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Metric property of linear sets
by
A. S. Besicovitch (Philadelphia, Penn.)

DuvrwNrrioN. A decreasing sequence {h;} of positive numbers is called
a progression if there exists a positive integer % such that hyx/h:i< }
for overy i. Denote by f(@, a, b) the characteristic function of the interval
{@, b) and write

¥
11 ;
o) = D@, Ty, B

=1
TaBOREM 1. A necessary and suﬁz&m’em condition for the sequence hi

to be a progression is that the integral f s;(w)dw be bounded.

We have
Ty,

11 1
[ sy@ )dm-(EA-—ﬁ—!—{v-...-I—h—j)hf.

0
(i) Suppose that there exists an integer k> 0 such that for all §

k

1
(W‘;F +n)” <3

TFor § >k we have

k 1 hy hy 1
§ > (h:;__]‘-{ + h ) h7‘> h or h,'._k < E )
Henco {h;} is a progression.
(iiy Conversely if hy.p/hy i3 always < § then
s 1 1
80l = [ o il e ) )/ e s ..) -
(,f“”“’ <h1 g T )”’< ”( h T
1 1 1
e Bog g i e e e -
- 1(’1'/ oy l - e )_l

1 1
- 7"1‘~Ic+ (Ib -1 m—i‘ .-.> < 2k

that is, the integral is bounded, and the theorem is proved.
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Introduce the truncated function & (w) by the conditions

Pt
s{@)  when  8y(w) <3 iy’
5](&7) = 1 1

i when  8y(m) = h, .

DEFINITION. A sequence {h;} is called & generalized progression if
Ry
the integral [ §(x)dz is bounded.
0

N. Fine (*) has established a very interesting metric property of wll
linear sets of points. Denoting by ¢ the distance on a slraight line, ho
has proved

THEOREM 2. Given an arbilrary linear seb I and a progression {l} (*)
the series

E olo—hy, B)
by
d=al

converges at almost all points of H.

Theorem 2 represents a metric property of linear sets, being o sharpon-
ing of Lebesgue Theorem on existence of density equal to 1 al points
of the set. From this point of view the theorem iy very interesting and
it is important to see what ig the most general type of a sequonce {he}
for which the theorem holds. The answer will be given in Theorems 3 and 4.

As o(z, B) = ¢(m, E) where I is the closure of ¥, it is sufficient
to-prove the theorem only for closed sets.

TeEOREM 3. For any bounded closed set B and for a generaliced
progression {h;} the series *

Z o(@—hy, H)
. hy
ge=1

converges at almost all points of H.
With the notation introduced above we have

Iy

(1) [ s@)dw <k

0
() Oesdro summability of Walsh-Fourier series, Proc. Nat, Acad. of Soiences 41
(1955), pp. 588-501.

() Actually, conditions on the sequence {i} are given by N. Ine in the form:
h,ga hy < M6, hé; hi < MJ$ for a constant M and all § > 0. It follows from the first

s - f
inequality that the sequence is a progression.
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for (u.’l] 7. mm.)m by (@u, ba)y 0 =1, 2, ..., all the complementary intervals
of 71 and write by—ay = 1,. Tf we drop from our series terms equal 0,
then we may write

0 o0
Velw=h,B) 1 N1 elo—h,B)
e hy - 21 Z ""’# .

deal, el ap<2~hi<by
We shall assume that for every ¢
(2) hi < 27&1;,“ ,
Liabor on wo shall goti vid of this condition very easily. Consider the sum
\ ! Q(m“' h’i’ E)
h.;
Upeidi=mlig < by

for values of @ outside the interval (by, by-+1,) that is for @ > by+1la.
Then only those terms of the series are different from 0 for which &; is
groator than Iy, Let §, be the largest ¢ for which h; > .. We have

) In
V'oele—hy, B) N olo—hi, B) L,
(3) > it e DIt B pa g by, .
ARy <y feal

Hor, whenover an < @—hy < by, f(®—0bn, hy~hy,, b)) =1 and on the left
hand side the summation is extended only on values of ¢ < ju. For all
members of “the sum,

o(8~hyy B) < 3ly < %hy,

whence
\ 1 0~ .
(4) D) el D) g o b) < Tasy(o—ba).
<o <y ¢

Denote by U, the sot of values of @ for which s;,(w—bs) > 1/hy,. For
all pointy of Un, 3p,(@—bn) = 1/hy,.
Hanece by (1) and (2)

(B) mUn < Iohy, < 2l .

Given ¢ 0 define N so that

(6) . My < e
n% 3(@h+1)

and congider convergence of our series on the set

N 0 ©
B == 3 (bny bate2N) = D (b, batl)— Y TUn.
fsel s N1 n=N+1
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By (5) and (6)
(1) mb > mhB ¢,

On the set B’ each of the sums 2 (Q(!Ir'"m hi,]fl)/hi) has o finite

Uyl <by
number of terms and thus convergence of the full series deponds on the
convergence of the series

o
T oele—hy B
(#) Dy el Rl
NauN+L ag<a—~hi<by
By (4) we have outside Un
XU o(e—hy, B )
é(m“ ) <y dg (- by)
an<x—hi<by

Thus on the get B

i (@t B S
QL Ny ’J) Al -
,,_____m,,.,:‘,‘_,,m.‘-_.. < /\ Z?’L N]”(."I:‘~*" bn) .
n=N+1 a1t<a;fh(<bn N1

o0 o
[ D bipe—bdo < 3 by < oo

B n=N+1 Nus N oL

{9)
But by (1)

that is, the series on the right hand side of (9) convergos ale almost all
points of E'. Hence the series on the left hand side does, and Ko dooes
the full series, from which the theorem follows. Wo got rid of the eon-
dition (2) in the following way. If {h;} does not satisfy it we take the
sequence 8 of numbers (§)7" The theorem holds for the sequenco S and
for {h:}+8 and consequently it holds for the difference, that is for {h).
TeBOREM 4. If the sequence {h;} is not a generalized progression then
there exists o set B, mB > 0, at almost all points of which the series

10 \' el by, 1)
(10) < i

diverges.

It is more convenient for us to define w et 7 uoh on o ’traight Hnoe

but on the unit cirele I 'Weo shall mark an origin and the coordinate a
L] Y L A 1 J N . oo

of a point on I" will be the length of the are botwoon thae origin and the point.

. The sequence h; being not a genoralized progression, thu RO UGN
-of integrals

2

(11) A() = [ 3@)dw < 2mhit

0
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is ot bounded. We can choose & sequence of integers §, < j, < ... 80
that the sequenco

(12) WVAG] =%, WA =k, ...

inereases as rapidly as we like. Integers §y, js, ... will be defined more
precisely later. We shall also need integers %j, k&, ... such that &, < ki <
<y < ki< ..., also to be defined more precisely later.

Lovma. Given a bounded funciion s(x) = s(x - 27w) on the unit circle I'
and a set I also on I' with Ogz(x) as its characteristic function, then

o g e
(13) [ d [ sw—1)0u(@do=mE [ s(@)da.
0 0 1]
(18) in received by the change of order of integration.
A sequence {(an, ba)} of non-overlapping arcs on I' of total length
o0

<2n will be defined so that the set B = I'— > (aa, bs) will satisfy the

n==1

theorem. Writing

’ 20y + by b = @y 2by,
) g =

n — 3
we¢ have
% elo—h, B) \¥ X1 oelz—h E)
(14) Z o=t B) elo
foal 4 n=l gp<e—hi<by

-]
\7 Z o(#—h, B)
> 2 I
n=1 ap<z—hi<bp
We ghall define now by—a, by formulae
bp—ap = 3hy, for <k
and
bn — Oy, = 3}'/7'“ fOI' 70;..1 <N \{ k; , 8§ > 1.

Ag the interval ap, by, is the interior third of (as, bs) we have by—a, = hy,
and for a), <x—h; < b} o(@—hy, B) > hj,, so that

, ' elo—h, ) Y oln, YL
(15) Y ey, M sk Y g
an<a—hi<bh ap<z—~hi<by, un<1x<—jlu<bn
. L3

and as in (3) and (4)

., _ N
1) D = 3 Lot b,y b = silo—bi) > B0
aéq;;mb,', &

Fundamenta Mathematicae, T. L. (1961) 2
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Thus defining s as a function of #, equal to §, for n < j; and for »n > j, Weo define bp.y by one of such values:
by the inequalities j,_; < 7 < j; we shall have by (14), (15), (16) ore
” Ml 6nhy, f N mBy— 6nhy, oo
o & §p,(w— by > e A dw > et Iy
- T olo—he, B) _ N a9) [ sulo—bima> R [ 5 a) o
(17 D é’l—ﬁ—’—) > D o 1) & T

i=1 {=1 N
' For any #» <k we have

We shall now show that by a proper choice of numbers 4y, f,, ...

and bf, bs, ... we can have the series on the right hand side of (17) to (20) f Spa(w) da < (T -+1) m (Bp— Bpi) -
diverge at almost all points of E. First we define j, so that k, == h/ fim] For Ha i,
be large, say >10%, Writing . Spea(@) == Su(@) by, 5, (0 = bpa) < Ty +1
Sl) = 3 g By — B3 on By Honce
Twa] .
21 Up= Sy (@) @ ... + Spqal) dao - .. -
denote by Fu, for n <k, the set of values of @ for which Su(a) < J. - " Ekr;[”‘h ' E"“é"“
Remembering that 3;,(w—bs) is always <hj' we see that Sml®) == m for y i
'y o &l ) = T o ) da % 1)2n.
all @. Hen'ce, for n < &, By = (0, 2x). Numbers b, and §, will be defined * EH[En Sulndet E{ Sualaydn < (bl
by induction. For n < k, the intervals (a,, ba)y bu—an = 3hy,, are subjoct But
o:zzdy to the condition that they do mot overlap. By (11) and (12) i
Khjy < 2n so.tha;t t.he total length of intervals (an, bn), #n < %y i gmall. (22) Un= f Sp(@) do + f iy 81— biata) 40+
The consecutive definitions of by, for n < % will aim at reducing mil, to a 0 oy
11 value. i i i , ; / hat +ha i -
small value. This will be achieved by choosing by, so that the integral , + f Py, By —Diygn) 0+ o+ f By, B3,(0— V) o
. Ep+1 En
Ef S0~ bnya) o = [ 0, (@)5,(0— Vi) do ’ and by (19)
n 0 ) n
1 mBy— 6%hy, .o
bas as large value as possible. (28) Un> ’ k‘?” il
We have by the Lemma =
By (21) and (23)
2r 2m . 2 d
18 — _ i, N m.By,— 6kh; ‘
(18) of at Of O5,() 3, (0~ 1) doy = B, Of 5,() dw . (24) _/‘: P T b, < (R 1) 2w
k=l
But we want for by, such value of ¢ for which the i : 3 i
does not overlap V;i;lll any interval preovlio‘:VJ]s,l;Ch(;gflfng(;mﬁﬁ (‘an-lnl’ l{nﬂ) W e T Tt o it e woutd Tave
§ v » Bhat Iy a valuo > 14k for all % < NE %, For if it did we would have
n
Fe(0,27) = 3 (= Ry, by 2hy) =T, I = 2m— Gy, . Ol < 6B, < 12085,
{1
By (1 e 6y, g,
' ( 8) f ' f T o ml{/}gg%ﬁ)lc‘@l Tey }W 4 702/8/1111 ’
dt | Op,(@)5,(0—1)do> (mBy—6nhy) [ 3
o) dw \ o app— -
i ' - 2 (;f 1) and taking for n the largest value, that is <N, wo shall have
Hence there exists ¢¢I such that $
r mB—bnhy, [ o Z ﬁqﬁ%%@* By, > (VTP = Te) B gy > §HE Dy, > el
O, (@) 35 (5 — n— YNy = MEy — 60k - <
6{ (%) 810 —1)dt > 27:_6”;%‘ f 8y () do > “_12%__"’_”‘7: f §j, (@) dao . e

° g which is impossible by (24).

P
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Denote by % the smallest integer for which ml < ldnk™® and
suppose that b;, has been defined for all » < %j. We have 8/ (x) =k,
at all points of (0, 2=) except at points of the set ! of meagure < ’I/ka”“.
Thus by the above definition of b for & =1, 2, ..., &1 we have achieved
that the series (17) is >, except at a set of measure < ldwk; 8 W dofine
now 4, so that &, = [)/4(f,)| be greater than &} and &{. There will bo
fyrther a fixed value of & > k. We define, for & < n < by, bf— af, = IL
and b, will be defined by an induction gimilar to the first one. Wirst fojxf
k' < n <Ry the intervaly (@, by) are subject only to the condition not
to overlap with the intervaly already defined. For these values of » W<;
denote by B, the set of those values of # for which Su(w) < K, no thmz
E]’n = (0, 2=) foxf all & <n < ky. After by, has been defined, for an » 2= k
b,H.l.ca.n be defined so that the interval (@y1, bye) doos not overlap wi't;gl,x
the intervals that have already been defined and that

2
Y WLy —6nh;, (..
E"fs,z(m bhy1) d > an-;mfﬁj 3y(%) dw
. 0
As before we shall arrive at the value %, o ‘
. i , 2 of n such that mBy, < 1dnk; s,
Having defined by, for all n < kj we shall have the value of tl::s gorioy EIL7)

>k, except at a set of points of measure <14%:"". Continuing in this
way we arrive at a proof of the theorem.
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Orderable spaces

by
B. Banaschewski (Hamilton, Ontario)

Introduction. A topological space I will be called orderable if
there exists a total order relation B on J such that the interval topology
of the totally ordered set (F,R) coincides with the topology of the
space J. Any total order relation J2 on an orderable space B which has
this property will be called an order of the space B. For any relation R
on a set B, the dual relation will be denoted by oR. Tt is clear that if B
is one of the orders of an orderable space B then oR is also an order of
the space B. The pair (R, oR) will then be called an order class of the
space. The basic theorem concerning connected orderable spaces is due
to Rilenberg ([2]): A connected space B is orderable exactly if it is
locally connected and the subset ExE—D of the product space
(D = {(#, ®) | # « B}, the diagonal in E x E) is not connected; in this
cage there is exactly one order clags of I given by the closures of the
components of B xE—D.

This note will mainly be concerned with densely orderable spaces,
i.e. with orderable spaces possessing orders R such that the ordered set
(B, R) is dense in itself. It will be shown that there is a one-to-one cor-
respondence between the order classes (R, oR) with dense order F of
such a space B and its: conngcted orderable compact extension spaces
which is, in one direction, given by the passage to the Dedekind com-
pletion 8(#, R) by cuts of the ordered set (B, R). Also, it R is a dense
order of a space B, then 6(E,R) will be described as the completion
of F with respect to a certain uniform structure which is defined by
means of R. Then, the uniform structures of a densely orderable spaco
arising in this way out of a dense ordering of B will be characterized
by a number of properties; this constitutes a eriterion for the existenco
of denso orders on a space in terms of uniform structures. The applieation.
of these ideas to topological groups ix shown to lead to a characterization
of the dense subgroups of the additive group of reals. Finally, the existence
of dense orders of a locally connected space is considered.

All coneepts of general topology are taken in the sense of N. Bourbaki.
The same goes for notions and notations related to totally ordered sets.
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