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Some conditions for a mapping to be a covering
by
A. Lelek and Jan Myecielski (Wroclaw)

Introduction. The following problem was the origin of this paper:

(P) Let pel* (=the n-dimensional sphere) and let f: S"—8"
be a continuous mapping such that f(8"—{p}) C 8"—{p}, f(p)=1p and
fl8™— {p} is a local homeomorphism. Must f be a homeomorphism?

The answer is affirmative (Corollary 2 of this paper) and the proof
is not difficult. Nevertheless, we did not find in literature any theorem
or lemma adequate for reference when the statement was needed in
the approximation theory (). Then we found some conditions for a mapp-
ing which imply that this mapping is a covering (in the sense of Che-
valley [4], p. 40). This can be used for solving the above question and
presents some analogy to the results of Eilenberg [57]. All this is given
in the present paper.

Main definitions. All topological spaces are supposed to be
Hausdorff spaces. A mapping is called open if the images of the open
sets are open sets. A mapping f: XY is called a local homeomorphism
if every point p ¢ X has a neighbourhood V such that the partial mapping
IV is a homeomorphism. '

The theory of covering mappings is given in [4], p. 40-60 (see also [6]).
The main definitions used in this paper are the following:

A pair (X, f) is called a covering of ¥ if X is a connected and locally
connected space, fis a mapping of X onto ¥ and every point 4 ¢ ¥ has
a neighbourhood U such that for every connected component O of f~ oy
the partial mapping f|C is a homeomorphism of € onte U (*).

Two coverings (X, fu), (Xu,fo) of ¥ arve called equivalent if there
exists a homeomorphism & of X; onto X, such that fi = fohu

(*) In a problem of existence and uniqueness of some polynomials (see [8]).

Added in proof: We have found now a paper of Browder [3] which containg
results near to ours. In particular his Theorems 5 and 6 are similar to our Theorems 2
and 1 respectively. However our theorems are concerning different class of topological
spaces. Corollaries 1 and 2 can also be derived from Browder’s results.

(®) A less restrictive definition, which does not require the local connectedness
of the spaces X and ¥, is sometimes used (for instance see [7]).
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A space X is called simply conmected if it is connected and locally
connected and every covering of X is equivalent to the covering (X, i),
where ¢ is the identity mapping ().

Main theorems. We shall give some conditions for a pair (X, f),
implying that it is a covering.
THEOREM 1. If

(i) X s connected and X or Y is locally connected,

(i) f: XX ds an open local homeomorphism onto ¥,

(iil) every point pe Y is an interior point of a set HCY such that

{HH) is compact,

then (X, f) is a covering of Y.

Proof. For every p ¢ ¥ the set 7 '(p) is finite. In fact, by (iii) F(p)
s compact. Suppose that @, is a limit point of 77'(p). Then for every
open set V C X containing z, the set #(p) ~V is infinite and f|[V is not
a 1-1 mapping, which contradicts (ii).

Putting
() f~1(27) = {By, ooy B},

we infer from (ii) and (ili) that there exist open sets Vy, ..., V5 such that
z eV, CfH), Vi is a homeomorphism and V,~V,=0 for 4,j
=1,..,0; ¢t5#].

Let
() W=FfT)n . f(Va).

It follows from (ii) that W is an open set and p e W.
By (i) and (ii), X and ¥ are connected and locally connected. We
shall show that there exists a connected open set U such that pe U
1 .
CHAWand 7 (U)CVyu...o Vu. Suppose on the contrary that for
every connected open set U contained in H ~ W and countaining p we
have
FUD) AIX—(Viv o U V)] £ 0.
By the compactness of f7'(H) it follows from () that ()
O = @ FHO) AT —(Viv .. u V)]
=@, T A [X— (Vi w . u V)],
contrary to the definition of V,. Hence such a U exists.

] () A remark in [4], p. 44, concerning the word “every” used in this definition
1s not exact. In fact, it is completely correct to use the word “every” in each axiomatic
set th'eory, and this does not imply the necessity of treating as a set the universum
T:o which “‘every” is applied. On the other hand the construction performed, pp. 44-45,
i8 not superfluous since it is used in the proof of Theorem 4, p. 54.

(*} U denotes the closure of U.
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Tet € be a component of f7Y(T). Then CCV, v ... v ¥y, and thus
¢CV; for some j. Therefore f|C is a homeomorphism.

To finish the proof, it is enough to show that f(C)= U. In fact,
since U CW C#(V,) according to (), and f[V; is a homeomorphism,
the set (f|V;)(T) is connected. But we obviously have € C (f|V;)7(T)
C £ (U), whence ¢ = (f[V;)7(U). It follows that

10y = (fIV)(0) = GV (V) THU) = T.

Theorem 1 clearly implies the following

CoROLLARY 1. If f is an open local homeomorphism of a connected
locally connected and compact space X onto a space X, then (X, f) is a cover-
ing of Y.

Remark 1. Tt is easy to construct a mapping f of a compact disk
D onto itself which is a local homeomorphism and therefore satisfies (iii)

* but is such that (D, f) is not a covering of D. This shows that the sup-

position “open’ in Theorem 1 is essential.

Remark 2. It is easy to construct a mapping f of the plane R?
onto itself which is a local homeomorphism and therefore is open bub
such that (R, f) is not a covering of B2 This shows that condition (iii)
in Theorem 1 is essential. On the other hand (iil) is very restrictive,
for instance it is not satisfied by the covering (B, ) of the cirvcle |2[ = 1.
This example suggests perhaps that the words #f"YH) is compact”
in (iii) can be replaced by “every component of FUH) is compact”.
This, however, is false—an example is described in the Appendix at
the end of this paper. The theorem which follows applies to the most
important examples of coverings, e.g. to (E, ey,

TarogEM 2. Condition (iii) in Theorem 1 can be replaced by the
following one:

(iii') every point p e Y dis contained in the interior of a set HCY
such that

1° H is stmply connected,

2° every component of FTHH) ds compact.

Proof. Let ¢ be a component of f (H). Since, by 1° H is locally
connected and f is a local homeomorphism, fH(H) is locally connected.
Thus ¢ is open in (). The mapping f being opern, the partial mapping
fif M(H) is also open (F). Therefore f(C) is open in H and compact by 2°
This gives f(C) = H, because H is connected by 1°, Hence by Theorem 1
the pair (0, f]C) is a covering of H. By 1° the mapping 1€ is & homeo-
morphigm and Theorem 2 follows.

{f) This general implication is an immediate consequence of the trivial formmula:
JIG ~ fHH)] = f(G) ~ H. ‘
Fundamenta Mathematicae, T. XLIX. 20


Artur


298 A. Lelek and Jan Mycielski

. Remark 3. A simply connected space X is not necessarily locall
simply connected, i.e. we can have peV C X with V open and suci
that no neighbourhood of p contained in V is simply connected. Such iy
the continuum K constructed by Borsuk [1] (the above properties of Bor-
suk’s continuum are consequences of the results proved in [1], [2] and [6])

- Remark 4. Tt is clear that if ¥ is supposed to be simply connected
in Theorem 1 or 2 or Corollary 1, then the mapping f must be a homeo-
1.1101‘1-)hism. An analogous Theorem of Eilenberg [5] is the following:
if f is an open local homeomorphism of a compact arcwise connected space i
onto o space Y such that = (Y) =0, then f is a homeomorphism (8). Note
that this theorem is independent of our results, because 1° X ’is not
{supposed to be locally connected and 2° the condition m(¥)=10 is
?ndependent of the simple connectedness of ¥Y—of course il’r, does not
imply the local connectedness (and thus the simple connectedness)
:)f fismd is _[IéOt @ consequence of the simple connectedness of ¥, Borsuk"s
ontinnum K mentioned in R g i 1 G

ot ) 2 0 o T emark 3 being simply connected and such

The original problem. We start with the following theorem:

THROREM 3. If

(i) X is a compact space,

((11; ]?CXX and @ is conmected and locally connected,

i) f: X—Y s a continuous mappi ) /
Nomoompngiom, pping and f|Q is an open local

(iv) @ or {(Q) is locally compact,

(v) (@) ~f(X—-Q) =0,
then (@, f1Q) is a covering of 7(Q).

Proof. By (iii) and (iv) every poi i

. point p e /(@) belongs to the interior
relat};;ve to_fI(Q) of a compfbct set H contained in f(Q). Whence, by (v),
.vsve ! ave f (H) CQ.WH being compact, and thus closed in (X)), FHH)
; cc(:) f(;iel(lig 1::10 %T“)by éu_z_):.)i[‘hﬁr(}alfore FHH) is compact by (i). This gives,

1) and (u1), all hypotheses of Theorem 1 for tl i

71@: @-71(Q), and Theorem 3 follows. T the mapping

Now we return to problem (P) (see th i

! " ; e Introduction). We shall use

the fact that, owing to (i), @ is locally compact if it is open.

COROLLARY 2. The answer fo problem (P) is affirmative.

Proof. We shall show first that (")

{=) 18— {p}) = 8" — {p}.

() m(¥) denotes here the elassical fundamental group, and not the fundamental

group defined by Chevalley (see [4] ighi
d d , P. 52). The ?
group 1s equivalent to the simple con.uect)ednetss.v g of Chevalley's fondamental

. . :
(*) This is known and can be derived from the results of Reichbach [9], for instance.
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Indeed, let B be the boundary of /(8™ in 8™ If V is an open subset
of §" containing a point ¢ such that f(g) ¢ B, then f|V is not a homeo-
morphism by virtue of Brouwer’s Theorem on the invariance of interior
points. Therefore, f]§"—{p} being a local homeomorphism, we have
f‘l(B)Cf‘l(p)= {p}, i.e. B=f"(B)C{f(p)}. But since j(8") is compact
and has interior points, its boundary cannot be a single point, whence
B=0. Tt follows that f(8") = 8" and 8"—{p} = F(8") —F({p}) Cf(8"—{p}),
which gives (=) according to the hypothesis of (P).

Now we put X =28" @ =8"—{p} and observe that conditions
(i)-(v) from Theorem 3 hold. Therefore (@,/|@) is a covering of 1(@).
But we have f(Q) =@ aeccording to (=). Since @ is simply connected
(see [4], p. 58, Corollary), we infer that 7@ is a homeomorphism of §
onto §. Thus f is a homeomorphism of $" onto 8™

Appendix. We describe here the example mentioned in Remark 2.
It will be a mapping f: X —¥ such that:

(i) X is a connected and locally connected closed subsel of the plane R?,

(ii) Y is a locally connected continuum in B,

(iii) f s an open local homeomorphism of X onto Y,
(iv) every point y e ¥ 4s contatned in the interior relative to Y of a set
HC Y such that each component C of FNH) is compact and (0)=H,

(v) (X, 7) is not a covering of ¥.

The definition of Y is the following:

Y is a union of civeles K,, K,, ... tangent at a
point p, ;14 is contained in the closed disk bounded
by K, and the radius of K, is 1fi for ¢=1,2,..

(see fig. 1).

The definition of X is the following:

Let L be a cloged half-line and let py, ps, .- be
a sequence of points of L such that p, is the Fig. 1
extremity of L, p; % py for i #j, and the distance
from p; t0 P I8 2 for i =1,2, ..

TLet ¥y, ¥,,... be a sequence of sets such that Y, is isometrical to
Y—K,u (p}, Yo and Yy, are isometrical to ¥ —K,—Kia v (P} and
all eircles in Y; arve tangent to L at the point p; on the same side of L
(i=1,2,..). -

Let I,, I,, ... be the sequence of cloged intervals of I, the extremities
of I; being p; and peri, and let Uy, Us, ... be the sequence of closed
half-circles, the extremities of U; being p; and pga and U; not lying
on the same side of I as the sets ¥; (¢ =1,2,..).

X is the union Lu Yy v Uy u Yyu Upu ... (see fig. 2).

7 isometrically maps ¥, into ¥, whence flp) =p for i =1,2,..

f homeomorphically maps the interior of Iy, and of Usi-y onto K;— 381
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and the interior of Ip; and of Uy onto Kix—{p), ¢ =1, 2, ..., In such

& way that the mappings Ipiy v Uspy—K, and Iy o Uy—>Kip, are
local homeomorphisms.

It is easy to verify properties (i)-(iv); let us show (v). It V is open
in ¥ and contains p, then V contains a circle K, where § > 1. Therefore

L5 200Q

Fig. 2

Ty3—1y C {7(K;) C (V). Hence there is a component ¢ of 174V), which
containg the interval Iny—;, and thus also its extremities Pai—2 and

Pzj—1. HOWever, py;_g % Poj—y and F(pay_s) = F{p2j—1) = p. Tt follows that
#10 is not a homeomorphism and {v) is proved.

Note. The space ¥ is not locally simply connected at the point p.

This peculiarity of our example is necessary in view of Theorem 2

L.
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On plane dendroids and their end points
in the classical sense

by
A. Lelek (Wroclaw)

§ 1. Dendroids. A continuum X (ie. a compact connected %net?‘llc
gpace) is called a dendroid (1) if it is arcwise eox?nected. afnd heredl’ca,mri
unicoherent, i.e. if every two distinet points of it are joined byl aﬂ;f ais
contained in X and every subcontinuum of X (as well as whole )

i gee [4], p. 104). _ .
umc‘j:: rli];z i‘ecen[tl]y; %een proved by J. Oharat_o?nik (in a paper Wénch
is now heing prepared for publication) the condition for X to be 'an en-
droid is equivalent, among others, to each of the following 01.168. .

(i) every two distinct points of X are joined by ewactly one irreducible
continuum contained in X, namely by an arc, ‘ . o

(il) X s an arcwise connected, Lomologically acyclic and 1-dimensions,
continuum (or a single point). - .

By (ii)(every non-degenerate dendroid is a unicoherent Ed;m?il&n?gl
continuum; therefore (see [4], p. 338) every loc.ally CONTECLE I‘ent? e
a dendrite. This means that dendroids cons.tltu?;e a generaliza, 1(:; =
dendrites. In this character they are found in hte.rature. _For 11ns an .
in 1054 Borsuk [2] proved that dendroids have the fixed p01.1(11'b Plopmoi;
This was generalized in 1958 by Ward [.8], who wasg CoDnsi erlzléizable
abstract spaces, namely without the requirement that X be a rnddﬂ]mna‘1
space. Let us mention also paper [9] of Ward, where some a
refelimv(:;sm;engzsiged to study dendroids by Professor B. Knaster.
I express my gratitude to him.

§ 2. End points in the classieal sense..I sy t].mtha ];;o;?:c;
of an arcwise connected continuum X is an e,?ul po.mt of X in % : dla m,
sense if z is an end point of every are contan‘wd in X and con :11(11m50 n-.
Tt is well-known (see [4], p. 203) that if X is & locally connecte

(1) This term was proposed by B. Knaster and became usnal in his Seminar In
Wroctaw.


Artur




