icm

An application of games to the completeness problem
for formalized theories

by
A. Ehrenfeucht (Warszawa)

X

1. Let A be a set of predicates. Let 5 be a one variable predicate
such that # ¢ 4. We will denote by $(4) the set of all formulas of the
lower predieate caloulus with identity « which contains the binary pred-
icate ¢ and predicates from 4 only. As models of $(4) we will admit
those models for the set of formulas in which

(1) #n{w) is a set of individuals.

(2) |9M] (the set of elements of model M) is the smallest set X such
that #7(x) C X and if o, ¢ X, ..., # ¢ X then the finite set {@y, ..., Tz} ¢ X,
E=1,2,..

(3) Predicates from A are interpreted as relations in &7 ().

(4) Predicate ¢ is interpreted as the identity relation =.

(B) ¢ is the set-theoretical e-relation in [amy.

By G(4) we denote the set of those formulas in $(4) which do not
contain e and have all guantifiers restricted to 7.

Speaking more intuitively, G(4) is a part of the lower predicate
calculus and $(4) is obtained by the addition of the set-theoretical
notion of finite set. Conditions (1)-(5) ensure that the sets we are speaking
about in $(4) are interpreted as true finite sets.

We will denote by $a(4) the set of formulas which are of the form

(938) (Qr—s—2) - (Q101) ¥ (@1 oo 1 Bn)

where ¢; is either the existential or the umiversal guantifier, and ¥ is
quantifier-free.

The intersection ®(A)~ $n(4) will be denoted by Ga(4). Suppose
that we are given two models 9, and M, for H{4).

DerFiNITION 1 MY and M, are indiscernible by means of finite sets
{briefly indiscernible) if for any closed formula a e $(4)

stsfm, o = stsfm, @
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DerINrrioN 2. Y% and M, are elementarily md@'scemible if for any
cloged formula a e G(4)

stsfim, o = stsfp, e .

2. Games G, and H,. In this chapter we define games (in the
ordinairy sense of the word) which will be nsed in the formulation of
a snﬁmient condition for indiscernibility of models and a necessary and
sufficient condition for elementary indiscernibility. The last one is only
a new formulation of the condition given by Fraissé [3].

We are given two models M, and M, for $(4), and two players I
and IL In the game H,(My, M,) each Player makes n moves. In his ith
move (i = 1, ..., n) player I first chooses one of the models My, (L=1,2)
and then poin}:s out, in the chosen model, an arbitrary finite sequence
of elements aff, af, ..., al,, such that stsfm, 7(a). In his ith move
player IT chooses in the model sy, & sequence of k; elements o3 M alh
where stsfgmg_l‘n(a?,-‘ ). Then after n moves we have k-+...-+k, pah-s;

] 2
g+ @y
al R 2
12 1z 15t move
1 2
Ay = Ay
1 2
Apy < (g
nth move

1 2
av,lkﬂ -~ ank,,

.Pla,yer II wins if after the game the correspondence written above is an
1somorphi§m of these sequences with respect to relations from 4. It means
that II Wins if and only if for any « €4, and for any sequence of pairs
of positive integers (&s 1}y -y (4 fs), Where s is the number of variables

ineand 14, 1<i<ly, t=1,..,n,
stifan, @(ay, .- Thy,) = Sty a(ady, .y Ghg,) .
Player I wins if and only if player XL does not win.

The difference between Hay(y, My) and Gu(Wy, M,) is that in the
game q,,(iml, 9,) player I points out only one element a? in his ith
move, i =1, ..., n Then after # moves there are only # pairs:

1 2

ay <+ a; } 1st move
1

a3 <> a3 } 2nd move

> a } nth move

B.esiQes that restriction, all the rules of the game and the definition of
winning are the same ag in (M, PN,).
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ExampLE. Let A contain only two binary predicates, ¢ and i and
let 9, be a seb of integers with relations < (less than) and =, and let
M, be a set of rationals with the same relations.
(a) In the game H (M, M,) player II can always win: Each player
nas only one move; when player I points out the sequence a’l‘, vy al

in D%, , then player IT can find in M3y, & sequence of numbers P
such that

d<dt =" <adi™
and W b sk 8~k

Wy = @y = 0 = by .

(b) In the game G3(M,;, M,) player I can win if he points out in the
first two moves integers 0 and 1 in M, and in the third move an element
1 (w, +w,) where w, and w, are rationals pointed out by player II in the
latter’s 1st and 2nd move. Now whatever is chosen by player 1L, he loses
because either w, < 10, and w; < (w, +w,) < w, or w, = w; and for any
integer , <0 or #>1 and 0 <1

1st move of I 0 «» w, 1st move of II,

2nd move of I 1 <« w, 2nd move of II,

3rd move of IT Hw—l—_,*;-—uiz 3rd move of I.

In the example (a) we say that player II has a winning method (or
winning strategy) in the game H,, and in (b) we say that player I has
a winning method in G,. Generally by method (or sirategy) for player I in
a game H,(M,, M,) we understand a sequence of functions ¢y, ..., @a,
f1y ey fn such that each funetion ¢; (¢ =1, ...,n) correlates with any
finite sequence of pairs

LG

where a are in M, and a? are in My, 2 number 4 equal to 1 or 2; and f;
correlates with («) a finite sequence b, ..., by of elements in iy, . Intuitively
speaking, @; chooses the model in which player I will point out elements
in his sth move and f; gives the chosen sequence of elements. The strategies
in Gu(9M,, M,) for player I are those strategies in Hn(M, M,) in which
sequences by, ..., b, have only one element. The strategy for player II in
Hy(My, M,) and Gn(M,, M,) is the sequence of function gy, ..., gn such
that for every sequence of pairs (*) and the sequence B, ..., B, (0} in 9JZ;’L
1=1,2) the function g; attaches a sequence of % elements b, ..., by~
in the model M. {g; describes the choice of player IT in his ith move.)


Artur


132 A. Ehrenfeucht
Strategy a is called the winning strateqy (winning method) if for any strag-
egy of the other player the first player wins using strategy a.
Obviously in the games Hy(I,, N,) and G(M,, M,) either player T
or IT hag the winning strategy.
Suppose we are given a model It for H(4); we will define a funetion
§(z) for =M

o} it ststmy(z),
if non stsfmn(z), then & (%) is the least set Y
such that we¥ and if 2¢Y and tez then te ¥,

Now let s(z) = 8(x) ~ Eststmy (@), It is easy to see thab the correspond-
ence

{wx)
(a; € My, b; ¢ M) such that for every predicate ae A

? bz'.g)
uniquely deternines an isomorphism f between a family of such z o, )
that s(z) C {4, ..., a,} and a family of such y « |I)] that s(y) C (3,, ey o}
(an isomorphism under relations from 4, and ¢). We will say that such
a correspondence (xx) establishes an isomorphism between sets Ze| Myl
and y ¢ |M,] if s(z) C {ar; ooy an}, s(y) C {01y ooy o} amd f maps x onto .

THROREM 1. Suppose @y, ..., |y, v, o V€| Myl 8 (@) Clack, ..,

T Fr
5(¥) C {3, ..., ¥ If player II has the winning method in a game
Ha(My, M) after k-moves:

Ay > By sy Gy b s

ststm, a ey, ..., a;,) = stsfm, a (b, ...

} 1st move

] k-th move

and this correspondence establishes am isomorphism  belween z; and 9y
(i=1,.., k), then for each formula ¥ « Ha(A) with & free variables

stsfay P(ay, ..., @) = stsfa, ¥ (31, -y ¥i) .

Proof. The proof is made by induction with respect to w—%k. If
%—k =0, then ¥ ig quantifier-free and the theorem is true by the defi-
nition of isomorphism between z; and y;.

Let us assume that the theorem is true for n—k—1 = 0. Suppose
that the assumptions of the theorem are satisfied but; for example,
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» Sty ' (Yuy oov s Ya)y 1o &0 St~ (Y1, 00, ¥0)-
stefo, @y, .vy ) and not ststm, Py, ..., ‘ -
;Stl: )S;l;ose( tlh’at ,SU is a formula (Hu)D(uy,...,ur, u), Uy, ..., u; Ivee variables
of 1![’- if it were not, then we should consider the formula ~ V.
'i}hen in M, there is such an a4, that

StwaleD(ml, veey Lpgy .'Z’k+1) .

Let player I point out in the (k+1)-st move:

1
L1
where {1, ey Bhea} = 8§ (@) -
Tha1
By assumption, player IT has the winning method; therefore he can find
aysequenee Yhi1y -y Yher in M such that the correspondence

(k+1)-th move

D
Ther > Yt
is an isomorpbism, i. e. for any aed

j j 7. o Ts
stafg, a(@ll, ..., oi) = stsfm, e (98, ..., Vi)

for 0< i, < k+1, 0 <, < my. Then there is such an elemeu.t Yr1 €| Dy
that tie ecorrespondence given above establishes an 1somo.rph1sm between
Zpe1 and e, and therefore, by the inductive assumption,

stsfum, D (215 vy Tern) = St8Im, B (Y15 ooy Y1) 5

which means that stsfa, (M) D (¥, ..., Y, #), Which contradicts the assump-

tion that ~stsfm, ¥ (y:,s ..., Yx)y Q. e. d. -
THEOREM 2 QIf pl,ayer YL has the winming wmethod in the game

Hu(My, D) then for any closed formula ¥ e Hn(d).
stafp, @ = stsfm, ¥ .

Proof. It is enough to put k = 0 in the assumption of Theorc-am 1.

TeeoREM 3. If player 11 has the winning strategy fo.r every n in the
gume Ha(Wy, My), then models My and M. are indiscernidle by means of
finite sets. - .

Proof. The above follows immediately by Theorem 2.
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We will show in the next chapter that the converse of Theorem 3
is not true, 1. e. that there exist models 9%, and M, for some $(4) such
that MM, and M, are indiscernible by means of fimite sets though for
some 7, player I has a winning strategy in the game H, (M, Ms).

THEOREM 4. If M is o model for H(A) then there is an arithmetical
submodel M < M such that W] = x,.

Proof. We can introduce in the model Skolem functiong fis oo s Fay oo
eliminating quantifiers. The number of the funetions is &,. Leb us now
take the least subset X C ||, which contains an arbitrarily given ele-
ment @, closed under

(1) the construction of finite sets {ay...a} where ZeX, ., mekX,
k=1,2,..,

(2) the construction of subsets: z ¢ X and ¢« then yelX,

(3) functions fi, ..., fa, ...

As It we now take X, defining relations in X according to relations
in M. Ib is easy to see that MM’ iy an arithmetical submodel of M, and
that || = X = &, because X is obtained from one element by the appli-
cation of constructions, which give a finite number of new elements only
couuntable many times, q.e. d.

8. Example of two models which are indiscernible but
for which player I has a winning strategy in the game H,.
Let A4 contain (besides : and 7) four predicates a(z), B(x), vz, ),
o(z, ¥, 2). Let us take as a model M, the set: of all infinite sequences with
values 0, 1, and all natural numbers (and the set of all finite subsets,
the sets of the subsets and &0 on of those two sets).

Let a(2) be interpreted as the relation “z is a sequence with values
0,17,

B(x) as “z is a natural number”,
y{%,y) a8 “s,y are natural numbers and x < ¥,

and d(z,y,#) as “2 13 0 or 1, y is & natural number, # is a gequence
and the yth term of sequence w is equal to 27,

Let us notice that we can define in this theory all natural numbers
(by means of ) and that each 0-1 sequence z = {@,} is characterized by
an infinite sequence of sentences 8(z, 0, ao), 8{z, 1, &), ...

Let us take as M, a countable arithmetical submodel (Theorem 4)
of M. Bince | W] = ,, there exists a sequence @ in M, which is not in M,.

Let player I point out this sequence in his first move and let player IT
point out the element y in M,. Tt ¥ i8 not a sequence but a number, then
stsfm, a(2) but stsfm,~a(y) and player I has won. Then let us assume
that ¥ is a sequence; since y 3 @, there is guch an n that y, = o, 1. e.

(#4x) stsfm, 8(z, n, 0) = stafm, ~&(z, n, 0) .
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Player I now chooses the sequence of integers 0,1, ..., in O, and IT
has to choose some elements a,, ..., an in MN,.
x>y } 1st move
0« a,
1=l o0d move
N <> dy
Case (a): if ay =0, a; = 1, ... then I wins by (s#=*);
Case (b): if some a; is not a natural number then I also wins because
stsfan, (1) and stsfm, ~8(a);
Case (¢): if a,..., 4, are natural numbers and non ¢; < a; for some
% < § then stsfwm,y(¢,§) and stsfm, ~y(ai, a;);
Case (d): if @, ..., an aTe natural numbers and a, < ... < g, and non (a),
then there exists such b, that b<<a, and b a; for i=1,..,n.
In cases (a), (b), (¢) the 3rd move of player I is immaterial.
In case (d) player I can choose the number b in M,.
1st move of I a2+ y
0 a,
2nd move of I
Ny

+ b 3rd move of I
and then after any move of II, player I wins. Thus we have shown that

player I has a winning strategy in Hy(M,, M,) though M, as an arithme-
tical submodel of I, is indiscernible from M, q.e. d.

THEOREM B. If player II has a winning strategy in Gn(W, M) after &
moves

D> Yy
then for every ¥ e Gn(d) with & free variables
stitn, (2, ..r, 26) = Stsfan, ¥ (9,0, U8) -

Proof. It iz enough to mnotice that for formulas in G (4) (in which
all quantifiers are restricted to %) player I, in the proof of Theorem 1,
points out only 1-term sequences. So, we can repeat this proof. (See also
Fraissé [3].)

TaeorEM 6. If player 11 has a winning strategy in Gu(Dy, M), then
for every closed formula ¥ e Gu(4)

staf, ¥ = stefgy, ¥ .

Proof. The above follows from Theorem 5 for % = 0.
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TeEoREM 7. If player X1 has for every n a winning strategy in the
game Gn(My, M), then WMy, M, are elementarily indiscernible.

Proof.. The above follows immediately from Theorem 6 (see
Fraissé [3]). The converse theorem is not true:

Exampre. Let 4 contain infinitely many predicates of one variable
0y, Gy, ... Let us take as MY, the set of natural numbers where stsfo, a;(m)
if and only if m > ¢, and as M, the set of ordinals less than or equal to w
with the same interpretation of ¢;. Player I wins in Gy(%, M) pointing
out o in M, though these two models are elementarily indiscernible.

Remark. One can easily show that existence of a winning method
for player IT in Hyp(M,, M,) does not follow from the existence of a cor-
responding method in Gu(M,, My). (It is enough to apply Theorem § to
Example 1.) Also, two models can be elementarily indigcernible but
discernible by means of finite sets. It is enough to take an ordering
relation of type o and an ordering relation of type o+ w* -+ w.

Let us now assume that 4 contains only a finite number of predicates.

THEOREM 8. For every MMy and every sequence of elements @y, ..., xy, e My
there exists such a formula @ e G(A) that for any M, and ¥y, ..., Yp ¢ M
player II has a winning method after k moves

in the game Gu(My, M) if and only if
stsfgmz@(yl,...,yk) .
Proof. Let us define a family of finite sequences 2y of formulas
in ®(4), where k=0, ...,n; 1 =0, ..., L.
(i) Let {2}, 1 =0, ..., l», be an arbitrary sequence of quantifier-free
formulas in ®(4) which satisties the following conditions.
(a) 2 contains variables uy, ..., u, only,

(b)) LnoV 2V V2, ~(2:n2y;) are tautologies of the predicate
caleulus (for 4 == §),

(¢) for any quantifier-free formula I'in G(A) which containg variables
Uy ey U ONly, and for i < I, either 2,;,D I or Q,; D ~I is a tautology-

Intuitively speaking, £, is a sequence of atomic formulas of =
variables in G(A). Such finite sequence exists by the finiteness of 4.

(ii) Let a sequence {Q2;.;;} be an arbitrary sequence of all for-
mulas

(*) AIA-A2/\-“/\A1;=
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where 4; denotes either (Hup)Qy or ~(Hug)y;. It is easy to see thab
condition (i) (b) holds for formulas Lo, ..., 2z,

Leva. A formula Qu; such that

stafom, Qe @y, ooy 28)

-

satisfies the conditions of Theorem T.
The proof of the lemma is given by induction with respect to #»—¥.
(1) for n—%k = 0, the lemma is true by the definition of winning
of player II and by the definition of sequence {{2]}.
(2) Let as assume that the lemma is true for some n—%k and let

stefun, n—1,5,(@1 5 oevy Tot) «
Let ug suppose that
(%) stafamy Qs—10(Y1s -+ » Yiema) -

If for example player X points out in the kth move an element a; in M,
then for some i
stsfan, Qe (15 +ov 5 Bx)

but by (x#), (%) stefo,(Ter)Quilyy..m ) Yr—1, uz) and (by the inductive as-
sumption) player II pointing out an arbitrary element y such that

StSfSﬂ!,-Qkil(ylv veey Yr-1y ?/) -
If conversely to (xx),
~ b8, 2 —1,5o(Y1 s oy Y1)

then there is an 4; such that
stsfmh(i[uk)!?k.-,(ml, veey Ly, '!tk) = NStngn’ (EIuk)Qk,h(yI, reey Yk—134 uk) .

For example, let stsfap, (H1r)2ui,(Yas <vy Y1, Ur); then plyaer I wins
pointing out in the kth move such an elementy y in IR, that

Stsﬁmagk,ﬁ(yla vy Y1y YY) -

The lemma is then frue for n—%k-+1, q.e. d.

THEOREM 9. If A 48 finite, then for any n there is & sequénce of closed
formulas @, , ..., @, such that player 11 has a winning method in G(IMy, M)
if and only if

stsfu, @;  if and only +f  stsfo,P; .

The proof follows by Theorem 3 and the lemma of Theorem 8.

TeEOREM 10. If A is finite, then player IL has a winning strategy
for each n in Gu(IMM,) if and only if models My and M, are elementarily
indiscernible.

Proof by Theorem 7 and 9.

Fundamenta Mathematicae, T. XLIX. 10
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4

In this section we will apply the results of the first section to the
arithmetic of ordinal numbers.

Let T, denote $(4) in the case where 4 contains one binary pred-
icate ».

. Let T, denote $(4) in the case where A contains one binary pred-
icate » and one ternary e,

Let T, denote H(A4) in the case where A contains one binary pred-
icate » and two ternary predicates o, u.

Let us denote by T, T,, T, the corresponding sets & (A).

We denote by M, (where a are ordinals) models for T; (§ = 1,2,3)
in which the set of individuals is the set of all ordinals z < @ and » stands
for the inequality (z <), o for addition (z4y = 2), and u for multi-
plication (z-y = #) of ordinals. Similarly by M, we denote the models
which have ag elements those z for a < z < b.

TreorEM 11. If player 1T has a winning strategy in the games
Hn-l(mtau mtbx); Hn—l(%umgg mﬁbg), ey Hn—l(gﬁakay SU?bkb) ’

where & < ... <ap <4, by < ... <by<b and My, Dy, are models for Ty,
then player IL has o winwing strategy in the game Hoy( My D), after the
first move:

a by

@y > by,

The proof is immediate. Player IT can point out elements according
to his strategies in the games Hy(Myg., Mop,) for “segments” of
M, and W, (). .

DEPINITION. We say that a = b(mode) (where ¢ is not cofinal with
any smaller number) if either ¢ =5 or a=cd+e, b=-cd +e¢ where
d,d 0.

TeEOREM 12. If a = b(mod w?) then in the game H, (Mo, D) (where
Ma, Dy are models for T,) player II has winning strategy.

Proof (by induction). (i) For m =1 the theorem is true because,
by the definition of =, either both models are identical or both are infinite.
Besides we can assume, without restriction of generality, that the sequence
of elements chogen by player I in the 1st move is ordered according to

magnitude. In the first case the strategy for player II is obvious. In the -

second cage he can point out in the other model any sequence ordered

(1) See also S, Feferman, Summaries of tables at Cornell University, 1956, pp.
201-209.

icm

Application of games to the completeness problem 139

according to magnitude which has the same number of elements as the
sequence pointed out by player I.

(ii) Let us assume that the theorem is true for some %. Now let
player I point out in his first move elements

Ory oy .oy O

in My, and let o < @y < ... < @. Let a= whtie+d and b = oftie’ +d.

LeymA. If player 11 has a winning strategy in the game Hp(Mq, M)
then he has a winning strategy in the game Hn(Maiq, Vpra).

The proof is obvious: see Theorem 11.

By this lemma we can consider only the case in whieh ¢, ¢’ % 0 and
d ==0. Let us consider the ordinal types (0, a,) = ¥, +d;, ..., (411, 07)
= afe;+di, (@, 0*+%) = wbeyy (where (z,y) denotes an ordinal type
of a set of those = for which # < 2 < y). Let us notice that there are such
by < ... < by << 0¥ D that

(0,8) = o*-sgney+ady, ..., (b1, b)) = ¥ -sgne - dy,
where
0 if z=0,
SN X =
% 1 it 2>0.
Let player II point out in his 1st move a sequence by, ..., ;.
@y, < by
[ T S
g < bl

By the inductive assumption player IT has a winning strategy in the
games Hy 1(Maae,s Mop,,,) and then by Theorem 11, he has a winning
strategy in Hu(M,, M) after the first move (x). But since there was no
restriction for the 1st move of I, player II has a winning strategy in
Huy(May M), q. €. d. .

TEEoREM 13. If M, and M, are models for T, and a = b(mod o)
then My and My are indiscernible by finite sets.

This follows by Theorems 2 and 12. ‘

THEOREM 14. Let M, and WM, be models for T, such that player 1L
has a winning method in Hn(My, M), let ¢ be the least number greater than
W% eqy e 0%y for @y, o, @ i WMy, Ay, e, e < o, and let d be the
corresponding number for My; let M, and My be models for T,; then player 1T
has o winming method in the game Hu(M,, Ma).

Proof. The method for player II is the following: if player I points
out in his kth move elements ay, ..., @in, In one model, then player I
considers Cantor’s representations of those numbers

i ay;
g = 0"+ 0B,
10*
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and considers the game H.(Mg, Mp) where Ma, Dy, are models for T,
assuming that in the kth move player I points out

Qa1y wres Dalyy eovy GRngly ooey a’knklnk .

In this game he has (by Theorem 12) a winning method. Let
bkn; eeey bkun ey blmkh (s b’mklnk

be & sequence pointed out by player IT in the game Hy,(M,, M) according
to this method. Now player II in H,(N., Ma) points out in this kth move
a gequence Dby, ..., bpn, Where by = wPMingg ...+ oPbemg,. It is easy
to see that this is the winning method for II, gq.e.d.

TaEoREM 15. If a=b(modw®), M, M.t are models for T, then
Moo and Mp are indiscernible by finite sets.

This follows by Theorem 12 and 13.

TaEoREM 16. If My, My are models for T,, player I1 has a winning
strategy in Huy(Ma, M), ¢, d being defined as in Theorem 13; M., Mz are
models for Ty, then player IL has o winning method in Ha(M,, Ma).

The proof is the same as in Theorem 13.

TeroREM 17. If @ =b(modw®), Mo, Me* are models for T, then
Myws and Mot are indiscernidble by fimite sets.

DEFINITION. An ordinal number a is definable in a model M for

the C; (or T}) it and only if there is a formula ¥ ¢ T; (e T;) with one free
variable such that

stsfmP(b) = b =ua.

An ordinal number is definable in T; (T;) if it is definable in the class of
all ordinals. Let us denote w® by a;, w*® by a5, @ by o A, Tarski con-
jectures that z is definable in 7T} if and only if v < a;, 1 =1,2,3.

It is not difficult to prove that if
() o<
then z is definable in 7;; we will therefore consider converse implications
only.
Let us denote by D(M, T;) (or D(M, Ty)) the set of numbers definable
in a model M for T (Tl)

Obviously '
(=2}  D(M, T) CD(M, Ty) .

Levwa, If O 4s an initial segment of M, 0 C D(M, T;) and 0 is
indiscernible from M, then 0 = D(M, Ty).

Proof. It is enough to consider the least mumber x which is in
D(P, T;) — 0 and as ¥ a formula which defines = in M.
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TarorEM 18. The following conditions are equivalent (for i =1, 2,2)

(a) « is definable in Ty

(b) z 4s definable in T

() # < a;.

Proof. M, and the class of all ordinals M are indiscernible by
means of finite sets, as models for T;, by Theorems 13, 15, 17; &(x < a;)
is an initial segment of MM, and by (+) (++) &z < ;) C D(M, T;) C D (M, Ty).

Then by lemma &(z < o) = D(M, Ti), ¢ e.d.
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