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A generalization of the incompleteness theorem
by
A. Mostowski (Warszawa)

The aim of this paper is to prove the following generalization of the
Godel incompleteness theorem (cf. [1] and [9]):

Let a formula @ with one numerical free variable be called free for
a system § if for every n formulas @(4,), D(4,), ..., D(4s) are completely
independent (i. e., every conjunction formed of some of the these formulas
and of the negations of the remaining ones is consistent; &D(A;) denotes .
here the formula obtained from & by substituting the j-th numeral for
the variable of ®). We shall prove that free formulas ewist for certain
systems 8 and some of their exiensions. In fact we shall prove for a class of
formal systems § a slightly more general result: given a family of extensions
of 8 satisfying certain very gemeral assumptions, there exists a formuls
which is free for every extension of this family.

The following ecireumstance deserves perhaps mentioning and
justifies to a certain extent the length of the paper. Our considerations
prove the existence of free formulas not only for systems based on the
usual rules of proof but also for systems based on the rule o. Thus they
furnish another illustration of the parallelism noted already in [2] between
these two kinds of systems. Our discussion of systems based on the rule
rests on the remark due to J. R. Shoenfield that the decomposition of
the IT! sets into constituents (¢f. Kleene [5], theorem I, p. 417) can on.
several occasions be exploited in the same way as the recursive enumera-
bility of the X% sets. Thus our paper can be considered as a test of this
usefnl heuristic principle. From a result noted at the end of the paper
it follows that no similar phenomenon occurs for II 2 sebs.

In view of these Temarks the author hopes that his paper in spite
of its rather special subject may throw some light on a more important
and broader topic, to wit the constructive analogue of the theory of pro-
jective sets.

1. We consider a consistent theory 7T with standard formalization
and infinite sequence A,, 4,, ... of its terms without free variables. The
Godel number of a formula @ will be denoted by M@ 1. A k-ary relation B
(i. e., a subset of N¥ = N, x ... X N, where ¥, is the set of integers > 0)
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is weakly representable in T if there is a formula @ with & free varigbles
such that :

(1) (Nay ey ) € R == D (A, ooy duy)
R is strongly representable in T if besides (1) the equivalence
(2) (g ey M) € B = - ~D(dy, ..., Any)

is true for arbitrary ny, ..., .
A function f: NEo N, is representable in T if there is a formula &
with k<41 free variables such that

B @(dngy ooy dngy @) =2 = Aty -

A relation R is weakly or sirongly representable relatively to o set
Q C N¥ it (1) and (2) hold for arbitrary (ny, 7, ..., 7) in Q.

‘We shall assume that

L. Bvery primitive recursive function is strongly represemtable in T.

II. There are primitive recursive functions Neg, Imp, Con, Al 8b, Bz,
8 such that Neg(TO ) =1 ~&™, TGO ImpT W 1 =CdD Y, T Con ¥
=TO&Y, TOIARTYP 1 = '—inET’_‘ 8b(s,7,7PN = I‘;S"ubst(:z:l/A,)t.lY1
Br(i, j,T07) = (Ex;, )P, 8(n) = T‘A .

We shall also assume that there arve: a set P, called the set of proofs
of I, and a quaternary relation < which satisfy the following conditions:

IIT. The relation (m,n) < (p, q) is reflevive, transitive, and well- -founded
in PxN,.

IV. There is o formula IT(x) which weakly represents P in T and
@ formula M(x, y; u,v) with the free variables indicated which strongly
represents < in T velatively to P xNyx P xN,. Moreover, these formulas
satisfy the conditions:

i) (@) &II(z) & M, y32,8) & M(2, b0, y) Dy = ;

(i) 9f p e, then —I1(x) D [M(, y; Ay, 4)V M(dy, Ag; z, 4));

(i) if poe P and - B(dy,, A,) for every pair (p,q) in P xN, such
that (p, 9) < (Po; 4o, then —II(2) & M (, y; Ap,, 44,) D D(z, y).

Let {4;}, j=0,1,2, .., be a family of sets each of which consists
of formulas of T. We shall say that {4;} is a representable family of con-
sistent extensions of T if, for each j,

(a) @ implies P e 4y

(b) D e 4; implies ~Pe Ay

() Ped; and OOV e d; imply ¥edy;

(d)  (we)D e A; implies B(dn) e 4; for k,n e Ny

(e) there is a ternary relation C such that Ded; = Ep)ipeP) &
&C(p,§,ToN];

icm

-
A generalization of the incowpleteness theorem 207

(t) there are formulas I'(r,y,:z), I'*(x,y,=) _ﬁu‘ith the free mm‘qbles
indicated which strongly represent relatively to P < XNg the relations C(p, j,n)
and C*p,i,n) = Clp, j, Neg(n));

(@) HII(x) &I(x) & M(w, g5 27, y") & M (&, "5 0, 0)

D[I’(m,]/,z)wf’(x’ 7117“)]9 ,
b I (®) & IT{x") & Lf( v,y &,y & M{e 52, y)
DI &, y, %) = I,y , )]

We shall denote by <€ the 1elat1on {(m,n)<(p,q)&(m, w)non->(p,q)
and by M (z,y;2,1) the formula M(z,y;2,1) &~ (2, t;2,y). M strongly
represents <€ relatively to the set P xNpXxP xN,.

2, In this section we generalize Rosser’s proof [¢] and obtain

TerOREM 1. If {4;} 1is a representable family of consisient extensions
of T, then there is a closed formula @ such that for any j neither O nor ~0
is in A;.

Proof. Let (TP 1) = Subst(yjdre)® and let Z(x, y) be a forn'mlal
which strongly represents o in 7. Consider the relation R(I, m, n) defined
thus:

T 0@,m, ) D (Ep, Qp < P)&[(p, 9) <, m)] & CXp, ¢, )}
and the formula D(u, v, ¥):
(3) I, v, 9) D (Bs, )[IT(s) &M (s, t; u, v) & I'(s, 1, )] .

We shall show that @ strongly represents R relatively to P xNe.
Indeed, if I« P and R(I, m, n), then either non-C(l, m, n) or there are p, ¢
such that peP, (p,q) <€(l,m) and O%p,q,n). In the former case
b T4y, Ay A2) by (£) and in the latter \—II(Ap) &M (dp, 4g; A1, Am)
& I'*(Ay, 4, An). Thus in both eases @ (i, dm, Ju).

Next assume that I e P and non-R(I, m, #). It follows that O(I, m, n)
and non-CG¥(p, ¢, ) for every pair (p, g) such that pe P and (p,q) | (I, m).
Using (f) and IV (iii) we infer that | ~®(4y; 4y, du). Thus we have
proved
(4) 1e PDIR(, m,n) = —D(dy, du, 4a)],

(3) le PD[non-R(l, m, n) = F~@(dy, A, dn)] .

Let ¥ be the formula (u,w,2)[[I{u) & Z(y,2) 2> ®(x,v,2)] and
@ the formmla Subst(y/drs-)¥. Hence @ 1= oc{T¥), |~ Z(drm,2)
= (¢ = 4re1) and we obtain
(6) -0 = (u, »)[[I(u) D ®(u, v, drev)].

TUsing (3) we obtain by elementary logical transformations

(1) 6O =(u,r){{T(u) &I'u,v, Arg)
D (Es, )T (s) &H (s, t; u, v) &I, 1, drev)] ,
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(8) + ~0 = (Eu,v){I{I(u) & I'(u,v, deen) )
& (s, 0)[I1(s) &M (s, ;5 u,v) D ~I*s, t, Aegn)]} .
Let us assume that there are integers j such that @ e Ay, i e,

C(p,7,7@7) for some p in P. Let (p,, §o) be a minimal pair (with respect
to <€) such that C(p,,j,” ®). Hence

(9) PPy Oy o, 7O,
(10) l— H(Apu) ’ I__P(AZJM A?’a? Ar‘g’l) i
(11) if peP, (p,7) <€(po,7) then non-C(p,,™O7).

Since @ € 4;,, it follows by (9), (10), and (7) that
(ES, t)[ﬂ(s) &IZ’T(S‘, t; ADM Aio) &I’*(S, t, A!‘Q‘I):} EAjD .

.If we h%d = ~I™(dy, 4;, degn) for every (p,§) such that p ¢ P and
{9,7) <€ (Do, o), then we should obtain by IV (iii) applied to the formula
~I™(s,1, Argn) V M(dyyy Aj55 8, 1)

(8, OLI(s) & (s, 83 Ay, A3,) D ~T¥(s, t, Are)]

and 4;, would be inconsistent. Hence there is a (py, 1) such that

(12) prel,  (py; 1) <€ (Dos do)
and non |- ~I'*(dy,, 4, Argn), i. €.,
(13) T4y, Ay, Aren).

Th.is gives 0%(py, §,, 7O, 1. e., O(py, jy, ~6O7) and hence ~Be A
Using (8) and IV (i) we obtain

b ~0 = (Eu, v)[ M (u, »; Apsy A7) & ¥ (u, v)]
V(E’LL, '”)[-M(.Am: Aix; U, 'D) & Y('LL, 'U)]

d1e

where ¥ (u, ) is the formula
II{w) & I'(w, v, drg) & (s, 1) [T (s) &M(s,t; u, 1) D~I(s, 1, Acgn)] -
Since |~7I{4y,) by (12) we easily see that
(4, A5 %, 0) & Y(u,v)D [""F*(Amy 4;, drgn)
v M(AIJU Aiz; U, v) & M(%, V3 Am; AJ‘).) &I'(u: v, Ar@")}
and hence by (g)
M(Am: A?'x; U, v) & Y(u: 2) D [NF*(A:DU Aiu A‘"Q") VI'(APU A-?'u A’_G")] .

By (13) and the consistency of 4;, we have - ~D(d,.. 4, A h
using (13) we obtain " e Ay dren) and thus

= N[M(Apu Ail; U, ’U) & Y(u) /U)] .
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This proves that
b ~0 = (Eu, v)[ M (u, v; 4,,, 45) & T (1, v)],
and so the right-hand side of this equivalence belongs to d;. Using
IV (iii) we infer that it is not for every pair (p,§) with peP and
(p,9) < (p1,7) that the formula |- ~¥(d,, ;) holds. Hence there is
a Pair (ps, jo) such that p, e P and (py, ju) < (p1, f1) and

(14) non ]-—I’(Ap“ A:fu Ar‘g—\)
D (Es, 1)[1I(s) &M (s, 8 Ay, A3) & (s, 1, Argn)] .

This is & contradiction since, by (12), (Pq,72) <€ (Do, o)y and hence,
by (11)7 - NF(AZJM Aim Ar@")'

Let us now assume that ~® ¢ 4; for some 4, i.e., that C(py,7:,7 ~O07)
for some pairs (py, f) with p, in P. This gives us formula (13) and we can
argue as above and infer that there is a pair (p,, 7.} with p, in P
such that (14). This proves that non - ~I'(4,,, 45, 4rgn) and hence
C(psy Js, T O7), which contradicts our former result.

Theorem 1 is thus proved. From its proof we also obtain

THEOREM 1P8. If I' and I'* are arbitrary formulas satisfying (f) and (g),
then the formula © defined by (3) and (6) is wndecidable in any A;.

8. In this section we shall add two more assumptions to our assump-
tions I-IV concerning the theory T':

V. For every primitive recursive function f(ny, ..., ng) there is a formula
D(Ty, -, Ty Y) which strongly represents [ and satisfies the condition

EO (@, ey B2, Y) & P (@1, -y B, Y) DY =¥

V1. For every k > 0 there is a formula H B2, by .ny 1) with the varia-
bles indicated such that:

(i) there 98 a primative recursive function () ox(fi, j2) for which

l—H(k)(A%Uhm, [P tk) = [H(k)(Aiu By ey tk)VH(k)(Ain By ey A1

(il) there is a primitive recursive function t(j) such that

I“H(t1) 2 {H“)(Ar(a‘): tu weny tA) _
= (Bu, 0)[17(w) &I (4, v; by, 1) & HO(4y, u, 0, 45, 1)1}

(iii) there is a primitive recursive fumction (V) Llf, m,n) such thot,
if k2,

B ey s ooy tims) = HO(Ayy by ooy timzy Amy d) -

() This function need not be recursive in % although in the examples which
we shall discuss later this is actually the case.
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Let {4,} be a representable family of consistent extensions of T
and h an integer such that for every j < lh (k) the integer (h); is the Godel
number of a cloged formula Fp,;. Let Fp; = Fro for §> (k) and let
AP = (W Frgyy D Wedry) where K,L are functions inverse to the
pairing function J(m,n) = $(m+n)(m+n—1)+n.

Levna 1. If neither Fy; nor ~Fp; belongto Ay (5,56=0,1,2,..),
then {Ag-h)} is a representable family of consistent extensions of T.

Proof. Conditions (a)-(d) are obvious. To prove (e) we denote by ()
the relation

C(p, L(j), (W Impn) & (E@G) < lh(h))
vO(p, L(j), (k) Impn) & (K (j) > Wh(h)

and easily verify that (e) is satisfied. Finally, to prove (f) and (g) we
denote by [ the formula

{(Bu, v, w) [Tz, U,y v) & Ay, u) &B(Ahy Yy 2,0) & D(?/: A3)
vI(z,u, w) & B(dy, 4y, 2, w) & ~D(u, dp)],

where 4,B,D are formulas which strongly represent the functions
L({), (B)xy Impn and the relation K (§) <Ih(h) and which satisfy the
conditions

Ay, w)& Ay, W Du=u", +B(s,¥y,2,0)&B(s,y,2,v)00=1".

By It we denote a similar formula with I" replaced by I'*. It is
easy to verify that I, It satisty (f) and (g) (in the proof of (g) we use
IV (i).

LEMMA 2. If there are integres ry,ry such that (with the notation
used in the proof of lemma 1) the formulas H®P(A,,%,v,2, dz) and
H®4,,5,7,2, 43) strongly vepresent relatively to P xNg the relations
non-Cy, and C% and satisfy condition (g), then there is a primitive recursive
Function G(h) such that if (h); is the Godel number of a closed formula Fy; for
I<CTh(h) and neither Fy; nor ~Fy; belong o 4y ((<Ih(h), k=0,1,2,..),
then the following formula 6

(w, 0) LT () D H( Aoy, %, 0)]
is undecidable in every AP, j=10,1,2, ...
Proof. Consider the following formulas Pu(ti, by, ¥), Faly), Oa:
HO( Ay 11, 1, 9, A0)V (B, o) [T (w) &I (w, 0, 4, 1)
&H A, 0, 0,9, 40)],
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(B, 1, )LL) & Ty, 2) D Dollty,s 1, 21
{tss by 2) [T (1;) & Z(drgn, 2) D Doty 1s, 2)] -
Arguing as in the proof of (6) we obtain
b= O = (ty, LTI (1,) D Dplty,s T, drgm)] -

By theorem 1#* and lemma 1 neither @, nor ~6 belongs to 4§,
4=0,1,2,.. Thus it remains to construct a primitive recursive function
#(h) such that

= IT() O [Balty, &,y Arey) = HP(dogy, 1y, 10)] -
Using VI (i), (i) we obtain
(k) D [Paltyy tas ¥) = H ' (Doytrietmn)s tas B, ¥ Aa)] 5
whenee by VI (iil)

]Y(tl) o] [®h(t17 tz, A]r@h-\) = H(z)(:‘_];,l(Ua(rl,r(rz)),rejﬁ,h) 5 t1, tg) .

Thus it is sufficient to take #(h) = ::4(04(1'1, (1), T O ], h}. This function
is primitive recursive since so is 7@, by IL

We put as usual @ = @, @' =~ @ for any formula &.

Let us call a formula ¥ («) with one free variable free for the family
{4;} of extensions of 7' if for an arbitrary zero-one sequence 7y, 4, ... Gy—1
the formula Ya(d)) & ... & Ya-1{4,_,} does not belong to any 4;.

TrerOoREM 2. If {A;} is o representable family of consistent extensions
of T satisfying the assumptions of lemma 2, then there is o formula free for
this family.

Proof. Let @, be the formula (x)(x = x) and let §, u, ¢ be primitive
recursive functions defined thus:

3(0) =Td,7, 5(0,0)=05(0), #(0,5)=0 for s>0, g(0)=2",

S(k-+1) =T (u, v)[1T() D H®(ds (o), 1, )7,

n(k, j) Cond{k+1) for 0<j<2®,
p(k+1,7) =1 7k, i—2% ConNegs(k+1) for 2F<j<2¥,
0 for j =25,

sb+1)= [] poh.

0<7'<2k+1
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We prove by induction on % that for every k 2> 0 and every j with
0 < j < 2° there are formulas 2, and 5y; such that &(k) =7, n(k,q)
=& and (e (k)) =&, 1. Moreover, neither Sy; nor ~5y; belongs
to any 4; (0 <<j <2 k=1,2,..,4=0,1,2,. )

Indeed, for & =0 1’0 is sufficient to take Qn = ._,,,0 = @0 and for k> 0
O = @e(k—l)a ‘—’RJ = Epy 1,7 & 2y for 0 <? <z 95 1 ‘—'7\-7 = By 1,7 & ~ L, for
2571 < j < 2%, Using lemma 2 we 1mmed1ate1y see that neither &;; nor
N%,belongsto_xi 0<j<2® i=0,1,2,.., k> 0)

For every n > 0 and every finite zero- one sequence @1,. , in there
is an index j< 2" such that F,; = @, & QP& OF & ... & Q7. Indeed,
this is obvious for » = 1 and if it is true for an integer n it is also true
for the integer %+ 1 because of the definition of Eniy;. It follows that for
every finite zero-one sequence the conjunction 08 &... & Q% Joes not
belong to A;. In order to accomplish the proof it is therefore sufficient to
eonstruct a formula Y (z) such that

(15) b- Y(di) = Oy for every k>0.

To obtain such a formula let us denote by (=, y) a formula which
- strongly represents the function ﬁ(s(n)) and take as Y (z) the formula

(2, u, V)[G(z, 2) &IT(w) D HP(z, u, v)] .

We then have — ¥ (d) = (u, )[7(x) D H®(4s(a9), %, v)], and hence by
lemma 2 we obtain (15). Theorem 2 is thus proved.

4, In the present and in the next sections we shall give examples of
theories and families of their extensions to which the foregoing theory is
applicable.

Denoting by J(m,n) the pairing function 3(m+n)(m+n—1)+n
we put Jy(mg) = My, Jeri(My, oy Mppr) = (Jk(ml, oy ), mk+1) For every
k,m (k > 1) there are uniquely determined integers m, = EP(m), ..

EP(m) such that m = Jilmy, ..., mz).

Let R* be a theory which differs from R (cf. [11], p. 52) by containing

three new operation symbels ¢, », 4 and axioms

Q) z=1t(m,y)=(Eu,v){{(z+y=0)&(z=0)v(s+y 5 0) &(uitd, = 2+¥)]
& dyev = (2+y) u] &(z=v+¥)},

Q) ={i(e,y) ==,

Q) Az, y) =y,

) agyvy

Q) <N&YLH)I@=y).
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IEMMA 3. The following formulas are provable in R*
(Amy J*n) - —]J(m n) 3y
= #(dp) =2 = AK(m) )
A(/—/‘m) == JL(m)
Indeed, writing the right-hand side of (<) as (Ew, v)X(x,v,2,¥,2)
we easily infer that the formula

nou
||

©

X(u, v, Y, z) = (u == Am-ﬁ-n—'—l) & l/ = Al{m+n)(m1—n—1)) & (Z = L']J(m"n))

js provable in R. This shows that the first equivalence is provable. Prova-
bility of the second and third formulas follows from (£;) and (Qs).

Levva 4. Theory B* and every theory T (with standard formalization )
in which B* is interpretable satisfy conditions 1, 11, V.

Proof. II is obvious and I is implied by V, whence it remains
to prove V. Let f(ny, .., nx) be a primitive recursive funection and
Py, ..., &x, y) 2 formula which strongly represents f. The existence of &*
was proved in [11], pp. 56-60. Take as & the formula D*(xy, ..., Tk, ¥)
& Wy <y)D ~D*ay, ..., &, y)). TUsing axiom (Q) we easily see
that V is satisfied. '

LEMMA 5. The set P = N, the relation J(m,n)<J(p,q) and the
formulas z = @, 1(z, y) < t(z,1) satisfy conditions IIL, IV for the theory R*
and its arbitrary consisient extensions.

Proof. III is obvious. It is also obvious that the formulas 2 =2
and oz, ¥) € 1(2,t) strongly represent the set P and the relation J (m, n)
< J(p, ) (cf. lemma 3). Formula IV (i) results from axioms (Qy,) and (Qg);
formula IV (ii) results from axiom (Q,). Let us finally assume that
@ (4,, 4,) is provable in R* (or in its extension 7T) for arbitrary p, ¢ such
that J(p, q) <J(po; @o)- Since

FLe(, ) < e{dpgs dg)] = L@, ) = AoV oo vela, ¥) = Aspyenl

and since every » < J (g, go) is representable as J(p, ), we conclude that
the formula (e, ¥) < t{dg,, dg) D D(#, y) is provable in B* (or in T).

THEOREM 3. All the assumptions of theorem 1. are satisfied for each
recursively enumerable family of consistent sets containing axioms of R*
and closed with respect to the rules of proof.

Proof. We proved above that I-IV are satisfied. If {4;} is a recursi-
vely enumerable family of sets, then there is a recursive relation C(p,i,n)
such that @ e 4; = (Ep)C{(p, i, @ ). Hence {4;} ratisfies condition (e)
and therefore (f) because every recursive relation is strongly representable
in R*. Conditions (a)-(d) follow from the comsistency of 4;, from its
closure with respect to the rules of proof and from the fact that it contains
axioms of B*. Finally (g) follows from axioms (Q;) and (£).
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To obtain a theory to which theorem 2 is applicable we shall add
to B* several new operation symbols and axioms. The new symbols are:

a unary symbol ¢ and binary symbols =z, ¢. We shall write ¥ instead of

a(r,y). We also introduce the following abbreviations:
n@) =, @y e, Bep) = @y, oy T, mHl} s
W) =2,  Ax) = Ple(x)  for G=1,..,k,
) = A(z) .
The new axioms are
) ey =0=[(z=0)v(y = 0)],
) (E)(2 < 2) & (s(2) € 242 & (v = ze2+2(w))],
Q) (o, ¥) =y+4,,
) ¢ (diy y) = ely),
) r(deeat e, y) = ¢(=(2), y) +¢(2(@), 9).
(Que) gldpez+ 47, 9) = g(=(2), y) -9 (M), 9),
() ¢lduoez+ Ay, 1) = p(%(2), p(3(2), y)),
() @le,y) = 2D gz, p(dyer+ 4y, 2)) =2,
(Qu) glo,y) =2 &t <@(dypez+4dy,2) Doz, ) #
Q) gld -[J”‘" srrt+A)], y) = elz, o (¥,2),

Q) @2t b, 9) = 0 = (Et){[t < o[2(y), (1)
&lolz, wl), A1), £°w), @) = 0],
() gl sy, y) =0 = )t < %(y) D (o, o{a0y), 9) = 0],
(Qu)  a(x, Ao) = 4,
() w(r,y+4) =a(r,y) -z
Let R** be a theory with the primitive symbols enumerated above
and based on axioms (€;)-(C,,).

In order to make the content of the axioms (Q,)-(Q,,) more accessible.
we shall sketch (informally) the proof of the following

Leyara 6. Theory R* is interpretable in P.

‘We interpret 2 +y, .y, 2% in the usual way, t(®, ¥), 2(z), A(x) as the
pairing functions J, K, L, (x) as the excess of # over the nearest square
not greater than . (p(x, %) s interpreted as the funetion U(n, m) = Ud(m)
defined by induction. The values of Uym), U,(m) are determined according

icm

A generalization of the incompleteness theorem 215

to (Qp), (), the values of Uym), Ug(m), Uym), Us(m) are arbitrary, the
values of Upprssi(m) for j =0,1,2 are respectively Ugey(m) -+ Ugmlm),
Urmim): Urey(m), and Ugey{Uzm(m)). The value of Ujeno(m) is either
the least p such that Ua(p) = m or 0 if such a p does not exists. The value

E{m)
of Upnonlm) is equal to Un(J {L{m), 7)) and the value of Up.yg(m) is
j=0

equal to [] U,,( 4(u,1;,Kf{*)('m.),Kﬁ‘)(m))) where the product is extended
over pairs %, v such that J(u, v) < J (EP(m), E(m)). Finally, the value
of Uperngnsn(m) is Unld (m,p)) and the values of Usosirninss(m) for
j=1,2,..,5 are arbitrary.

LevyA 7. For every general recursive function f(any, ..., ng) there is an
integer e such that

|—‘P(Aey a(Anyy weey A”k)) = Aingyerinp) -

(-~ means here “provable in R**).
Proof. First assume that ¥ = 1 and let F be the family of functions
f(n) such that there is an e satisfying

(16) = g(dey An) = dsm)

for each #. Functions S(n)=n-+1 and E(n)=excess of n over the nearest
lower square belong to F because we can take e =0 ore=1. I f, g%,
then there are integers ¢, d such that (16) and the following formula (17)
hold for all =:

(17) = o(da,y 4z) = Ay

whenee by axioms (Qy5), (), and (Q,)

b @ (dieseatss An) = Agmyram 5
= @{daesieare, 4a) = Asgmy) 5
and hence the functions f(n)+g(n) and f{g(n)} belong to F.

If fis in ¥ and f assumes all natural numbers as values, then using
axioms (Q,), (), (Q) and (Qy,) we easily obtain

=~ @(digerny dn) = Ay

and hence f~' ¢ F. Thus F contains all general recursive functions of one
argument.
¥ k>1 and f(ng,.., ") is general recursive, then so is g(m)

= )‘(K(k)(m) (")(m)) and hence there is a d satisfying (17). Substituting
N = Jg(ny, .oy nk) we obtain the desired result.
Let H(k)(w t, ..., i) be the formula p(z, 4t ..., &) =
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Lmnna 8. Formulas H® satisfy condition VI.

Proof. VI (i) is satisfied with ox(f;, §a) = 12J (§1, o) +7; in the proof
we use axioms (Q) and (Qy).

Formula VI (ii), which becomes in this case

H® Aoy s by, tay Ty 1) = (B, 0){[1(1t, 0) < o(fy, 15)]
& H(Q(Ai, Uy Dy tay )},
is but a different formulation of (Qy) for o = 4;; we put (§) = 12§ + 10,

From (Qu), (Qp) and (Q,) we obtain by substitution = A
¥y = ‘k—l(tu ey tlc—l); &= An

i

}—(p(l]e.gnﬂ(gﬂ.l), lk—l(tly ey tk-—l)) = 0 = (p(A:,', Lk(tl, cery tk..l, An)) = 0
and repeating the same argument
@ (demm s teme (b oo timz)) = 0 = @ (45, tlty, ey oy Ay An)) =0

where £(j, m,n) = 62" [12.2""(2§ +1)+-1]. Thus formula VI (iii) is
provable.

TraroREM 4. For every recursively enumerable family {4;} of consistent
sets containing axioms of B** and closed with respect to the rules of proof
there is o formula free for that family.

Proof. Relations 511, (% defined in the proof of lemma 1 are in the
present case recursive in the four arguments p, 7, #, h. By lemma 7 there
are integers 7,7, such that the formulas H“ (A,l, @, 1y, 2, ;) and
H®A,,, 5,y , 2, 43) strongly represent the relations non- Ch(p, i, n) and
Crlp, §,n). These formulas satisfy condition (g) because (with our choice
of formulas IT and /) the antecedent of both formulas in (g) becomes
(by () e(z, y) = (@', y'), and thus (by (Q,) and (Q)) is equivalent to
(r =a') & (y = g"). This proves that theorem 4 follows from theorem 2.

CoROLLARY 1. There is .a formula free for the theory P and each of is
recursively enwmerable extensions.

The corollary follows from theorem 4 and lemma 6.

COROLLARY 2. There is a formula free for every sub-theory of P.

Indeed, a formula free for a theory is free for an arbitrary sub-theory.

It is an open question whether for every recursively enumerable
extension of R there is a formula free for that extension.

8. In this section we shall briefly discuss a theory F obtained from R**
by enlarging the set of axioms by all formulas («) 4 () such that A (4,)
i provable in B** for n =0, 1,2, ... (cf. [3]). Let Ongp(X) denote the small-
est seti containing X and the axioms of I and closed with respect to the
rales of proofs of F.
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THEOREM 5. If {B;} 18 a recursively enumerable family of sets con-
sistent in B each of which consists of closed formulas of F, then there is a for-
mula free for the family A; = Cng(By).

Proof. Choose P, <, ], and M as in lemma 5. It is obvious that
conditions I-V are satisfied. It is also obvious that the family {4;} satisfies
conditions (a)-(d) and (g).

If R is a recursive subset of N*™°, then the set

(%) {(1gy ooy M): (Er)(8)(ED)[(7, 8,8, 1, ..., 1) € BJ}
is weakly representable in F and the set
() {2, woy 1)z (P)(E8)[(7, 8, 2oy ooy M) € B]}

is strongly representable in F. Actunally sets of the form (x) are most
general sets weakly representable in F but we shall not need this fact
in our discussion.

Let W, be the set of Godel numbers of formulas with one free
variable #; and B—the provability relatlon for R*+. Both sets are
obviously primitive recursive. Since

@ e 4; = (Ep)([ED(p) « Bj] & [EP(p) ¢ Wi & (n)(Em)
[mBSb(1, n, BEP(p))] & EP(p) B[Ex(1, 1, Neg K (p))
Als(Neg K (p) At ™)),

it follows that {4;} satisfies conditions (e) and (f).

Let H(x, 1y, ..., 1) be the formula (u)(Ev)[p (2, thaaltt; 0,8y, 00 1)) = 0]
It is obvious that every set of the form () with a general recursive R
is strongly representable in F by a formula HP(4.,t, ..., &). It follows
that there are integers #;, r, such that the formulas HY (A,.,, €Y, 2,y 4n)
and HY(d,,,v, 2, 4s) strongly represent the relations non-C and Cs
of lemma 1.

Finally it is not difficult to show that conditions VI (i)-(iii) are
satisfied with our choice of the formulas Hﬁ". Thus by theorem 2 the
asgertion of theorem 5 is proved.

6. In this section we shall deal with the system A, of analysis defined
in [2] and with its extensions. It will be convenient to eliminate from A4,
function variables with more than one argument. Since the pairing
functions are definable in 4, it is clear that this simplification of 4, is
not essential. A further (essential) change is that we shall add to the
axioms of A4, the following weak form of the axiom of choice (2):

(A): (2)(EB)®(w, B) = (Ey)(w, p){(2)[(2) = 7 (4%(dz +41)] D P(, B} .

{*) We use in A the notation of [2] with the only change that the n-th numeral
is denoted by A4s and multiplication by juxtaposition of terms.

Fundamenta Mathematicae, T. XLIX. 15
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It is known that for every arithmetically definable relation (function)
there is an elementary propositional (or numerical) formula which strongly
represents the relation (function)in 4,. We shall use the not‘aj'ﬁion oz, y),
i(z, ¥), %(x), A(z) for elementary (numerical) formulas which represent
in 4, the following functions: Un(m) (cf. the proof of lemma 6), J(m, n),
K (m), L(m). - .

Let W be the set of integers e such that the relation <, defined as
UG(J (m, n)) = 0 is a well-ordering of N,. The order type of <, will be
denoted by |e]. Since the relation <, is recursive, it follows that‘ le] < oy
(cf. [5), p. 412). On the other hand, every recursive relation is repre-
sentable as UE(J (m, n)) = 0 for a suitable e (cf. lemma 7),‘ and hence,
by a theorem of Markwald ([7], p. 142) every infinite & < w, is represent-
able as |e| for a suitable ¢ in W. Thus we have proved

Levma 9. {lef: ee Wi={&: o < E< ag}e
Levma 10, W is weakly representadble in A, by a formula II(z) of the
form (a, p)Cwla, B, ), where Cw s an elementary formula.
Proof. Let Ord(a) be the formula
(@)]a (i@, @) = 0] & (@, ¥, 2) {[afi(@, ) = 0] & [a(i(y, 2)) = 0] D
[a(t(e, 2) = 0]} & (2, )@ = y) v [afi(@, ¥)) = O] v [a(i(y, ») = 0]}
& (z, y){[a(‘-(m’ f’/)) == 0] & [a(‘_(yz m)) = 0] Jd(z= ?/)} 3
and F(a, f) the formula
(@) a(z(8(z+1), B@))) = 0] (Ex)[B(0+1) = B(a)] -
Take as CW(a, B, x) the formula '
W, ]ali(y,2) = 0 =5(z, i(y, 2)) = 0] D [0rd(a) & F(a, B)] -
We immediately see that the formula (a, 8)Cwla, f, 4.) is true in the
prineipal model N, (ef. [2], p. 190) if and only if ¢ ¢ W. Hence, by theorem

3.1.E of [2]
" ee W= [—*w(d,ﬁ)éw(a,ﬂ,Ae)-

This proves the lemma.
- Let Im(a, 2,y), Ims(a,x,y,2) be the following formulas

(u, ) {[3 (e, 2(u, v)) = 0] =3[y, (a(w), a(e))} = 0]},

(e, 0)([F (5 2(w, 0)) = 0] = [B(y, 2(a(w), a(w))) = 0] )
&[oly, olatu), ) = 0] & {[Bly, i(v, #)) = 0] 2 (Bw){a(w) = *1}} -
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Leyva 11. If p is a function and ey, e, n are integers, then Py 6y, 62
satisfy Im(a, x,y) in Ry if and only if v maps N, into itself and p <, q
=9() <a¥(@); ¥, 6,6,7 salisfy Ims(a,©,y,2) i and omly if p
maps N, onto a segment of <., determined by w and p satisfies the equiv-
alence P <o, § = 9(P) <ep ¥(0).

Lemma 11 follows directly from the definitions of formulas Im and Tms.

Levwa 12,

() Foll(z) & (y) O {(Ey)[Im(y, @, y)] = () (&) [~ Ims(y, y, =, 2)];

(i) o ll(z) & II(y) D [(Ey)Im(y, #, y)v (Ey) Im(y, y, x)] .

We obtain a proof of this lemma formalizing in A4, the proofs of the
following well-known set-theoretical theorems: (1) if <, <., are well-
orderings, then a similarity mapping of the field of <., into the field of Loy
exigts if and only if <, is not similar to any segment of <C,; (2) if Loy oy
are well-orderings, then one of them is similar to a restriction of the
other to a suitable subset of its field.

Leyara 13. Relations le,] < e, |&] <|e| and |6, = |&] are strongly
representable in A, relatively to the set W xW. :

Proof. By lemma 11 and theorem 3.1.E of [2] .

lea < Jeuf = {(y) (2) ~Ims (v, Aey, 4oy, 2) is true in RNy}
' = o (P) (@) ~Ims(y, 4y, Aoy, 2)
provided that e;, e, are in W. Using again lemma 11, we obtain similarly
for ¢,e, m W
) _ le] > o] = o (¥)~Im(y, 4., 4s,) ,
and hence by lemmas 12 (i) and 10
[e;Jnon < [6,] = -4 ~(p)(2) ~Ims(y, de,y Aoy 2) .

The lemma is this proved for the relation <.

. It follows immediately that it is true for the remaining two relations
because if ¢, ¢, are in W, then
lal<lal =non(ali<|al) and la]=|al = (e <|a)) & (6] < o).

For later use we notice that the relations |e,| = |e,], | el < e and
lei] < |e,| are strongly represented (relatively to W x W) by the formulas
(Ey)Im(y, @, y) & (Ey)Im(y, y, z), (y)~Im(y,y,z) and (Ey)Im(y,z,y).
We abbreviate these formulas as oy, 3y, and £3y.

. Lievwma 14, There is a primitive recursive function f(e,n) such thag
if I' 48 & (numerical ) Jormula which represents f in A,, then '

(16)  u§(lu, 2), 2@, 9)) = 0 = (2 = y)V(z < 4) & (y < o)
VeSO &G <)V <) &0 <y) & [[Z(@0) < 7y =)

VIEP (@ v) = %%y = )1 & [3(w, 122z . 2@ o)) = 011}
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(z—y is here an elementary numerical formula which represents the
funetion m—n in 4,).

Proof. The relation (m=n)vim<n<p)v(p<m&(n<p) is
recursive and hence equivalent to U, (Js(m, n,p)) = 0 for a suitable 7.
The proof of this equivalence being formalizable in A,, we obtain
o §{dn G(@, ¥, 0) = 0=(z=y)v@<y) &y <o)Vl <2) &y <v).
Since axiom (Qg) of B** is provable in 4,, we obtain
o B (Ao 10, ) = 0 = (& = 1)V (@ < ) & (¥ < 4n)V (s <) & (y < 4n)

where fi(n) = 6-2""4(2r, +1). Arguing similarly we obtain primitive re-
cursive functions f(n), fo(n), fo(n), fs(n) such that

o E’(Ah(n)a iz, f‘/)) =0=(da<2)&(4a < Y),

o 3 Anm, 1@, 9)) = 0 =7 (@ 4) <@ (Y= 4n)
17 _ —
) o a(Ah('n): L_($, :‘/)) = 0= "&2)(5”‘.‘411&) = ”.9)(?/;4115) )

o §(dsm; 1@, 9)) = i[@(@=4a), % (y=4a)) .
From the last formula and from (), which is valid in 4, we obtain
o ﬁ(dfn(e,n)y E(w7 ?/)) = E(Au i(’—ééz)(m;dn)’ ;;2)(?/;‘41”))) 3

where fie, n) = 12J (e, fs(n)) +8. Using this formula and (17) and obsexrv-
ing that |—,(z+y =0) = (r=0)& (y = 0) and that the axiom () i8
valid in 4,, we obtain

bo (A ptem s (2, 9)) = 0 = (7@~ Ax) = %(y = 4n)]
&[5(4s, 10 ), 7y =a) = 0],

where fi(e, n) = 12J (fy(e, n), fu(n)) +6. Continuing in this way we finally
obtain a primitive recursive function f(e; n) = f(e,n) snch that ¥ r
represents f in A4, then (16) is valid for = A4,, v =4x (¢,n =0, 1,2,..).
Using rule o we gee that (16) is valid for this choice of f.

Levma 18, |ty I {(w) D I{T{u, v).

To prove this lemma we formalize in A, the set-theoretical theorem
saying that the formula on the right-hand side of (16) defines a well-
ordering of N, whenever p(u, i(z, y)) = 0 does so.

LEMMA 16. If ¢ ¢ W, then f(e, n) e W and |f(e, n)| = wle|+n.

Proof. If <, has the order type &, then the formula on the right-

hand side of (16) (with « replaced by 4. and v replaced by Aa) defines
a relation of tvne w-£-+n.
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LEMMA 17. o IT(w) &I (u') & Iu,v)~s (', v )D (urc u') & (v=12").

The lemma is proved by formalizing in 4, the proof of a set-theoretical
theorem stating that - &40 = w-§+2' implies #» = and &= &'

We now take P = W and define < as |f(m, »)] <|f(p, ¢)|. Let II be
the formula weakly representing P constructed in lemma 10 and let 37
be the formula I'(z,y)3I'(z, ).

Lemva 18. Conditions IIL and IV are satisfied for the above choice
of P, <, II, and M.

Proof. III is obvious. In lemmas 10, 13, and 16 we proved
that IT weakly represents P and M strongly represents <€ relatively to
P xNyx P xN, Formula IV (i) follows from lemma 17 and IV (ii) from
lemmas 15 and 12 (ii). Thus it remains to prove IV (iii).

Assume that poe W and that .,P(d,, 4y) for every pair (p, q) in
W x N, such that |f(p, ¢)] <|f(po; g0)]- It follows that
(18} o [{dp) & M(4y, dg; Ap,, Ag)) D P(dp, 4g)
for every such pair. If p e W and [f(p, g)|> |f (Do, @o)]; then o~ {4y, 44
Apys 4g,) (since M strongly represents < relatively to W XNy X W xXN,)
and hence (18) continues to hold. Finally if p¢ W, then the formula
M (Apy Ag; Apgy Agp) (- €. (Ey)Im(y, I(dp, 4g), T'(4dp,, Aq,)) ) is false in the
principal model RN,, whence it follows that its negation is true in R,
and therefore provable in A, according to theorem 3.1.E of [2].
Thus (18) holds for arbitrary p, g, which proves (by the rule o) that
o () & M (2, y, Ap,, 4¢,) D P, y). Lemoma 18 is thus proved.

‘We shall now discuss condition VI. Firgt we introduce some defini-
tions. Let (z), and Ih(z) be elementary formulas which represent in 4,
the functions (m); and Ih{m) of [4], p. 230 and let Seg(x) be an elementary
formula which strongly represents in A, the relation (j)[§<1h(n)D(n);> 0].
The following formulas will play a fundamental role in what follows
(we abbreviate the string (ay, ..., ax—1) of functional variables as a and
the string (#, ..., Z1—;) of numerieal variables as x)

D(e,s,t):
Seq((s)4) & [1R{(8)a) = 1] & (2)[2 < 1D ((8)ar), = a(2)]
& Seq((8)a) & [1h((5)s) =1] & (2)[2 < 1D ((8)a)), = ma(e)] & ...
& Seq((8)as) & [1h((8)an) = 1] & (2)[2 < 82 ((8)aps), = weal)];
H*y, a, 2): (B)(Es, 1){D(a, ,8,t) & [ply, arals, %) = 0]},
H*y, a, x): (BB)(s, 1){D(a, B,8,8) D [Fy, anals, x)) = 0]},
TPy, oy x): (@) HEMDy o gy @1y 2y By ey B1ma)

7D 77 (&, 34-1
Iy, a, 2): () HA Dy, a, By cory Bimgy 2y Tfy weny Bict) -
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The formula D can be read: s is a diagram of functions e in the inter-
val (0,t); formulas H*?, A% are formalizations of the relation

(9)(Ep) [ Un{142(27® . 3P | pBodpk® gy .., my)) = 0]

and of a similar relation with the order of quantifiers reversed.
In the following lemmas 19-27 we show that theorems 3.2-3.5 of
Kleene [6] have formal counterparts provable in A, .

LemMa 19. There is a primitive recursive function Golm) such that
if v is an elementary numerical formula representing g, in A, , then
oY), 0, 2) =~ H*(y, a, %),
l—mﬁ(k’l)(v(y), @, x) = NH(k’z)(y, @, x),
Proof. Since 0» is a primitive recursive function, there is an  such

that U, (n} = 0%. The recursion equations for ¢(4,, z) being deducible

from the axioms (£,)-(Q,,) and these axioms being provable in 4., we
infer that

Fo®dry do) =4;, ‘oa>4,D9(dh,3) = 4,.

Now put go(n) = 12J (n,7)+8 and let » be an elementary numerical
formula representing ¢, in A4,. It follows that

Fo a(”(y): z) =0=09p(y,2)#0,
whence immediately follow both formulas of lemma 19.

Lmdva 20. There are primitive recursive functions grlm, n), Ju{m, n)

such that if wu, . are elementary numerical formulas representing g and G
in Ay, then

. %D (ﬂk(?h; AR @, x) = [H(k’l)(yl, a,x) &H(k’t)(yzg a, x)],
o 8% (3, 93), @, %) = (E*(g,, o, 5)v H(y,, «, 2)] .

In view of lemma 19 it will be sufficient to prove only the second

part of the lemma. The formula in square brackets on the right-hand
side is equivalent to

(19) (Eﬂ)(slasl':tlrt”){p(“’: B,8,%)
& D(a, B,5", ") D [@(yr, t4als’, #)) @ (e, Geals”, =) = 0]} .

Consider the primitive recursive funetions

bim, q) = [ [ o™,

i<q

himy ¢, ) = [[ ™D o, g, 1) = [ phlomesion

- i<k i<k
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It is then easy to prove that

boD(e, 8y 4m, 42) D D(e, 8, Apmanpiry; dxm)
o Die, B, Any 42) D D(a, 8, Apstmmtetnys Azm) -

Let 7; (=1, 2) be integers such that p(4dx, &2, ¥, 2)) represents f;
in 4, and let g(k) = 6-2°7%2r;+1). From axiora (Qy) it follows that
<7'(41m(k): iz, y)) represents fi{m, n, k+1) considered as the function of
e, n alone. Using rule o we infer that

o D(a, B,8,8)D D("': B, a(Am(k)x (s, t))y E(t)) =0,
FoD(a, 8,8,1)D Da, B, B(deo, 208, 1), A1) = 0.
Obviously in both formulas we can replace ¢ by lh(s).

From these formulas we infer that (19) implies (in 4,) the following
formula

(EA)(s,8) D{«, B, 8,) D E(yl, B (P ot 7[5, 12()), x))
"7’(?/27 141 (a(AQ,(k), 5(8, lh(s))), x)) =0.

Conversely this formula implies (19), as we easily see using the theorem
o {El8)D(e, B, 5,1). ‘ ‘

We can simplify the formula obtained above b}: observing that
o Z(s, Th(s)) = $(dy, §) for a suitable ¢ and hence o 3w, I3, Th(s)))
= Az, 8) with 7(k) = 12J (0(k), ) +8 (see axiom (L)) Thus (19)
is equivalent to

(EB)(s, [ D=, 5,8 D F(ys, 02 (F(daun, 8), )

'5(?/27 141 (E(Aﬁa(k)y ), x)) = 0] .
Finally, we notice that in view of axioms {£)-(Cs)

o a(yla %) (&(Aéx(k)y 3), x)) ‘&(f‘/z: ‘-1+1(A§,(k), ), x)) =0
= a(ﬂk(yn Y2); 41(8, x)) =0,
where m(yy, ¥,) Tepresents the function
127 (127 (1, Bu(K)) +8, 127 (ma, 8a(R)) + 8)+7.

LeMMA 21. For every 1 there are primitive recursive functions g1(7.n, n),
Fu(m, n) such that if o, o are elementary numerical formulas representing g,
and §,, then

o H*(0(y1, ya), @, 2) = [H™ gy, @, 9)VE (3, @, #)1,
e Di—, N emkD,. oy o TFRD . A1

S S AT
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Proof. Again we shall prove only the second equivalence. Let
8(y, By, Be) be the formula (2)[y(2) = 7(Bi(2), Bo(2)}] and S8*(s,s’,s”) the
formula [Th(s) = Th(s") = 1h(s")] & (2) {z < Th(s) D {(8)e = E((8"):s (s"%)])- 16
is obvious that

Fw(Bys B2) (EIY)S (v, Bu; Be) » o (PHELS;, B8y Bus Ba)

and
FoD(y, 8,8) & D(B1, 8", 1) & D(Bay 8", 1) & 8(y, B, Bo) D 8*(s, 8" 87) -
I m,m’,m’” satisfy 8* in Ry, then m' = oK (tma), gK ((mis) pﬁéﬁb’;’)‘h(m‘)

=f(m), m" = 2P0 ghln) o E(Onm) — fr(m). The funetion f',

are primitive recursive; let ,,7, De integers such that 9(dn, @)
represents f in A, and $(d,,, ®) represents 7' in A,. We then have
Fo 8%(8, B(dn, 8), (dn, 8)) and F-ofs)(Els’, 87)8%(s, s', s7).

It is now easily seen that the right-hand side of the second formula
in the lemma is equivalent fo

20)  (Ep)(s,){D(a, 7,5, D[Fys, a:p (4, 8), =)
+(v2s 2a(@(dn, 9), 7)) = 0] } -

We reduce this formula to the desired form as follows: since the

function J1+1(f’(K§Z+1)(p)),Kg“’(;»),... ,Kﬁf}l)(p)) iz primitive recursive,
there is an integer r’ such that

o @(dey 2) = 03a(@(dry BT 72)y ooy 2EG(D) -
This gives
o @, drs Baals, ®) = B3, 2eaf@ldn, 8), %)) -

Similar equation is provable with r, replaced by 7, and " by #'’. Thus (20}
is equivalent to H*?(G(y;, ¥,), &, x) with

(Y1, ¥2) = Ani(dmz(yn Ay +dg, Apl(Ys, 447) +As) +4 .

Hence §y(m, n) = 12J (12J (m, 7'} +8,12J (n, r"") +8) +6.

LEMMA 22, There are primitive recursive functions g,, g. such that if
1>1 and v,7 are numerical formulas representing g, and J,, then

o B*)y, «, x) = B ey, @), o, @y ey 01— 5

e E(k,l)(y’ @, x) = ﬂ(k,l_l)(:[_(ys Tyen)y &g Bgy ooy ml—z) .
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Proof. By axiom (Q,) we obtain

L H Sy ) x) = H(k’l_l)(As A5 Ay +4,), &y By ey Ty -
LeMMA 23. For every 1 there are primitive recursive funclions gy, fs
such that if v,% are elementary terms representing them in A,, then for
j=0,1,..,1—1
l"'mH(k'l_l)(v('yy Aj); oy Doy eny Bimty Big1y vy ml—l] = (Ewi)Htk’n(‘y: o, x),
i—mﬁ(k'l—l)({’(yy A;)y 0y Ty ery Bjzy Byaay oey ml—l) = (2) ﬁ(k,l)(y, o, x).
Proof. The right-hand side of the second formula is equivalent to
(@7) (BB) (8, )] D (=, B, 8,8) DB(Y, s, #) = 0] -
Using axiom (A) of A, (ef. p. 217) we transform Ghis formula_, to
(1) (Ep)(B, a1, 8, D{()[Ble) = v (43 4z + 4y))]
& D(a, B, s, t):)@(y, (s, x)) = 0]} .
Put glm,n) = [h(m)/2*— 4], h(n,m) =[] p@nry. and let 7

' 0<L7<g(m,n)
be an integer such that (4, i(w,y)) represents in A, the funetion

7 pilemsatmm) phtmm) yye ghall show (informally) that (21) is equiv-
<<k

alent to
22)  (Ep)s,){D(=, 7, 8,0
3(mf)[wiétDﬂy,fm{@(An f(wi,S))), x) = 0]}

Agsume (21) and choose s,t,a; so thatb Do, y,8,%t) and @ <t
I B(z) = y(4¥(d2+1)), then #(d,, 2@y, 9)) satisties the condition

D(a., B8, 8(dr, i(s, 8)),1’) for a suitable #, and hence, by (21), we obtain

30, fus (Bl 701, 9), ) = 0.

The converse implication iz proved similarly. It remains to reduee (22)
to the form indicated in the lemma. By the technique already used we
find ‘a primitive recursive function g, such that if § ig an elementary for-
mula representing g,, then

bt =1

E[@(E(yy 45), Z(Tl(si Loy «ory Tj—1y Tj+19 veey T}, ”i) = 0] .
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It follows by axiom () that

o @(Alzf(y, A+ 4y, Z(lh('g)y TS, Lyp «ery Bimty Tis1y ony wl—l))) =0
= (2[5 <T(s) DG(ELy, 49), (s, Go, v, Bim, Bpaay ey o), 7)) = 0] .
The left-band side of this equivalence can obviously be represented
in the form $(G(y, 45), a(s, @ «wrs Bi—1, Fit1y oov, B1—1)) = O Where 7 is an

elementary term representing a primitive recursive function. Since
o D(e, v, 8,1) Dt = Th{s), we see that (22) is equivalent to

kg
H* 1)( O(Y, dg)y @y gy eony Bjm1y Bjiy oees "1"1—1) .
Leswa 24, There are primitive recursive functions gs, Js such that
if n, 7 are clementary terms representing them in A, then for §=10,1,...,1—1
‘ (k1) — pytkden
o H 7y, &y ?‘) = H( + )(ﬂ(y: A?’y Al): Gy Loy aany Bjm1y By Bjy weey ml—l) ’
Ll _ e =
i~ H )(3/; «,x) = H° 1)(77(3/1 Ay M), 0,y g, ooy Bjog, 7, ey wl—l) .

The proof is similar to that of previous lemmas.

Leyus 35, For every 1 there are primitive recwrsive funciions gg, Je
such that 7f £,% ave clementary terms representing them in A,, then for
j=0,1,..,1-1

b HUCJ_I)(C(?/: A1)y &y By ey Bys, Tit1y veey Q”'l—~1) = (wi)ﬂ(k’l)(?/; @, x),
o By, A7), @y @0, vy Bjosy i1y ooy B1s) = (Bay) By, a, ) .

Proof. Let us again consider only the second'formula. The right-
hand side of it is equivalent to

(E)(3, [ Do, 8,8,) DBy, fsa(8, @y vy By B(da), i, ooy Byc)) = 0]

We can replace () by ((s)s),, and then use the technique of the
preceding lemmas to reduce the rlght; hand side to the desired form.

Levwma 26. Let I' be an elementary numerical formula and & an ele-
mentary propositional formule and let the variables (free and bound) occur-
ing in them be some of the variables g, ..., Op—y, Ty ooy By, Then there
exist integers j,f,7, e, & such that

Fol'=If"4y,0,%), 1ol =H"N4,,a,x),
ol = Isk'l)(A?’ e, x), ol = H(k’z’(dz; @, x).

Proof. From lemmas 23 and 25 it is obvious that if lemmsa 26 holds
tor the formula ¢, then it does so for the formulas (z;)¢ and (Ezp) €.
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Lemmas 19, 20 and 21 show that if lemma 26 holds for formulas &, &,
then it does so for the formulas ~¢&,, &vE, and & & &,.

Let us assume that the lemma holds for numerieal formulas I, I}
and that f;, /; are the corresponding integers, ¢ = 1, 2, For convenience
of notation replace I by 1+1 and assume j = 1+1. Then

boz=TIi= H(k,Hl)(Afu a,x,3) & (1) [HU&HD(”(A?(): @, X, t)Vz = t]
VORI p(47), @, 2, 1) & (2 = 4,)

and we eagily see, using lemmas 19, 20, 23, that there are integers
f4 , f; such that
o @ o= I} H(kH—l)(Aj a, x, 2 )’

(*) KD 4,
oo 2= Ty = H® )(Afix o, x,%).

Since
boly = Iy = (o, 2) [H*(4y1, 0, %, 2,)
& H(k’l“)(dﬁs a, x,2) & (¢4 = 2,)]

and since the formula 2 =z, can be brought to the form
H(k'l+2)(Ar9 @, X%, 2, %),

we easily infer, using lemmas 20, 23, and 24, that there is an integer ¢
such that |-, 1) = In= H(k'l)(Ag,u,x) Similarly we find an integer &,
thus showing that lemma 26 holds for the formula I = I%.

Replacing in the above proof the formula 2 =2, by 2 =2, 42, or
# = #,-#, We show similarly that lemma 26 holds for the numerical for-
mulas I3 +1, and I %75,

Since #; can be represented as I¥P(4;, «, x) and in a similar form
with I¥? instead of If®, we see that lemma 26 is true for the numerical
formulag x5, j =0, 1,...,1—1. It is also obvious that if lemma 26 holds
for the propositiona,l formula &, it does so for the formula (ws)&. "Hence
it remains to prove lemma 26 for the formula a;(I}) under the agsumption
that it holds for the (numerical) formula I5.

Asgume for simplicity that —,J]i= (zz)H(k"“)(A,, ,&,%,2) and
Fo I =(2) H*"(45,, &, x, 2). Then by (x)

o ay(I7) = (w)(E2)(B)(Es, 1) {D(a, §, s, 1) & (h(s) > #)
& [0 =((8)4)s] & [B(A1, itsals, %, 2)) = 0]},

Fwai(Iy) = () (B2) (EB) (s, ){D(a, B, 5, ) D {{th(s) < 2
A\ [’D = ((8),4,)5] & [a(A?fa El+2(87 Xy z)) = O”) M
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Tt is obvious that we can determine integers ff, ff such that
Fa (Ih(s) > 2) & [v = ((8)a))e] & [P(4s}s rals, x,2)) = 0]
= &(Afx.’ 48(8, %, 7, ”)) =0,

Fo(h(s) < &) V[ = ((8)a)e] & [P(A7, fsals, %, 2)) = 0]

I

E(A'f;, L-l+s(8; X, 2, 'U)) =0.
We thus obtain

Foaily) = (0)(B2) E* 4y, @, %, 2,0)

Fa(l}) = (@) (Ee) H*(45;, @, %, 2,0)
whence we obtain the desived result using lemmas 23 and 25.

Lmnma 27, For every k,1 there are primitive recursive functions ¢, ¥»
such that if ¢, are elementary numerical formulas representing them in
A, and &' = (ay, ..., Qp-1), then

Fo B (8(y, 4), o'y &) = (@) By, &, %) ,
Fo B2 (B(y, &), o', %) = (Ea) H*Xy, o, x) .

Proof. We shall prove the first formula. The right-hand side of
this formula is equivalent to

(23) () (Eaq, B)(Es, )[S8(y,0,8) & D(a, B, 8,8) &Py, s, x)) = 0],

where § is the formula used in the proof of lemma 21, Let h(m, k) be the
primitive recursive function

R(m, k) = ol (™) glms g, (me—s,, 1 (me)

where f' and f” have the same meaning as in the proof of lemma 21 and

let = be an integer such that p(d,, t(e, y)) represents h{m,k) in A,.
Then

FoS(r, a0, B) D[ D', ,8,8) = Dla, B, 3(dr, ils, 4}, 1)]
and we infer that (23) is equivalent to

(v)(Es, 1) [D(""y 73 8,1) &5(?/, 1'1_;_1(&(44,., £(s, 4x)), x)) = O] .
This formula is reducible to the form required in the lemma in the way
used several times in the preceding proofs.
LEMMA 28. Formulas H®P(y, x) satisfy eondition VI.
Proof. (i) follows from lemma 21. To prove (iii) we notice that
o E(A,, 0ty ery sy Bmy A,;)) = a’(dt(i.m,n): I_altey -oey tz_s)_), where £ ig prim-
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itive recursive (of. axiom (Qu)), and hence |-, HOP(4;, @y, ..., -3, dm; In)
= H N deymms Boy -5 T1-3)-
Formula (ii) has in our case the form

(24) () D (B (deity, by ooy )
= (Eu, v)[T () & ([, ) 2 T{t, 1)) & ~{I'(t, 1) 3 T(1t, 2)

& H (A5, uy v, 4, 1]} .
Since

o (1) & IT(w) D {[(P(w,v) 3T (b, L)) & ~ (I'(t, ta) 3 I, 2))|
= () [N Im (?’7 Ity ty) y T'(u, '”))]}

(cf. lemma 15 and the remark following lemma 13), we can give to (24)
the form (cf. lemma 10)

(1) D (B (Autiys tay s ) = (But, 0) (2, B, )
{(fW(a, B, u) & ["’ Im(7’7 It 1), T(’ll,'L‘)H & H(M)(dh Uy Ty gy t’4)}} .

T4 follows from lemmas 26, 27, 23, and 20 that there is a primitive
recursive 7 for which this formula is provable in 4,. Lemma 28 i thus
proved.

Tt remains still to give examples of families {4;} of extensions of Aa,
which satisfy the assumptions of theorem 2.

Let B; be a recursive family of sets of closed formulas. Hence there
is a recursive relation R such that

@ eB;=R(j, ).

We denote by r an integer such that the formula Pldr, i, y)) =0
strongly represents R in 4,. Let us further assume that the sets
A; = On,(B;) are consistent. We ghall show that the assumptions of
theorem 2 are gatisfied for the family {4;}.

Let Sg; be defined by transfinite induction on & as follows:

So;=B;, Si;=1\ 8 for limit ordinals 2,
&<

Sp1 = {@: (P is a closed formula) & (EY)|(¥ is a formula with emactly
one free variable ) & (n)(¥(4a) € 855) & {(@)[¥(2) D o)}

Thus 8; is the set of (closed) formulas which can be derived from
B; by & applications of the rule w.

Speetor [10] proved that 4; = Ony(B;) = Supi-

Let Flm(x), Th(z) be elementary formulas which (strongly) repre-
sent in A, the set of formulas with one free variable 2, and the set of
Godel numbers of closed formulas ¢ such that |- 2.
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Further, let sb (2, y), gen(x), zimpy be elementary numerical formulag
which represent in A, the primitive recursive functions 8b(1, 1,7 @)
NegBo(l,1, Neg(T@7), TG Imp ™ (ef. II, p. 206).

We consider the following formulas:

ba

Zo(u, ) ()fp(w,i(z,9) =0] (# is the minimal element of <)

Zg(u,y @, ') (y) {E(“: iy, .’I:)) =002 [a(u, i(w, 3/)) = OV&(“: iy, wl)) = 0}
(# is the successor of #' in the ordering <),

T, 0): ~ By, ) & () [Blu, 1y, @) = 0] & (y + )
O (Ey") {y Y &G #y & [E(M, iy, ?/I)) = 0] & [&(uy iy, .’1))) = 0]}}

(@ is a limit element of the ordering <,).

Let Z(a, u,v) be the formuia

(@) {Zo(w, 2) D @)]ali(@,y) = 0 =(4,, i(v, y)) = 0]} ,
& (=, m’)(Z,,(u, z,2') D {(y)[a(ile, y)) = 0] = (Bt)(2) [Flm 2)
& Thsh(z, 1)) &Th (gen(timpg/)}]})

(@) (2w, 2) D (@) {[ali(e, y) = 0] = (E2)[p(u, i(x', ) = 0 _
& (@' 2) & afe(@’, y)) = 0]}) .

The following lemma explains the meaning of thiz formula:
-LEMMA 29. Let p be in W and let p,p,j satisfy Z in Ny Then
[e(7(n, k) = 0] = [ is the Godel number of & formula @ in Sy ; where &,
is the order type of a segment of X, determined, by m in the well-ordering <<p)-
Proof by induction on £, presents no difficnlties.
Leaga 30, -, (%) D (Ela)Z(a, u, v).
Proof: by the formalization in 4, of the usual existence and unique-
ness proofs of fumetions defined by transfinite induction. ‘
. Lmwea 31, 4, I (%) & I (n') & [F(wy v) o I{w'y0')] & Z(a, u, v)
& Z(a', v’y ') D {(Ea)|a(ile, ) = 0] = (E) [a/(i(2', 9)) = of} .
Proof (informal). The antecedent implies (ef. lemma 17) that
v =0 and u~u'. Let f be a similarity mapping ef N, onto itself carrying
the relation (, i(#;,2)) =0 over into & (w', t(21, @5)) = 0. We then
prove by transfinite induction on the order type of the segment of the
first relation determined by =z that ali(e, ¥)=0= a(i(ﬂ(m), y)) =0.-
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LeymA 32. The formulas
T(u, v, w): (a){Z(a,%,v)D (E2) [a(i(@, w)) = o]},
T*(uy v, w): (e){Z(a, u,v) D (Ex) [a(?:(m, v(w))) = 0]

(where v(w) is an elementary numerical formula which represents the
tunction Neg in A,) sirongly represent in A, relatively to W x N2 the relations

0, 1, ): BBn =0 &(@e U 83,1,
0011, ) (BO)(n ="~ B & (@ e | 5,11

Proof. Let p e W, whence |-II(4,) (cf. lemma 10). Assume that
C(p,j,n), whence that » =@ and @ e8;; where £ < [p|. We shall
show that IY(4,, 4;, 45) is true in R,, Indeed, if w together with D,7
satisties Z in My, then there is an integer ¢ such that (with the notation
of lemma 29) & = & and hence p(J (g, n)) = 0, ie. v und = satisfy in 9,
the formula (Ew)[a(i(z, w)) = 0]. It follows that |—,I'(dy, 4y, dn).

Now assume that non-C(p,j, n). According to lenuna 30

bro~I{dy, 45, 4n) = (a){Z(a, dpy 47)2 (@) [a(‘_(my An)) #* 0]} .

Thus the implication non-C(p, j,n) D y~T'(dy, 47, 4,) will be proved
it we succeed in showing that I'(d,, 4;, 4,) is false in M. However,
thig is obvious because by lemma 30 there is exactly one funetion p
which satisfies in M, the formula Z(a, 4,, 4;) and for this function (by
lemma 29) we have y(J(q,n)) # 0 for every g.

Proof of the second part of the lemma is similar.

TEmOREM 6. If {B;} is a recursive family of closed formulas and if
the sets Aj = Cno(B;) are consistent, then there is a formula free for the
family {4;}.

Proof. Starting with formulas I',I'* of lemma 32 we eonstruct
formulas I, T as in lemma 1. Tt has been proved in lemma 1 that these
formulas strongly represent relations Cy, OF relatively to W x N2 and
satisfy condition (g), p. 207. From lemmas 26, 27, 23, 24, and 20 it follows
that there are integers »,, r, such that

e H(O'Q(Avu @, Y2, dh) = fh(”’ ¥s2)s
Fw H(O’L)(Aru ZyY,2, ) = ]—’,f(m, Y,2)

and hence that all assumptions of theorem 2 are satisfied.

It is rather remarkable that theorem 1 fails for the system Ag of
analysis discussed in [8]. Indeed, it has been proved in [8] that there is
a finite eomplete extension of 4;. It is extremely unikely that there be
a formula free for Ap; this question, however, is open and seems to be
rather difficult.
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