a direct sum of primary groups. Tf the number of terms is infinite
1';he assertion is obvious. Otherwise one term at least is infinite. Since X’
is reduce.\,d, 80 are its sub-groups and hence we may (and do) suppose
thslxt X is a primary group which iz reduced. We can then assert the
emstencfs of a eyelic group ¢, which is a direct summand of X ([2]). We may
thus write X = 0.@D, where D, is infinite, primary and reduced. The
:?rg:uxj}ept app}les to D, also and hence we can write D, = C, @D, where D,
is infinite, .pr}n.xa.ry and reduced. Since X is infinite, this proczedm'e cari
go on ad infinitum. Let X, be the sub-group generated by Oy, Ci, ...,
Ootyay oee anq X, the sub-group generated by C,, €, ..., Cay, .o Then’ X
and X, are independent infinite sub-groups of 2,( o ’ '

LevMa 4.2. An infinite torsion group X can be represenied as Z(p™)

DF, with F a finite group, if and only if 4
. - . Q :
it sub-groue s of y if it does nmot have two independent
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I X = Z(p®) @F, it is clear that every infinite sub-group of X must
contain Z(p<) and hence X does not possess two infinite, independent
sub-groups. Conversely let X Dbe a torsion group not possessing two infinite
independent sub-groups. Bince X is infinite, X cannot be reduced
(Lemma 4.1). Let D be the maximal divisible sub-group of X. We can
then write X as D @®F where F is reduced. Lemma 4.1 once again applies
to prove that F is finite. Now D is a divisible torsion group and is hence
a divect sum of Z(p>)’s ([2]). The non-existence of infinite independent
sub-groups of X then implies that D must be Z(p>) for some prime p.
This proves the lemma.

TEyga 4.3. An infinite compact abelian group @ necessarily satisfies
one of the following relations:

(1) It has a non-trivial component of the identity or equivalently there
ewists a sub-group T such that GIT is the circle group K.

(2) It is totally disconnected and has sub-group T such that G/T can
be written as Hy, ®H, where H, and H, are infinite compact groups.

(8) It is representable as Gy DF where F is finite and G, is the char-
acter group of Z{p=).

Tet X be the character group of G and let T be a sub-group of G
and X, the annihilator of T in X. Then G/T and X, are character group
of each other. Consequently G/7 is isomorphic to K if and only if X, is
isomorphic to the integer group, i. e. if and only if X, is the cyclic group
generated by an element w, of infinite order. Now it is well known that X
contains elements of infinite order if and only if & has a non-trivial com-
ponent of the identity. This shows that group with non-trivial components
of identity are precisely those which admit K as a factor group.

If @ is totally disconnected, X is a torsion group. Then lemmas 4.1
and 4.2 imply that either X has two infinite independent sub-groups
or X is of the form Z (p=) @ F where F is finite. If X has infinite sub-groups
X, and X, which are independent, X' is the group X;®X, and T the
annihilator of X’ in @, it follows that G/T has X, ®X, for its character
group and hence decomposes as H; ®H, where H, and H, are respectively
the infinite compact groups which are character groups of X, and X,.

Finally, it X is of the form Z (p=) BF, G evidently satisfies relation (3).
This proves the lemma. )

TerorEM 4.1. If G is any infinite compact abelian group, there are
singular measures p and ¢ such that dg = pxq.

Suppose that ¢ has a sub-group T such that @ T is isomorphie to K.

By theorem 3.1 there are singular measures u and v on K such that
Ax = u+v. Construct now measures i and # on @ via the method described:
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in lemmas 2.1 and 2.2. If p=/ and g=17, then it follows from these
lemmas the p and ¢ are singular and pxg = Ag. ‘

Suppose now that & has a sub-group 7 such that G/T can be written
as H,@H, where H, and H, are infinite compact groups. Let 4, and A
be respectively the Haar measures on H, and H, considered as measures
on H,@H,= H. Since H, and H, are infinite, Ag(H,) = Ag(H,) =0 so
that 4, and 2, are singular. It can further be Proved easily that Ag = YRy.
If we now define p = 1, and q= ﬁg (vide lemmas 2 1 and 2 2), it is clear
that p and g are singular and Ag = p*gq.

There remains, in view of lemma 4.3 only the case when & can be
written as G, @F where F is finite and @, the character group of Z(px),
By virtue of the construction envisaged in lemma 2.2 and 2.2 it suffices
(theorem 3.3) the theorem for Go. This however has already been done
to prove so that the proof of the theorem is complete,

5. Locally compact groups. We shall, in this section, make
a few remarks concerning locally compact abelian groups. We prove
@ simple preliminary proposition.

Levwa 5.1, Let G be a locally compact abelian group and H an open
Baire sub-group. If there are measures p and g on H such that (i) p and q
are singular on H, (ii) p=q is absolutely continuous on H, then the same
property holds for @ also.

Indeed, define p’ and ¢’ on ¢ by putting p and ¢ o be zero outside H.
Sinee p'»q' < 1y and since Ay < g, it is obvious that 9+ ¢’ < ig.

TaEOREM 5.1. If G is any non-discrete locally compact abelian group,
there ewist singular measures p and g on G such that prg<i .

It is & well-known theorem of Pontrjagin that ¢ has an open Baire
sub-group () H which can be written in the form 0@V where € is compact
and V a vector group. In view of lemma 5.1 it snffices to assume that ¢
itself can be written ag O®V and this we shall do.

If C is finite, then @ being non-discrete, the vector component must
be present and hence ¥ is an opeén vector sub-group of 0, say of dimension m.
In view of lemma, 5.1 again it suffices to construct measures on V. Now V
can be written as @®R; where the direct sum is m-fold and R; is the real
line for each i. By theorem 3.2, there are singular measures p; and g
on R; such that Pi*¢: is absolutely continnous on E;. If p and ¢ are the
direct products of Pi and ¢; respectively, it is obvious that p and q are
singular and psxq is absolutely continuous.

Ii € is infinite theorem 4.1 disposes of the case when V is absent.
On the other hang, if V is Present, the above construction together with

(*} For instance the sub-group generated by a compact neighbourhood of the
identity is one such.
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i i th ¢ and V whose convolutions
4.1 yields singular measures on bo ] ,
1ﬂleor]ifclﬂutelsyqcon’oinuous. By taking direct products we thfsn have singular
argaa;mes p and g on G= C@V such that p*gq < Ag. This completes the
me

proof of the theorem.
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