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On convex metric spaces I
by
A. Lelek and W, Nitka (Wroctaw)

§ 1. Introduction. In February 1959 Professor Borsuk presented
to us the following three problems (for an explanation of the notions
see §§ 3 and 4 of this paper):

1. Is it true that every n-dimensional continuum (connected compact
metric space) which is strongly convexr and without ramifications must be
topologically n-cell?

I1. Has every n-cell (n=2,3,..) with an arbitrary strongly convex
metric (topology preserving) at least n+ 1 terminal points?

III. Does there exist a compact metric space whose every point is
a ramification point or a frontier poing?

The purpose of this paper is to give a partial (for n = 2) positive
solution of problem I (see § 9), a general (for # = 2, 3, ...) negative so-
lution of problem II (see §14) and a positive solution of problem IIL
(see §12).

§ 2. Betweenness and linearity. We consider a space X with
a metric ¢ and write shortly that (X, g) is a metric space. Let p, q,r e X.
We say (compare [1], p. 317) that the point ¢ is between the points p and »
{writing pgr) provided that

e(p,7) = e(p, ) +elg,7)-

Evidently pgr is equivalent to rgp, and we have psr provided that
pgr and psg or gsr.

We say that the set 4 C X is linear if there exists an isometrical
transformation 4: 4—¢* of A into the set ' of all real numbers, i. e.
o(p, g) = |¢(p}—i(g)]| for every p,qge A.

Hence

2.1. The set {p, q,r} composed of three points is Unear if and only
if one of the points p, q,r is between two others.

Let us note that there exists a metric space ({p, ¢, 7, 5}, ¢) composed
of four points which iz not linear, but every proper subset of which is
linee;r. }):a'mely put: p(p,r) = 9(7'1.4) = Q(Qz 8) = o8, p)=1 and 9(1’: '),
= p(r, 8) = 2.
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However, it is easy to prove that

2.2. If o(p, )= e(p, O +elg, )+ olr, s), then the set {p, q,r, s} 4
linear.

Now let p, ¢, and s be arbitrary points of space X and p # ¢. We
consider the following three conditions each of which gives another king
of regularity of metric p:

(a) If prq and psq, then the set {p,q,r, s} is linear.

(B) If pgr and pgs, then the set {p,q,r,s} is linear.

(y) If pgr and spq, then the sei {p, q,r,s} is linear.

It is easy to see that condition (B) is equivalent to the following
condition.:

(') If rpg and spq, then the set {p, q,r,s} is linear.

Let us note that every other condition similar to those above is
trivially false, or txivially true, or equivalent to («) or (8) or (). There-
fore among the conditions of this kind only («), (8) and (vy) may be in-
teresting objects of study.

§ 3. Convexity. We use this notion in the well-known sense of
Menger: a metric space (X,p) is said to be conver if for every two
points p, re X there exists a point ¢ ¢ X such that p £ ¢ = » and pqr
(see [1], p. 41).

An are contained in X is said to be a segment if it is linear. A segment
with end-points p and ¢ is denoted by pg. It is known that

3.1 If (X, p) is a complete convex metric space, then each two distinct
points of it are joined by a segment (see [1], p. 41).

A metric space (X, g) is said to be strongly convex (see [2]), and then g
is called a strongly convex metric or SC-metric, if it is 1° complete, 2° convex,
and 3° condition («) holds. It i not difficult to prove that 3.1 and («)
imply that if (X, ) is a strongly convex metric space, then each two
distinet points p, ¢ of X are joined by exactly one segment pg. Therefore
a strongly convex metric space is called by other authors convex with
unique segmenis (see [1], p. 49-50). Nearly all spaces considered in this
paper will be strongly convex, whence we shall use the notion of segment
Pq as uniquely determined by its end-points p and q.

A metric space (X, p) is said to be without ramifications, and then p
is called a metric without ramifications or WR-metric, if it is 1° complete,
2° convex, and 3° condition (B) bolds. It is easy to see that if (X, o)
is & strongly convex metric space without ramifieations and pg is a segment
in X, then pg has unique prolongations “to the right” (and, seeing (§'),
also “to the left”), i.e. if pCpr and pGCHs, then prCps or psCor.
Therefore a strongly convex metrie space without ramifications may
also be called a space in which the prolongation is unigue (see [3], p. 36).
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A metrie space (X, o) is said to be without edges, and then g is called
a meric without edges or WE-melric, if it is 1° complete, 2° convex, and
3° condition (y) holds.

A metric which is both SC-metric and WR-metric, or both SC-metric
and WE-metric, or at the same time SC-metric and WR-metric and
‘WE-metrie, etc., will be called shortly SC-WR-metric or 80-WE-metric
or BC-WR-WE-metrie, ete., respectively.

We shall use the following obvious propositions:

3.2. If (X, o) is a strongly convex metric space, then par is equivalent
to q € pr.

3.3. If (X, o) is o strongly convex metric space without ramifications,
pg and pr are segments in X and pg ~pr— (p) £ 0, then pg C o7 or ¥ C 74,
i. e. the sum Pgw pr is & segment.

3.4. If (X, o) is a compact strongly conves metric space, Py, @z € X, p; 5~ ¢4
for i =0,1,.., limp; = p, and limg; = q,, then Lim Frg; = Pogo (¥).

i—+o00 1300 {—00

§ 4. Special kinds of points. A point p of a metric space (X , 0)
is said to be a passing point if there exist two points @, b e X such that
a # p b and apb. The set of all passing points of (X, g) is denoted by
P(X, o). We put T(X, o) = X—P(X, ¢) and call each point belonging
to T(X, o) a terminal point (compare [1], p. 53).

Therefore '

4.1, If ¢ is a terminal point and g <pr, then q=p or q=1r.

A segment pgC X is called mazimal it PgC7sC X implies 7g =78
for every segment 7. The end-point of & maximal segment is called a fron-

tier point and the set of all frontier points of (X, g) is denoted by F (X s 0)
Obviously

4.2. Every terminal point of a compact convesr metric space (X, g) is
Jrontier, i. 6. T(X, 0) CF(X, o).

However, it is evident that the theorem inverse to 4.2 is not true.

A point ¢ of a strongly convex metric space (X, o) is said to be
a ramification poimt if there exist three points p,r, 7 ¢ X such that
1" p#g+#7 for i=1,2 and 2° pF ~ o5 = pg. The set of all ram-
ifieation points of (X, p) is denoted by R(X, o).

4.3. ‘R(X, o) CP(X, o).

Proof. For ge¢R(X,q) condition 2° implies gezr. Thus pgr

" from 3.2, Hence q <P (X, p) because p =% g = r, from 1°

(*) For the definitions of topological Limits: Li .A;,‘Ls A¢ and iLimA, see [4],
$+00 —+00 - 00
Pp. 241-245.
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§ 5. Cones and g-cones. Let &% denote the set of real non-nega-
tive numbers, i. e, €% = {i: te &, 1> 0} The space obtained from the
. s, L Co L . v -
cartesian product X %L by identifying the set A% (0) to one point
il be called a cone over X and denoted by Cone.(X).‘ The point corres-
ponding to set X x(0) in the identification space will be called a cone
vertex. )

If (X, o) is a strongly convex metrie space, A C X and v ¢ X, then
the set _

(1) Co(4d, v) =aL€_iva

will be called a g-cone over A with vertex v. We obviously have

51. ACCG4,v). . , ’

The set B, (A4, v) of points @ e C,(4, v) such that if v and ' e 4,
then # = #’, will be called a base of ¢-cone (4, v). Evidently

5.2. If A # (v), then vé By(4, o).

5.3. By(d,v)CA4. ) '

Now we establish (to the end of this pavagraph) that (X, ) is
4 strongly convex compact metrie space, 4 is a closed subset of X
and A = (v). It is easy to verify that

5.4, Ofd,v) = COfBf{4,v),7]

Formula 5.4 means that every g-cone is a g-cone over thg base.of
itself. Tt is also easy to prove that the set By(4,v) is irreducible with
respect to equality 5.4, i.e. if Z C By(4,v) and Z -;é BQ(.A,fu), then
Co( 4, v) # Co(Z, v). For such sets Z we have only the inclusion C,(Z, v)
C G4, v) by virtue of (1) and 3.3. :

55. X = 0,(&X,).

Proof depends on 5.1. ‘ )

5.6. If (X, p) is a meiric space, o is SC-WR-metric, a, byvedX, ab
and the set {a, b, v} is not linear, then there ewist points ay, by € ab such
that a, # by, vaa,, vbby, ag,b, and

Be(ﬁ: v) = ab; .

Proof. Let a, be the farthest point from a, belonging Fo segment
@b and such that vae,. It exists because ab is compact. S}Iﬂﬂ&ﬂj t-here
exists @ point b,  ab, farthest from b and such that vbb,. It i3 not defu_ault
to show, applying 3.3, that the points a, and b, have all the desired
properties. .

The set R,(4,v) of points ¢ X such that there exists ¥ EB?(Ai, )
satisfying vy will be called a rest of g-cone Cy{4, v). It is not difficult
to see that ve¢ Ry(4,v) and

5.7, ByAd,v) = Cld,v) n B4, ).
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Now let § be a sphere with centre p ¢ X and radins &> 0, i e.
S={m zeX, 0(p,a) =¢}

8.8. B,(8,p)=S~.

Proof. From 5.3 we have B,(S8,p)C 8. Let 2 ¢S, prz’ and 2’ 8.
It follows that o(p,x) = e(p, &) =¢ and g(p, ') = o(p,®) +olz, o),
whence ¢(z,2’) = 0, that is 2 = 2".

59, (& wveX,e<<o(p, )} C RIS, p).

Proof. Let ¢ << o(p, #). By virtue of the convexity of X a point
y ¢ X exists such that pyx and ¢(p, ) = . Thus y e 8. We infer from 5.8
that ¥ € By(8, p). Hence z e By(S, p).

Let @ be a massive sphere with centre » and radius ¢ i e.
Q={r:zeX,o(p,s) < e}

510, If @ ~F(X, ) =0, then @ = C(8, p).

Proof. It follows from (1) that C(8,p)C Q. Let x¢@, z #p and
let ag be a maximal segment containing points p, # such that pzg. Since
qeF(X, ), we have ¢¢ @ by hypothesis. That is & < p(p, ¢). Therefore
there exists a point repg such that ¢(p,r) =¢, i. e. 7 ¢ 8. Since o(p,2)< ¢,
we have ¢ ¢ pr and pr C 0,(8, p) by virtue of (1). This gives x ¢ G,(§, p).
Hence also the inclusion @ C 08, p) holds.

§ 6. Projections and natural homeomeorphisms. Suppose
that (X, ¢) is 2 strongly convex metric space without ramifications, If
ze U(4,7) and « # v, then according to 5.4 there exists a point y e B,(4, o)
such that vzy. If there existed another such point ¥’ e B,(4,v) that vay’
and y # ', the set {v, #, ¥, ¥’} would be linear by virtue of (B) and we
should have wyy’ or wy’y, contrary to the definition of base B,{A4,w),
aceording to 5.3. Therefore the point y is determined by z and putting
Pe(®) =y we obtain a mapping p.: C,(4,v)—(2)—>B,(4, v).

Now if # e R(4,v), we infer from the definition of a rest (see § 5)
that there exists a point ¥ € B,(4, v) such that vyz. If there existed another
such point g’ e By(4, v) that vy'w and y 5 ¥’, the set {v,y,¥', 2} would
be linear by virtue of («) and we should have vyy’ or vy’y, which is impos-
sible for the same reason as previously. Therefore the point y is determined
by @ and putting p.(@) =y we obtain a mapping p.: Ry(d, v)—=B, 4, v).

It is easy to see from 5.7 and from the definition of the base of g-cone
that the mappings p. and p, are identities on B,(4,»). They will be
called projections on the base of p-cone.

6.1. If (X, ¢) is a compact space, ¢ is SC-WR-metric, A C X is closed,
A 3 (v)-and BfA, v) is closed, then the projections p, and p, are continuous
mappings (and therefore they are refractions).

Proof. Let limu; =, and x;¢ C(4,v)—(v), where i=0,1,..

—rcQ
Since the set BE(,:i, v) i8 compact and p.(x;) e B{d,v) for i=0,1, ...,
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there exists in each infinite sequence {i;} of natural numbers a sub-
sequence {i;,} such that yzllcimpc(mijk) for any yeBy4,v). We infer from

the definition of projection p, that vw:, pe(w:, ), Whence vwy by virtue

of 3.2 and 3.4. But we also have vzgp.(r,) and p.(z) e B(4, v). Since

v # m,, (3) implies that the set {v, @y, ¥, Pel)} is linear. Thus oyp(a,)

or op.(x,)y. It follows from the definition of base of g-cone (see § 5) and

from 5.3 that y = pe(#,). Therefore Hm p.(2;) = pc(®,) and p. is continuous,
700

The proof that p, is continuous is quite similar.

Putting 4
{2) hel() = (pc(x)a e(v, w)) for Ze Oe( y 03— (),
BfAd,v)x(0) for =z=v,
and
{3) hy(z) = (pr(m)1 elv, d})) for  zeRy(4,0),

we obtain the mappings he: Cu(4, v)—Cone[B, (4, v)] and k. R4, )
->By(4,v) X L

6.2. If (X, o) is a compact space, g 18 SC-WR-metric, 4 C X is closed,
A = (v) and By(4,v) is closed, then the mappings h. and I, are homeomor-
phisms (called natural homeomorphisms).

Proof. We shall show that %, is a homeomorphism. The proof for 2,
is quite similar.

he is 1-1 mapping. Indeed, let o, @ ¢ Cy(A4, ) and he(z,) = he(zs).
From (2) we have either &)= B4, v)x(0), and then 2, = 2, =19,
or po(m) = po(@) = ¥ and po(v, 4;) = o(v, z,). Consider the last case. We
have vz, o2,y and v 7% y by virtue of 5.2. It follows from («) that the
set {v, 2y, &, ¥} is lnear. This implies vz, or vzw, whenece z; = @,
because p(v, #,) = 0(v, ).

he is continuous. Indeed, suppose lLma; =, and @« Cf4,0)

100

for i=0,1,.. If @ =0, then limp(v,®) =0, whence Iim h(z;)
o 100

= B,{A,v)x(0) by virtue of (2) and the compactness of B,(4, v). There-
fore Hmbh.(z;) = khe(zy). Now if =, 7% v, we may assume that z; £ v for
>0

*
1==0,1,... It follows from 6.1 that limp.(z;) = pe(®,). Evidently lima; = @,
{00 i—00
implies lim o{v, a;) = o(v, 2,). Therefore lim hy(a;) = holi,) by virtue of (2).
i-»00 o0

6.3. If (X, o) @8 a compact space, ¢ is SC-WR-metrie, 4 C X s closed,
A = (v) and Byd4,v) is closed, then the projections p. and p, are open
mappings (3).

() We say that the mapping is open if it maps open sets onto open sets (com-
pare [5], p. 48).
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Proof. Let p: By(d,2)x E'—+By(4,v) be the projection p(z,t) = »
for @ e By(d,v) and te &', and let ki = h|[C(A, v)—(v)]. Tt is evident
from (2) and (3) that p. = ph; and p,.= ph,. However, b, and h, ave
homeomorphisms by virtue of 6.2 and the projection p is obviously an
open mapping. Hen¢e p, and p, are open mappings.

§ 7. Properties of disk. By an #-cell we understand a homeo-
morphical image of the compaet Buclidean n-dimensional massive sphere,
n=1,2,.. By a disk D we understand a 2-cell, i. e. & homeomorphical
image of the set {(z,y): #*+y® <1}, where x and y are real numbers.
If & is that homeomorphism, the set h({(z, y): a*+%* < 1}) will be called
the interior of disk D and denoted by int(D). The set bd (D) = D —int (D)
will be called a boundary of disk D.

7.1, If X is a meiric space of dimension <1 and D C X x & is a disk,
then {{(@)x &) ~ DI CbA(D) for every we X (3).

Proof. Let gy = (i, %) eint(D), #y¢ X, £, e €* and let p: X x =X
be & projection onto X, i. e. p(w, ) = z for  « X and ¢t ¢ &'. Put pg = p|D.
Hence @, = pa(go)-

In an arbitrary neighbourhood of the point g, there exists a point ¢
belonging to D and such that palg) # pa(g,). If this is not so, then some
2-dimensional neighbourhood U of ¢, in D is transformed by pg into
a single point #,, thus we have 2 = dimU = dimpy'(z,) < dimp ™ (z)
= dim[(r) X €'], which is not possible. So let @1y oy .- be a sequence of
points of I such that limg; = g, and pa(g:) # palg,) for i =1,2,.. Put

1rO0

2; = pal) for ¢ =1, 2, .. Therefore x; + o, for i =1,2,..., and since
dim X <1, there exists for every 4 =1, 2, .. a neighbourhood V; of z,
in X such that

(4) e X—V;, dimFr(V;) <0 for i=1,2,..
and '
(3) {(2) = Lim 7, .

=00

It follows (see [4], p. 130) that Fr(V;) separates X between the points
Zo and #;, and therefore pz'[Fr(V;)] separates D between the points g,
and ¢; (connectedness being an invariant of continnous transformations).
Thus there exists an irreducible separator C;C p7'[Fr(V.)] of disk D
between g, and g¢; (see [5], p. 176). Whence C; is a continuum (see [5],
D. 333 and 335). But dimps(C;) < dimpapg’[Fr(Vy)] = AimFr(V;) < 0

(*) For the definition of the order ords4 of the set 4 at the point a see [5],
Pp- 200-201. We have A™ = {a: ordsd < n}. We shall often apply that if 4 c B,
ordp 4 < ordyB. .
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by virtue of (4). However, pg(C;) is a continuum, and thus it is a one-point
set. We write (%;) = pa(C;), where ¢ =1,2, ..,
Therefore we have ;e pypg [Fr(Vi)l=Fr(Vy)CV; for ¢=1,2,..,
whence, lim%; =z, by (5). But we have also O;C p3™(E) C p~N7)
2> 0

= (%) x €', which implies that 0; is an arc of the form (%):
O = (&) x [a4, bi]

where a; < b; and a;,b;e¢* for 1=1,2,... The points (T, ;) and (F,b;)
are end-points of arc C;. Since C; is an irreducible separator of disk D,
(Fiy &) e bd (D) and (%, b)) ebd(D) for i=1,2,..

The condition ¢, eint(D) implies that .0 < g(qo, bd(D)) (%), Thus
a number &> 0 exists such that

ol(#a; B0}, (Tiy ai)] > & < @m0, T}y (%, B4)]

for ¢ =1, 2, ... Also, sinee Hm7T; = 2,, & number % > 0 and an index %

=00
exist such that [a;—t,| > 5 < |b;—1,| for i > &
But limg; = ¢, and O; separates D between ¢; and ¢,. Whence, by
=00

virtue of the local connectedness of D, we obtain ng(q.,, ;) = 0. Thus
numbers ¢; exist such that a; <e¢; <<b; and 0= hmg[(wo, ta), (Fe, €)1
=£}£|0¢—to{. It follows that an index !>k exists such that

WL hy—<tg<ty+n<b for i>1.

Thus we have [f—2,f,+9]C Li[a;, b] (*), and therefore (see [4],
Kamatd

p. 242):
(o) X {to— 1, tg+] C (Hm%) X Li [a:, by
= (L (1)) x ( Li (@, b]) = i (&) x [as; b])
00 =00 {—>00
=LiC;CD.
=00
Hence gy = (o, o) € (%) X [fo— 7, to + 7] C () X 61) ~ D, that is
1 < ordg,((a) X €') ~ D. Thus 7.1 is proved.
7.2. If (X, 0) i¢ a compact space, o is SC-WR-metric, dimX < 2,
DCX is adisk, aeX, a*deD and

(8) ordgad ~ D <1
then d ebd (D).

for every d'eD,

(*) [a, ] ={t: te, a <t <b).
() e(4,B) = inf ola,d), elp,A)=g({p}, 4).
a€d, beB
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Proof. Suppose on the contrary that deint(D). Let D'CD be
a disk such that
(7 d eint(D’)

and 8(D') < gla, d)/2 (°). Hence, we have for every d'eD’
o(a, @) = ola, —o(d, &) = o(a, d)—8(D") > o(a, )12,

which gives p(a, d)/2 < o(a, D). Put £ = g(a, )/3 and let 8§ Dbe a sphere
with centre ¢ and radius e.
Then B,(S,a)= 8 by 5.8, and D'C{r: ze X, e<o(a,z)}CR(S,a)
by 35.9. We have also 0 < (8, D). Put 5 = o(8, D). Therefore if A,
RS, a)—~8x 4 C8x € is a natural homeomorphism, then for every
z ¢ D’ the segment xp,{x) is transformed by h,, as follows from (3), onto
the segment

Pel2) X [.9, &4 g(p,-(m), .’D)]
contained in § x ¢' and confaining the segment p.(2) x [e, £-+7]. Hence
(D'} % L&, e--1] C BIE(S, a)].
TWe have dimpn{D’) <1, because if it iz not true,

dim X > dim R,(S, a) = dimA,[R(S, a)]
= dim {p(D’) X [¢, e+ 7]} = dimp{(D)+1> 2,

contrary to the hypothesis. Thus we can apply 7.1 for X = p,.(D’) and
D = h{D'). We obtain in particular the following inclusion:

®) [(pd) x € ~ I D] C bATRADY]
We shall show that
) C Rl € [{prAd) % €Y A (DD

Suppose the contrary. Therefore there exists a segment p.(d) X[t, t]
C h{D’) which contains h{d) as an interior point of itself. Putting
to = o(a, d) we have t < t,<t. It follows that for every ¢’ such that
t <" <t apoint ¢(f") e D’ exists such that klg(t”)] = (pd),t"). Hence
by (3) we have

(10) plg(t")] = p(@) and ola, (")) =t" for IS KT,

We infer from the definition of projection p, (see § 6) that
p,(q(t")) eag(t”) for t<{1”<t. Whence, by (10), it fqllows that

(%) 8(4) = sup e(p, ¢) is the diameter of the set A.
PaE4


Artur


192 A, Lelek and W. Nitka
0 = p(d) € ag(t”) ~n aq({)— (). Thus ag(t) C ag(t’) by virtue of 3.3 and
(10), for ¢ <t <, It follows that

(1) gt eq®)q(t)Cag(t) A D" and  q(t) # qlty) # q(t') .

Bince p.(d) e ag(l) N ad—(a) by virtue of (10), we infer from 3.3
that aq(f) Cad or adCaq(t). But ofa, q(t,)) =%, = o(a, d) by virtue
of (10). Therefore d = q(f,). It follows from (11) that ordgaq(t) ~ D
= ordgaq(t’) n D’ = ordguyaq(t’) ~ D' > 1, contrary to (6), because
q{t’y e D' C D. Thus (9) is proved.

The formulae (8) and (9) give h(d) e bd[h{D’)], contrary to (7) and
to the fact that %, is & homeomorphism.

7.3.. If (X, 0) is o compact space, _g is BC-WR-meirie, dimX < 2,
DCX is a dish, acX, a:deD and ad ~ D = (d), then debd(D).

'Proof. By 7.2 it is enough to prove (6). Let @’ « D. If d ¢ ad’, (6) is
obvious. If dead, then ad’ = ad o dd’, whence ad’ ~ D = (ad ~ D)
v (dd" ~ D) = (d) v (A&’ ~ D). Therefore ordgad ~ D < ordsdd = 1.

14. If (X, ) is a compact space, o is SC-WR-metric, dim X < 2 and
DC X is a disk, then

DAF(X,e)Chd(D).

Pﬂ)(.)f. Let deD A F(X,p). Therefore a point ae X exists such
that ad is & maximal segment. Thus if @ eD and d<ad, then d = d'.
.Thls gives ordgad’ ~ D = ordgad ~ D < ordzad = 1, that is (6) holds and
it follows from 7.2 that d e bd (D).

’1'.5.' If (:X, e) i a compact space, g is SC-WR-metric, dim X < 2,
DCX is a disk and G C D, then o point v ewists such that

rebd(D) and qeprCD.

__ Proof. By the compactness of (X, ¢) there exists a maximal segment
ab containing the points p and ¢ such that pgb. Let r be a point of segment
pb nearest to b and such that pr C D. Evidently pg C pr, i.e. g e pr. It
remains to prove that r e hd(D). Suppose on the contrary

(12) 7 eint (D).

Since b ¢ F(X, p), 7.4 and (12) give r % b. We shall show that {6)
holds for a = b and d =r. Indeed, if @’ ¢ D and r¢od’, We have ord,bd’ = 0.
If <D and r<bd, we have rebp ~ b& —(b), therefore from 3.3 Wwe
obtain bp C bd’ or bil’ C bp. It follows from the definition of point # that

tordd);i; ~ D < ord,pb ~ D < 1. Hence by 7.2 we have r ¢ bd (D), contrary
0 .
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7.6. If (X, ) is a compact space, o is SC-WR-melric, dimX < 2,

4

DCX is a disk and p € int(D), then for every ¢ such that
0 < &< glp, bd(D)]

the sphere S = {w: ze X, o(p, x) = &} is a sumple closed curve conlained
in int(D), and also the massive sphere Q = {w: v e X, o(p, x) <&} is
contained tn int(D).

Proof. It is evident that @ ~ bd(D) = 0. If there existed a point
2 @ such that z ¢ D, then, taking in the segment pa the point d nearest
to zand such that d e D, we should have d ¢int(D), 7 d and zd ~ D= (d),
contrary to 7.3. Hence ¢ C D, and thus

(13) SCQCinb(D).

It remains to show that S is a simple closed curve. It is obvious
that S separates the disk D between the points p and an arbitrary point
z e bd (D). But 8 is also an irreducible separator of D between these points.
Indeed, if ¢ ¢ 8, then pg C D according to (13); hence, taking the segment
pr from 7.5 such that rebd(D) and geprC D, we obtain the continuum
C = prubd(D) such that ¢~ 8 = (g), by virtue of (13) and 5.8, and
p, # € C. This means that no proper subset of § is a separator of D be-
tween the points p and 2.

Now we shall prove that  is locally conneeted. Let g ¢ § and (see § 6)

(14) Pe: Co(8, p)—(p)—>8
be a projection of p-cone onto the base B,(S, ») = §, according to 5.8. Let
(15) 7' e C(8,p)—8~(p) and pg)=2¢.

It follows from (18) and 7.4 that @ ~ F(X, o) Cint (D) ~ F(X, g) = 0.
Hence we have by 5.10

(16) Q@ = Cy(8,p).

Therefore (15) gives ¢ € @—S—(p). It is a consequence of the con-
vexity of (X, o) that X is a connected and locally connected space (every
massive sphere being connected); thus we can find a closed neighbour-
hood U of ¢’ such that U C Q—8—(p) and U is a locally connected con-
tinuum, But B,(8, p) is closed, according to 3.8. It follows from 6.3 that
Pc 18 an open mapping. Therefore we have po(U)C 8, according to (14)
and (16), and the locally connected continuum p.(U) is a closed neighbour-
hood of p,(g’) in §; thus it is one of ¢ by virtue of (15). This means that §
is locally connected.

As a locally connected irreducible separator of disk D containing it
in the interior by virtue of (18), § is a simple closed curve (see [5], p. 403)
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§ 8. The base B,(X,v). It is not difficult to verify that

8.1. If (X, o) is a compact space, then ByX,v) CF(X, o) for every
pveX.
The aim of this paragraph is the following:

82. If (X,0) i a compact space, g 18 SC-WR-meiric, dim X <2
and v e X, then the set By(X,v) v (v) is closed.

Proof. Supposing the contrary, we have a sequence of points
Doy P1, --- SUCH that

(17) pieB(X,v) for i=1,2,..,
{18) gg.}pi =P

and po ¢ B(X, v) v (v); hence a point s exists such that
(19) _8eB,(X,v)

and

{20) VP8 and v FE Py FES.

Therefore v ¢ 5pp = Limsp;, by 3.4, (18) and (20). It follows that for

sufficiently great natural numbers ¢ we have v ¢ sp;. We may assume
that it is true for all i. Similarly s¢vp; and p;¢vs by virtue of (17) and
(19), because according to (18) and (20) the condition that p;#s for
i=1,2,.. may also be added. Therefore we have, by virtue of 2.1,

{21) {s, pi, v} is not linear for ¢ =1, 2, ...

Hence, putting a =s and b=p,; in 5.6, we infer that there exist
points a,, b, € 3p; such that B (Ep;, v) = ab,, vse, and vpd,. It follows
from the last two betweenunesses and from (17) and (19) that e, =2
and b, = p;. Therefore
(22) Bspi,v) =8p; for i=1,2,..

Hence, applying 6.2, we infer that g-cones C,(sp:, v) are disks for
i=1,2,.. We write
(23) D= C,GEp,v) for i=1,2,..,

If we had 2pon vp: 5 0, then choosing y e 5, ~ 7p; we should get
y # v by virtue of (20), and thus ¥ € 95 ~ vp;— (v). Hence, applying 3.3,
we sh9ul_d obtain vsp, or vp,8, contrary to (21). Therefore §po vp; = 0.

Similarly 9P, ~3p; = 0. But since sp; = Lim3p; and vp, = Limwp;

. >0 00
by virtue of 3.4 and (18), a natural number j > 1 exists such that

(24) ;TP = 0 = TPy~ Py .
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‘We shall prove that
(25) 7~ bd(Dy) = 5P~ bA(Dy) = (o).

Indeed, we infer from (23) that bd(D,) = vp;: v sp: w Ts. Thus
5p; ~ ba(D,) = (57; ~ sp1) v (8D; ~ ¥8), by (24). Hence if we had
5p; A bd(Dy)—(8) # 0, then we should get 1° sp;n~spr—(s) =0 or 20
595~ 78— (s)# 0. For 1° 3.3 would give p;e5p; or p, e3p;, which con-
tradicts (24). For 2% 3.3 would give p;ews or v esp;, which eontradicts
{21). Therefore §p;~bd(D,) = (s). The proof that sp;~bd(D;) = (s) 13
quite similar.

Now we shall prove that

(26) D, ~D; =T5.

Indeed, (23) implies that % C D, ~ D;. To show the inverse inclusion,
let us suppose on the contrary that Dy ~ D;—78 = 0. Then by (22) and (23)
points ¢ and 4 exist such that

{27) cespr, despy, c#s#d, Tenrd—(v)=0.

Hence and from 3.3 we have (a) ved or (b) wde. It follows from (25)
that 8p1 ~ 5p; = (8), and thus ¢ % d by (27).

Casge (a). We have ce vd. Therefore if d = p;, (27) would imply
€ € Tpj ~ 8Py, contrary to (24). Thus d # p;. But the conditions s # & # p;,

- ¢+ d and ¢ evd imply by virtue of (22) and (23) that ¢ e int(D;). The

segment 3p, contains the point ¢ lying in int (D). Therefore if the point p,
did not Lie in D;, we should obtain from (25) a segment pi¢’ C p:6 such
that ¢ e int(D;) and pie’ ~ D; = (¢'), contrary to 7.3. Thus p, must belong
to D;. Hence p, eint(D;) by (23). But p, e D;j ~ B(X, %) C Dy~ F(X, 0)
by (17) and 8.1. This contradicts 7.4.

Case (b). We have dewe. Therefore if ¢ = p,, (27) would imply
4 € 5p; ~ 3py, contrary to (24). Thus ¢ # p,. But the conditions s # ¢ #= P4,
d+ ¢ and d eBe imply by virtue of (22) and (23) that d eint (D). It follows,
as in the case (a), that p; eint(Dy) and p; e Dy ~F(X, g), which contra-
dicts 7.4.

Thus (26) is proved. Consequently D =D, D; is a disk and
P, eint (D) by virtue of (20) and (26). However, Lim pop; = (p,) according
to (18) and 3.4. Hence there exists a natural number m such that
Pobm~ DCint(D). It we had pmé D, then choosing on the segroent Popm
2 point ¢ nearest to p, and such that g ¢ D we should have g eint (D),
G % P 804 Pmg ~ D = (g), contrary to 7.3. Hence P €Dy 1. €. Py eint (D).
But ppeD A B(X,v)CD~F(X, ) by (17) and 8.1. This contradicts 7.4.
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§ 9. Characterization of the disk. The following theorem ig
a partial solution, for n = 2, of problem I (see § 1):

TaworEM. If (X, ) 48 a compact strongly convex meiric space without
ramifications and dimX = 2, then X is a disk.

Proof. Since dimX = 2, there exist points a,d,v ¢ X such that
{@,b,v} is not linear. It follows from 5.6 and 6.2 that p-cone D = Oy(ad,v)
is a disk. Let p eint(D) and 0 < &< o[p, bd(D)]. It follows from 7.6
that the sphere § with centre p and radius ¢ is a simple closed curve and.
the same massive sphere @ is contained in int(D). From 7.4 and 8.1 we
obtain @ ~ B(X, p)C @ ~F(ZX, ¢) = 0, whence

BX,p)C{m: e X,e<o(p, )} C RS, p),

according to 5.9. Hence p is not a limit point of the set By(X, p). It follows.
from 8.2 that By(X,p)w (p) is a closed set, and thus B,(X,p) is such,
i.e. it is a compact sef. Let

P Re(sa p)—=By(8, p)

be the projection on the base. From 5.8 we have B,(S, p) = 8. Thus the:
base By(8,p) is a closed set and, consequently, p, is a continuous mapping,
according to 6.1. Therefore, putting h = p,[B,(X, p), we obtain a con-
tinnous mapping

h: By(X, p)—~S.

‘We shall prove that » is a homeomorphism onto 8. By virtue of the
compactness of B,(X,p) it is enough to show that h is a 1-1 mapping
onto §.

Let oy, @ e B(X, p). If Rh{®) = h(x;) =y €8, then from the defi-
nition of h (compare § 6, the definition of p,) we obtain pyz, and pym,.
Thus ¥ epz; ~p2a—(p), and pzCpzs or pz:Cpa; by virtue of 3.3.
Therefore @, = »,, because these points belong to the base B,(X, p).
Hence kb is a 1-1 mapping.

Let y ¢ 8. Since X is compact, there exists a point z ¢ X such that

pyx and that pzrz’ implies z = 2’ for every 2’ ¢ X. Therefore x e B,(X, p)
and k(z) = p(®) =y, according to the definition of Pr (see § 6). Hence b
is & mapping onto S.

Thus, § being a simple closed curve, B,(X, p) is the same. It follows.

from 5.5 that X = O (X, p) and from 6.2—that

kot Co( X, p)—Cone[By(X, p)]

i3 a homeomorphism. But, since B(X,p) is a simple closed curve,
00ne[B,,(X yp)] s topologlca.lly a plane (compare the definition of cone:
in §5). It is easy to see, according to (2), that hJ[C(X, p)] = h(X)
is a subset of Cone[B,(X, p)] bounded by h[B/(X, p)], i. e. by a simple
closed curve. This means that ho(X) is .a disk. Thus also X is a disk.
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§ 10. Finite sums of metric spaces. Let (X, g,), ..., (Xy, gn)
be compact spaces such that if p, geX;n X; then ofp,q) = oi(p, q)
for 4, j=1,..,m Let p, ge X, u.. X, be arbitrary points. We say
that the finite sequence (&, 8y, ..., @m) of points of X, u...w X, is a pas-
sage from p to q1f ay =P, am =g and both a;—; and «; belong to the same
space Xy for 1 =1, m.

We put

(28) 3(“0) Byy oy ) = E Qi(i)(ai-U )
i=1

and define the function p, as follows:

1° os(p, g) = the minimum of the function s in the set of all passages
from p to ¢, provided that there exists & passage from p to ¢,

2° 05(p, @) = 0y(Xy) + ... +0a(Xp), if there exists no a passage from p
to ¢.

This definition is correct, because in the case 1° the minimum of
the function s exists, the spaces X, .., X, being compact. In 2° the
symbol 6; denotes the diameter of the space (X g;) for i=1,..,n

It is not difficunlt to verify that

10.1. The function gs 18 a metric of the sum X, v ..vu X, 1. e
(X; v o w Xy, 05) 15 a metric space.

10.2. Let gy, ..., on be SC-metrics and for every two points p and q of
the sum X, v ... w X, let there exist a passage (ay, ..., Gy) from p to q such
that the function s considered in the set of all passages from p to g has its
minimum only at (@g, ..., &m). Then gg is SC-metric.

Let us note that the metric g, can be incompatible with some of the
metrics g;, 1. e. gs 18 not an extension of p;.

§ 11. The SC-metric o,. Let (X, p) be a metric space such that
(X)) <1. Let p, and p, be arbitrary points of the cartesian product
XxT, where 9 = {f: 0 <t <1}, 1. e. py = (21, 8), Po = (Lo, fa)y Ty, Tpe X
and t,4 9. We put

(29) 0s(P15 Do) = [1+min(t;, t)] e (@, 2) + Itl—'m .

We shall prove that

11.1. The function o, i3 & metric of X X I, i. e. (XX T, g,) i a metric
space.

Proof. By (29) it is sufficient to prove the triangle inequality. So,
putting p = (2, t), we must show that

01, Do) < 0(P1, D) + 0D P2) -
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We shall consider two cases:
Case 1: t < min(k, ). Then we have t= min (f,, 1) = min(t, t,)-
The hypothesis §(X) <1 implies o{(#,, #) < 2. Applying the formula

min (fy, ) = (t1+t2—lt1“‘tzl)/2 ’
which is always trne, we obtain from (29)

o(p1, o) = (1 1)o@y, @) -+ [omin (t, ty) —t]o(@yy @) + [t —te]
< (L-+1) gy, @) + 2100 (b, t)— 2+ [t — 1y
= (1+t)eo(@:, By) b+t — 2
< (1 +1)[ol(@, 2) + ol @)+ (—1) + (la—1)
= op1, P)+ oD, P2) -

Remark 1. In Case 1 the point p is not between the points p, and .
(compare § 2).

Cage 2: min{f,t,) <t Then we have min (%, ;) < min(d,?) and
minfi, ) < min(t, &), Applying (29) we obtain

0 D1y Do) '
< [14+-min(t, t)][e{w, 2) +ol(z, o))+t — | -+ [t— 1]
= [1-+ min(t;, t)] e (@, #) + |t —t{+[1+min(h, b)]e(@, %) 4 [t—1,|
< o pys )+ 0Dy Do) -

Remark 2. The first of the above inequalities changes to < provided
that o(z,, %) < o(®, #)+ (@, z) oOr [ty— ] < [ty—8| +{t—2,l. Thus in
Case 2 the point p is not between the points p; and p, provided that o is
not between @, and z, or ¢ i3 not between #, and t, (compare § 2).

It is evident from (29) that

11.2. The metric g, preserves the natural topology of XXT and the
metric space (X %9, g,) 8 bounded.

Now we shall prove the following:

11.3. Suppose that (X, ¢) s a strongly convex space. Let p, = (@1, &)y
Do = (@, &), By < to ondl

4 = {p: p=(m)t1)7w€-‘171m—2}’

30
¢ B={p: p=(21),h <<t}

Then the sum AU B is o segment from p, fo p, in the metric space
(XX, e).

Proof. The sets A and B are ares with end-points (21, %), (wz,t})
and (24, %), (@, t,) Tespectively and 4 ~ B = {(23,%,)}. Hence A v B is
an are from p, to p,.
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According to (29) and (30), the funections 7;: A->¢E and iy B
defined as
iW(p) = o(P1; ») = (A +t)e(@m,w) for ped,
1o(p) = (P, Do) = ba—1 for peB,

are isometrical transformations (see §2), becaunse the segment mz; is
a linear subset of the space (X, p) (see § 3). Therefore the arcs 4 and B
are segments in the space (Xx9, g,). But from (29) we obtain

0u(P1y Do) = (L+2) @(@y, o) + (—1)
= Qv(pu (s tl)) + Qv((a’z’ %), Pg) y

i. e. the point (2, t,) is between the points p, and p,. This implies (see [1],
p. 44) that A v B is a segment from p, 0 ..

11.4. If ¢ s SC-metric, then o, ts SC-meiric.

Proof. Let p, = (0, %) and p, = (@, 1,). We may establish that
h <ts.

Since the segment is a linear set (see § 3), 11.3 implies that it is enough
to show that p = (z, 1) e X X9 and p,pp, imply p e 4 or p e B (compare
2.1 and the definition of SC-metric in § 3). According to remarks 1 and 2

in the proof of 11.1, we may assume that {, <i<{, and oww, (i ¢, Texmm:
by 3.2). Then we have

&1, Do) = 0Py P)+ 00, 12)
= A4t)olw, x)+HE—t)+ A+ oo, B) +(L—1)
= (1+t)[e(®, &)+ a(®, T)]+E—1) e, 2) + (la—h)
= (141) o2y, ) +{te—1) +{E—1) o(@, )
= 0,(P1, Po) + (E—1) e (2, ) ,
ie (I—t)o(z, ) =0. Hence t =% or # = x,. It follows from (30) that
p e A or p e B respectively.
The following is an important property of SC-metric g,:
11.5. Let o be SC-metrio. In order that the point p e X X9 be a terminal
point of (X X, p,) it is necessary and sufficient that p = (x, 1), where «
is a terminal point of (X, o), i.e.

TX %I, 0)=T(X, o) x@1).

Proof that T(X X, ) CTX, ¢) x(1). Let p e T(X XY, p,) and
p = (z,t). Putting p, = (%,,%) and p, = (z,1), where &+ z,¢X, we pbtain
P # p, and ppp, by (29). Whenee, by the definition of terminal point
(see § 4), we have p = p,, i.e. t=1. Now if o', #” ¢ X and a'zs”, then
putting p’ = (2’,1) and p” = (@'',1) we obtain p’pp” by (29). Hence
p=7p or p=p'. This implies x =2’ or x=a" respectively. Thus
zeCT(X,p), i.e. p=(x,t) =(2,1) e CT(X, p) x (1)
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Proof that T(X,e)x(1)CT(IxI,e) Let p={(2,1), Where
zeT(X, p). Suppose p; = (0, 1)y P2 = (s, 1s) Do arhitrary points such
that 7, <1, and p,pp,. It is enough to prove (see § 4) that p=p, or p =9,.

We conclude from 11.3 and 11.4 that pips = AV B. Thus 1° ped
or 2° peB. We shall consider these two cases:

1° There i (z,1) € 4. According to (30) we have t, =1 and & e Bz,
Henece ;=1 and me,. This implies that =, or z= 4, because & is
2 terminal point. Thus p = (#,1) = {2, &) =p, or p=(z,1)= (25, 15) = 5.

29 We have {(r,1)eB, i.e. t,=1 and 2z, =, according to (30).
Thus p = (x, 1) = (% &) = Pa.

§ 12. The SC-metric of a disk with 2 terminal points. Ap-
plying 11.4 and 11.5 for X=9 and for ordinary metric g(2y, @) = |2, — @,
we obtain a SC-metric p = g, of the disk D= 9x9 such that

TD,8) = T, @) x (1) = {0, 1), (1,1)} -

flence only the points (0,1) and (1,1) are terminal.
Furthermore, it is easy to see, by 11.3, that

F(D,e)=0)xTuIx(A)w(1)xT
and
R(D,e) =D—-9%x(1)—(0,0—(1,0).

Therefore D= R (D, o) v F(D,8). This gives a solution of problem III
(see § 1).

We have also int(D)CR(D,s). But int(D) is topologically a plane é
Thus in this way we may obtain a SC-metric of ¢® such that each point
is 2 ramification point. :

Remark. The intersection “R(D, o)~ F(D,p) is the sum of sides
{0)x 9 and (1)x T without their end-points. The question of the existence
of a metric g of D such that D =R(D,o) v F(D,¢) and we have
R(D, o) ~F(D, g) = 0, remains open.

§ 13. The SC-metrics of a disk with 0 and 1 terminal point.
Let X, be the square with vertices (0,1), (1,1), (1,2) and (0, 2), Xy—
the rectangle with vertices (0, 2), (1,2), (1,3) and (0, 5), and X —the
square with vertices (0, 5), (1,8), (1, 6) and (0,6). Then D= X, v X,uX,
is a disk. We ghall prove that

13.1. There exists a SO-meiric p, of D such that T(D, gs) = 0.

Proof. Consider X, as the cartesian product {(z,1): 0 <z <<1}xY.
Then we can put in X, the metrie g; = o, (see § 11), where g is an ordinary
Euclidean metric, and in Xy—the metric g, obtained from ¢ by the
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symmetry of the square X; with respeet to the straight line ¥y = 3. More
exactly, for p = (a, b) and ¢ = (¢, d) we put: i

91(p7Q)=[l+min(b'—17d”l)]la—cl+lb_dl7 if P qexl’

es(p, ) = [1+min(6—5, 6—d)lla—ec|+-p—d|, ¥ p,qgekX,.

At last we put in X, the ordinary Euclidean metric g, with the coef-
ficient 2, i. e.

ofp, 0) = 2[la— P+ (b—ayr?, if p,qeX,.

Therefore, if p,geX;~X,, then b=d=2, whence olp,q)
= 3la—¢| = 2[(a— c)TV* = oy(p, ¢). Similaly if p,qe X, ~ X,, then
b =d=2>5, whence g?(p, q) = ¢(p, g). Thus we can apply § 10, for n=3.
Let g, = gs. Thus, in order to prove that g, is SC-metric it is enongh to
show that the hypotheses of 10.2 hold.

Indfaed, by virtue of 11.4, oy, g, and g, are SC-metrics. It is not difficult
to verify that g, is an extension of g; for 4 =1, 2, 3. Thus we must prove
only that the hypothesis about the passages in 10.2 holds for points p, g
such that (I) p e X; —X, and qe X,— X;, or (II) p e X, and g e X,, or (I11)
peX,—X, and qe X;—X,. Case (ITI) is similar to Case (I), becaunse the
spaces (X, 0,) and (X, g;) are isometric ones; thus we shall consider
only Case (I) and Case (II).

Case (I). Evidently we may assume that a <¢. Thus we have

<b<?2 <'(l <B. Let (£,2) e X; ~n X,, i.e. 0 <1< 1 and the sequence
{p,(t,2),4) is a passage from p to g. We put f(t) =s(p, (¢,2),q) (compare
§ 10), whence by (28) we have:
&) = 91(p7 (t, 2)) + Q2((t; 2}, Q)
= [+ @ —1)la—t+]p—2| + 20— o+ (2— @)=
= bla—t]+(2—B)+2[(e— 1)+ (d— 2P ] .
Therefore, if ¢ < @, then

/(@) = (2—1) + 2[(e— )+ (@— 2
<blo—1)+ (2—Db)+2[(e— 1P+ (d— 2712 = f(1)
and if ¢ < ¢, then
1(e) =ble—a)+(2—b)+2(d—2)
<b(t—a)+-(2—b)+2[(c—1)* 4+ (d—2)72 = f(1) .

Hence the function f ean have its minima only in the interval
a <t < ¢ Here, however, we have

f(t) = b(t—a)+{2—b) -+ 2[(c— B2+ (d— 2P,
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(8]
(=
o

But the function j can have an extremum in the open interval
a <t<ec only at the point

fo = e—b(d—2)(£—D)2,

provided that @ < t, < ¢, and then that extremum is a minimum of f,
because

) 2y3/2/ AN (
(dte) (4— D2 (A—2) > 0 .

It follows that the function f has in the interval o <t < ¢ exactly
one minimum. This means that in Case (I) the hypotheses of 10.2 ave
satistied.

Before we consider Case (II) we shall prove the following lemma:

13.2, If 0 < <1 and 0 < v <1, then
2l (u+ RO < (w92 .

Proof. We have 2u+3v/4 < 242 < 3 < (u2+9)¥2, whence 8uv+ 3¢
< dp(u24-9)2,  Adding 4(x2+9)-++® to this inequality, we obtain
4 (U4 2uv 402 70) = Buv + 3% - 4 (u2 4 9) + 2 < 4o (uR + W2 -4 (1P 4 9) 27,
whenee 2[(u+v)2+ 972 < 2(u2-+9)2 44,

Case (II). As in Case (I) we may assume that @ < ¢. Thus we have
1<b<2<<Cd<6. Let (1,2)eX;~n X, and (,8) e Ay~ X, Lo
0t <1, 0<1t, <1 and the sequence (p, (1, 2), (%, 8), q) is a passage
from p to g. We put f(§,%) = s(p, (1, 2), (L, B), g), whence by (28)
we have:

flt, t) = QL(P: (t1s 2)) -+ Q:‘:((tly 2}, (& 5)) =+ Qs((tza 3), 9)

= bla—1 |+ b— 2]+ 2[(f —1)? + 912+ (T— ) ffa—e| + |5 — 4]
> la—1]|+(2-) -+ 2[(H — 1)+ 9P - s —e] + (d— D).

We ghall prove that the function f has its minimum only at the

point (a, ¢). Indeed, since
la—¢] < Ja—t]+lta—e¢]  and  je—1y) < Ja—1t|+ 5],
we have

flay 6) = (2—b) +2[(a— ¢+ 912+ (d—5)
<(2—b) +2[(ja—ta] +[ta— e[+ 9P+ (a—3) -
< (2—Db) - 2[{a—t, 2+ 92+ [t,— ]+ (d—3)
< (2—b) +2[(Jo—t ]+ [ty — ]+ 92 |t — 0] + (d—5)
<(2=b) L2t~ 62+ T2+ ot +fl— o]+ (d—5) < flin, )
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where the inequalities < are the consequences of 13.2 for u = la—1y,
v =|th—¢] and for w=[t,—1], v=|a—1,| respectively, provided that
t, = ¢ and %, 7 a respectively. These inequalities must be written as
equalities if 3, =¢ or ? = a respectively. Therefore f(a,c) < f(i,,1,) if
1, # @ or £, # ¢. It follows that the function f, and thus also s, has its
minimum only at the point (a, ¢). This means that also in Case (II) the
hypotheses of 10.2 are satisfied.

‘We have thus proved that g, is SC-metric.

It follows from 11.5 and from the definition of p, and g, that

Ty, o) = 1{(0,2),(1,2)}  and  T(X;, o) = {(0, 5), (1, 5)}.

Since g, is an ordinary metric (with the coefficient 2) of the ree-
tangle X,, the terminal points of (X,, g,) are the vertices of X,. Thug

T(Xzy 00) = T( Xy, 0) v T (Xs, Qa) .

Putting in Case (IT): » =(0,1), ¢=(0,6) or p = (1,1), ¢ = (1, 6),
we conclude that the funetion f(i, #,) has its minimum at (0, 0) or (1, 1)
respectively. This means that the straight line segments with end-points:
(0,1), (0,6) and (1,1), (1, 6) respectively, are segments in (D, p,). But
obviously T(X,, g.) is contained in the sum of interiors of those segments.
Therefore no terminal point of (X, ¢;), i = 1, 2, 3, is a terminal point of
(D, ¢4)- Thus, since g, is an extension of every g;, i = 1, 2, 3, we obtain
T(D, g4) = 0, and 13.1 is proved.

Remark. It is not difficult to verify that all the following 6 arves:

Agug s Agae v By, A3 v Boa s

A Asss v By, Aoz Boss,
where

Aig={(@,y): 2=1, j<Y<E}, Byp={{z,y): i<e<, y=1k},

are segments (even maximal segments) in (D, p,) and each point of bd (D)
is an interior point of at least one of them. The number 6 is here the smallest
of the set of natural numbers n for which there exist n arcs having this
property. The question of the existence 8f a SC-metric ¢ of D such that
corresponding number is smaller than 6, remains open.

13.3. There exists a SC-metric o' of a disk with one terminal point.

Proof. Let D’ be the sum of the square X, and the triangle
(contained in X,) with vertices (0,2), (1,2) and (0, 5), in the notation of
13.1. Then D’ C D. Defining the metric o’ of D’ as g, restricted to D', we
obtain a strongly convex space (D, o) suech that T(D’, ¢') = {0, 5).
Obviously D’ is a disk.
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§ 14. Some SC-metrics ¢f an n-cell. Now we may show the
tollowing theorem, which contains the solution of problem II (see § 1)
THEOREM. There exists for every n=2,8,... and m = 0,1, ... a 8C-
metric o of O such that the n-cell 0" metrized by om has exactly m terminal
points, i. e.
TG", om) = M.

Proof. Of course, it is sufficient to define such metrics in the spaces
homeomorphic to 9", i. e. in an arbitrary #-cell.

Tor n =2 We put s = oy, 03 =0, 05 =20 (see 13.1, 13.3 and §12)
and g = an ordinary Buclidean metric of convex plane i-gonal figure for
i=3,4,..

Suppose the theorem is true for n =%k We can diminish the diameter
fe. g. to 1) of the space (Qk, %) without changing the number of terminal
points, for instance by dividing every distance by the diameter. Then
we may apply the results of § 11. Namely, let

E = (oh), for m=0,1,..
We conclude from 11.5 that
T, &Yy = T X T, gty = T(I®, o) x (1) for m=0,1,..
It follows that

TE, Y =TT, dby=m for m=0,1, ..
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A generalization of the incompleteness theorem
by
A. Mostowski (Warszawa)

The aim of this paper is to prove the following generalization of the
Godel incompleteness theorem (cf. [1] and [9]):

Let a formula @ with one numerical free variable be called free for
a system § if for every n formulas @(4,), D(4,), ..., D(4s) are completely
independent (i. e., every conjunction formed of some of the these formulas
and of the negations of the remaining ones is consistent; &D(A;) denotes .
here the formula obtained from & by substituting the j-th numeral for
the variable of ®). We shall prove that free formulas ewist for certain
systems 8 and some of their exiensions. In fact we shall prove for a class of
formal systems § a slightly more general result: given a family of extensions
of 8 satisfying certain very gemeral assumptions, there exists a formuls
which is free for every extension of this family.

The following ecireumstance deserves perhaps mentioning and
justifies to a certain extent the length of the paper. Our considerations
prove the existence of free formulas not only for systems based on the
usual rules of proof but also for systems based on the rule o. Thus they
furnish another illustration of the parallelism noted already in [2] between
these two kinds of systems. Our discussion of systems based on the rule
rests on the remark due to J. R. Shoenfield that the decomposition of
the IT! sets into constituents (¢f. Kleene [5], theorem I, p. 417) can on.
several occasions be exploited in the same way as the recursive enumera-
bility of the X% sets. Thus our paper can be considered as a test of this
usefnl heuristic principle. From a result noted at the end of the paper
it follows that no similar phenomenon occurs for II 2 sebs.

In view of these Temarks the author hopes that his paper in spite
of its rather special subject may throw some light on a more important
and broader topic, to wit the constructive analogue of the theory of pro-
jective sets.

1. We consider a consistent theory 7T with standard formalization
and infinite sequence A,, 4,, ... of its terms without free variables. The
Godel number of a formula @ will be denoted by M@ 1. A k-ary relation B
(i. e., a subset of N¥ = N, x ... X N, where ¥, is the set of integers > 0)
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