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On isomorphic free algebras
by

8. Swierczkowski* (Wroclaw)

1. Prellminaries and sammary. Given a clags A of abstract
algebras which have the same operations, lot ey, denote the free A -algebra
with e generntors (el L, p. viil), Tn Uhis paper wo eonsider the class
of all froe algebras oy, with finile . Assuming that Lwo of these algebras
are isomorphie, Le. wlgmedy, B /L we rvostigate the distribution of
pairs of isomorphic algebras in the sequenco Ayy Agy oo

Mrggoriem 1. If T s the smallest dnteger sueh that o= m holds for
some m /T, and 1 - d 48 the swmallest integer satisfying Ay o, T# Ty
then e sln holds for mfon if and only if m==n (modd), and m,n >k

Theorem 1 implies that, for any fixed free A-algebra A, The indices
f for which «f; is isommphie o ol form an arithmetic progression. Let
in particular {«(} bo the cluss connisling of a single abstract algebra A
and suppose that «( has a finite basis (sel of independent () generators).
Then the above consequence of Theorem 1 yields @ theorem of K. Mar-
czowski (of, also [2], Theorem 5) which says that the finite ranks (cardi-
nals of bases) of «f form an arithmetic progression, The transition from
our rosults to this theorem follows by observing that » is & rank of o
it and ouly if o ix isomorphic to tho froe { A} -algebra .

TruoreM 2. Given any integers 0 <To <1, there ewists @ class of
algebras Wgyy satisfying the assumptions of Theorem 1, i.e. with the property
that Tt and 1 are the smallest integors such that «lp= T

Tor proving Theorem 2 we use thoe class Ay of all algebras having
the following % |- oporations

(1) Pty ey )y O @y ey 1), Ty b Jely oy by
which satisfy the wxioms (¥)

(2) V"t(‘“l("”,t; oy )y ey Op{tlyy oy wl)) caigy Cel gl
() @g(a(dyy ey @)y oovy PUlLy wovs ) = ey el e k.

* During the proparation of this paper the author wag o Rosearch Fellow at the
University of Glasgow.

() In the senge of 15, Murczewski's definition (see [6]; cf. also Def. & helow).
(®) Axioms of this kind were considered in [4].
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Wpey Is & variety in the senso of P, Haull (¢f. [3], p. 66, Def, 2). Tn the
course of the proof of Theorem 2 we show (Lemma 5§ helow) that @ freo
'QI(k,z)-_aIgebm Ay i8 isomorphic to a free Wyy-algebra of, if and (){11\
if » is a rank of o,. Hence, by Theorem 1, the arithmetic ])]‘(I,E{’['(!Hﬂi()i
Jc'+ qd (¢ =0,1,...) is the set of all ranks of the algebra o e Ayp. This
gives a positive answer to a question raised by 1. Marczowski ((l.f .tz])
V;he:gher e;regrharithmetie progression is the set of all ranks of a (c(;rt'),in
algebra ¢f (this question was partially : p : 17 ,(
O Byl erdsondis o 120 T Wy answored by A. Goolz and

‘ 2. l?roof of Theoren'n 1. The following lemma and the corollaries
are straightforward generalizations of results contained in (27 (Thoeo-
rems 2 and 3). o ’

Levma 1. Two free U -algebras «f o ;

i Am ond Al are tsomorphic of
only if there are algebraic operations " phia 3 and
(4) Vi@ ooy @)y Oy, ey )y 6= Livomy f=1,.,n

such that the equalities

(6) 'V)i(ol.(mla ey m)y ey On(®y, oo, wm)) =&; d=1,.., ",
(6) 61(‘/’1(""‘1! ey @n)y sy Yl @y <o, -’lh,,)) =05 J==1,..,n,
hold identically in every algebra of e,
P f i i
. Dz«;z;fi ];)f bLemma, 1. Suppose that v is an isomorphism of Am onto
ool g1 Y @15 ey @ and by, ..., by the free generators of A and
n respectively, we have that there are operations (4) for which.

s T = P(byy ooy ba),  Tlby = O05(@yy wovy ) .

Wy = T 3 . = '
+ = Tlow; = (T by ey T0y) = "/’i(ol(“u ey Om)y ooy On(ag, oo, a’m)) s

by =771, = B
1 =10y = 0;(vay, ..., Tly) = 67(1/)1(b1, s Budy ey Yu(by,y e, bn)) .

Since Gy eeny b and D b
: DA 01y ..y ba generate free -algebr .
tha,tl\gs) and (6) hold identically in every algebra «f e?g[ebmﬂy e Tl
identic;gyasi?rzsezl;at r;]ze;['e aDre 0:501‘&1110118 (4) such that (5) and (6) hold
g . Denoting, as before, the froe manemnt e b
Ap by by, ..., by consider the elemengt,s before, the frao gonerators of

G=plbyy ey bl P=1,.,m,

We havi

oo ! th:t btyh e<;> 1;};13;’0 (—:f generate 9{7,,.' The lemma will be proved if we

oo, o they in 1ia, % freely ofn, i.e. that an arbitrary mapping 4,

Yot o ’inﬁo P algebra o « U can be extended to a homomorphism
n - Suppose that 1,6; = d;, where d; belong to o, OODSider
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the mapping A defined on By very b Ty Ay = Ogldy, o, thy). Thiy mapping
can. certainly bo extended 1o o homomorphism A ginee by, .., b ave freely

generating (n. But then, by (h),
20y == i Ay, o0ry Abn) =2 il Ol ey ooy )y ors Onldyy vy ) 55

which shows that A is the requived extension of A, This completos the

proof of Liemma L.
COROLLARY 1. If wlmeoAn, then slmir=nir holds for v ==1,2, ..
Proof. Assuming that slm = cln we have that there are operations (4)
which satisfy (3) and (6). Denoting by ¢f the identity operations
@y .y Wg) v Wy, 1 % § == ¢, we dofine as follows the operations

Puyy ory Brokr) 5 ()y(a«‘“ T A R NUIPR U hE I Tyoery 0ol

Py o= ‘ @' daly gy Ty
Wil QLT oy Oim) 5 e bl ey R
'(‘)'12:_ ‘ a 7:?"‘:\7"'71'"5 ;
0¢~~r('37;}|:|“177 AR L D PR A U

Tt i easily checked that 9; and 5, satisty conditions analogous to (5)
and (6) and hence &lnirt “lptr Dolds.

We note that our assumption ol slppq and Corollary 1 imply

COROLTARY 2. Aprt Aprga holds for q=1,2, ..

We are now in position to complete the proof of Theorem 1. We
have, by the above Corollaries that the conditions =2 (modd) and
m,n =k ioply sln=oln. We observe that cly=~«ln never holds when
r<m<n<k-+d Indeed this would imply that At amn = Slera ey
by Corollary L which contradicts the definition of % and d. Thus clp=oln
implies m = n (modd). This completes the proof of Theorem 1.

3. The free %y -algebras. We denote by Ny the clasy defined
in section 1. The main result we wish to prove in this section iy Lemma 3.

Given a set § and an integer n, the elements of the Cartesian product
S™ will be called n-sequences in S. Let Ay be the set of elements of the
free Wqp-algebra olm. For any sequences o ¢ (Am), o€ (dm), we denote

(7) (o) = (u(0), oo, il0)) s @(0) = @s(), -5 @) -

We denote by a, ..., & the free generators of lm. We prove first
TiEvMa 2. There enists a decomposition Ay, = Loj A in pairwise disjoint

sets i, where °A = {ay, ..., @m} ond eaohvof the set;wiozl, (432 1), is a disjoint

union of certain subsets having & elements or 1 elements each and these subsels

can be ordered 1o form k-sequences and 1-sequences in such & way that if
we call these sequences normal, then, for m = 0,1,..,
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n
(2) if & is a not normal k-sequence, (l-sequence), in il J A which has
()

at least one term in "4, then (g), (w(s)), 18 a normal sequénce in ""“/1,
(b) 3f m is a normal To-sequence, (I-sequence), in "''A, then p(m),
n
(w(m)), is @ not normal sequence in \J *A which has at least one term in ™.
{sa0)

Proof. We shall first construct a certain algobra s(m, e Wy which
has the properties (a) and (b). Then we shall prove that clp = ofy,.
We denote °4 = {ay, ..., an}. To comstruct gy we neod an  infinite
sequence of disjoint sets 4,24, .. with the following propertios (wo

take the notation ™4 == C) )
]

(i) for each n > 1, "4 iy a digjoint wnion of certain subsets having &
elements or I elements each; these subsets aro ordeved. and eallod normal
k-sequences or mormal 1-sequences regpoctively;

(ii) for each n > 0, there is a 1:1 mapping @, of the class of all these
k-sequences in "4 which are not normal and have at least one term in
n F . o
4 onto the class of all normal I-sequences in iy,

(iii) for each n > 0, there is a 1:1 mapping @, of the elags of all not
normal -sequences in "4 which have at least one ferm in "4 onto the
class of all normal %-sequences in ™4,

We construct the sets ‘A by induction. The sot 94 was alveady dofinaed
and there are, by definition, no normal soquences in °A. Assaming that

we know the number of normal sequences in each of the wots 'A, ey 14,

the conditions (i)-(iii) determine uniquely the cardinal of "/ (thiy cardinal .

i$ kL.+1K, where L, (K,) is the number of all not normal L-Beguences
(k-sequences) in "A which have at least one term in A). Tt TP iy any
set of this required cardinal and disjoint to the gets Ay .y 4, then thare
exists a decomposition of "4 into disjoint sets having % elements or I
elements each and such that if we order these sets arbitrarily and call
tl}em normal k-sequences and normal l-sequences, then there are map-
Pings &, and Q, with the properties (i) snd (ifi), Thus the sequenco
°4,4, ... can be constructed by induction.

0
i C . o
We denote A = U'4. We consider the mappings & - () b,
=
bl

00
Q= ; (r i i a8 ot ¢ e .

iL=J0~Qz (regarding mappings as sets of Dairg, wo have their 1w

nlaturally deﬁged). Let Ny, (N3) denote the clags of all normal -soquencos
( -Sequences) in A, Tt iollows, by (i) and (i) that @ and £ ave 1:1
mappings defined on 4*— N, and 4'— ¥ 1 respectively and

on,

() (A Ny =N, QAN =N,.
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Wae dofine now on A the operations (1) by defining tho functions (7)

on A® and A' respectively. Wo pub

‘ ®(0) it o e AN,
(o) == Q_l(a) if oeNg,
9 "
(9) ‘ AQ(Q) if QE.AI'*‘NI;
(U(Q) - (I-)—-I(Q) if pe€ ,Nz.

Tt follows from (9), by (8), that ¢ = a)--'l and thus 1}1}0 O%L:aﬁxf)‘n:” ff]z
and (3) hold identically on A. Tlence, dmmﬁ;mg by .:r/l(m) 1;119 a,,%(e mQ{
the set of oloments 4 and with (1'.}u)a opommo:lm 1(,1.)/,{ wo }givsh c: l(),;,z) ;) (51*%01'25

i ‘ ), (i) and (i) woe seo that ol hok ropertios
%ﬁfiffuﬁgzi. (;’:zax:::::i. fz.)’rn(n )uoml)]um the proof of this ](amrr{al Wf} LZﬁlj(‘»w thait
Hemy 18 tho free alpobra with the gonerators @y ..y dm, ?.a. ) e

(%) every mapping A Of Gyy ey O cmt.o thev gmwmto'rts or;f{ an alg
o ¢ Wy can be extonded to a homomorphism o‘/ Ay onto Ao

To prove (x) we take the following notation

DupiNroN 1. If 4, is a set of generators pf x/Z?, we.'dmlmtia by
04y = "4,C'4,C*4,C ... the sequence of sets defined inductively by

"4y e U gal0), oor ()5 00), onr 00D}

oe
where ¢ and e run over all &-sequences and l-sequences in
Cwrite A, == "dy—"" 4o (02 1), |
DprrNimioN 2. If a mapping 4 is defined on some elements by, ...
wo define 1 on the sequence f = (b, ..., by) by A8 = (Abyy ..y Abr).
We return to the proof of (). We note first that °dg = {Ay @y -y A dm}

14, We

1 Drs

o0
i
f ¢ gi the de sitiong 4 = A and
is a set of generators of ofy. Using the decompositions ik;%

n . ! AP hat i i enough to prove
"4 = ‘A, given above, we obsgerve that it will be g. P
1=0

[} .

: ) 2. 3 o A
‘ i I I ing Ok mu _A. Wll](ﬂ]l 18 an 0x1'( 181011 ()f
that )hel'@ 1§ & map )]1].{., Z ‘)£ A into 0 $) 1

guch that, for every =z 0, ’

(x%) A maps "4 inio "4, and
ap(o) = p(do), Aw(e) == w(ip)

1

provided that o, (o) e("4)%; o, p(0) € ("A). N )
We set A=A on °A. Thus () holds trivially for = == (),' since
none of the sequences (@), p(0) it in 0 A (seo (a); 1}1101"0 are, by (le'frxl:tum,
no normal sequences in °4 = °4). Assmmning that 2 is defined on "4 ro
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that (++) holds, we extend this mapping to ™"'4 as foll By (i

3 Ut ? \ ows, By (i), ovor
element of "4 = "4 -"4 belongs to a corfain normal l.:-m»qu:m(eu z
or to a normal I-sequence p which i entirely in .. By condition ()
the sequence @(0) or w(p) is in "4 and thus dg(s) or Ao () in defined
and is in "4,. We define l

(10) do=ow(ip(e)), o= (A ().

Then 2 is uniquely extended to a mapping of ™A into "4 . p
prove .that 2 has on "4 the property (**)‘ wo need, to considor i)()‘ U
inductive assumption, only these sequences oy, ¢ which h:wo im' yl(:')u:'
one term in "4 o "4, Suppose fivst that o or ¢ hawve torms in ""'1;1 A’l‘h‘::’
by (a), we have to assume that theso soquences are normal ( ’ o

' ‘ : inco other-
wise (o) and @(o) are not in ""'A). Thus o are gi o u‘“ ]
210 honets by (3 s (3, ) o and Lp are given ry (10),

#(40) = g (Ap(0)) == dp (o),
w(dg) = a)(qo (Ao (9))) =2 A (p) .

MlAAssuming 'that o, ¢ have at least one term in "4, and no ferms in
by (.; )W(Ehzan further assume, by (b), that they are not normal. Then
by ;s Wes?logifncehgl = ¢(9), o = w(g) are mormal sequences in ”"“141,’
, e sho == g
md, wn above, ig(a) == p(iay), Ao (g;) = w(Ag,) hold,
w(lp(0y)) = Aoy, p(Aw(gy)) = oy,

ie. w(ig) = lw(p) @(Ae) = A
of Lemma 2. ’ ) 7

DerINtTION 3. A set §C Ay will be ¢
normal sequences in . ’

Taking the notation of Lemma 2 We prove now

LeMMA 3. If <l, is a subal
e lgebra of ¢ ] g i G
& reduced set of gemerators of gﬁf then f.fhe freo aigira S My

« This completes the proof of (»x) and

alled reduced if there are o

(11) "4,C )4
holds for w=10,1,2, .. =
Remark. Under the conditi
ons
ated by °4, unless °4 C *4,. Indeed,

-Am = U iAos
=0

(.):f this lemma «A, ecannot bo gonor-
i ey = oy, then, by (11) and by

"¢ Ja,c 40 (4
o = 1
and since °4 r\il;J1 ‘4 =@, we have °4 C°4,.
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To prove the lemma we need the following notion of an «fp-normal
gequence,

DRPINIMON 4. Using the notation of Definition 1, we eall, for every
n =1, a soquence in "4y an «fy-normal sequence, provided it is of the
form @(o) (or @(g)) where o (or g) is in "1 4y

We note that, by Definition 1, "4, is a union of Ag-normal sequences.

Proof of Lemma 3. We shall prove, by induction with respect
to m, that both the inclusion (11) and the following assertion hold

(12) & sequence in "4, is «{-normal if and only if it iy normal.

The case n = 0 is trivial because we have asgumed that there ave
1o normal sequences in °4,, and clearly there are no «fy-normal sequeneos
in °4,. Obviously (11) holds for n ==
Now suppose that (L1) and (12) hold for a certain # 2 0. Lot @(o)
be o,-normal in "*4,. We prove that ¢(o) is & normal sequence in
o0
U 4. We note fivst that the k-sequence o in "4, is not wlp-normal,
Fman4-1
gince otherwise we have an l-sequence ¢ in "4, such that o= w(g)
and then (o) = (p((o(g)} = p, by (2), contradicting our assumption that
@(0) is in "™*4,. Since ¢ is not ¢lp-normal, we have, by the inductive
agsumption that ¢ is not normal. Moreover we see, by Definition 1 that
at least one term of ¢ belongs to "4,. Thus, by the inductive assunp-
o0
tion (11), at least one term of o belongs to |J +4. Applying Lemma 2 (a)

V=T
00

we have that @(o) is a normal sequence in U A
{1

In exactly the same way we show that an cfy-normal sequence

<] . .
w(p) in "4, is a normal sequence in | J *4. It is clear that each element
f==mt1

of "4, belongs to an <l;-normal sequence. Thus (11) holds for n -1
instead of n.

Since all normal sequences are disjoint, we have that all of,-normal
sequences in "4, are normal and disjoint. Moreover ™4, is the union
of these sequences. This shows that every normal sequence in A, is
Ap-normal. Hence (12) holds when » is replaced by n--1. This completes
the proof of Lemma 3.

4. Bases of «{,,. We use the notion of independence introdicod
by E. Marezewski in [5]. For our purpose the following definition of this
notion is most suitable.

DEFINITION 5. We say that the elements ¢, ..., ¢, of a cortain algebra
<l are independent if the subalgebra generated by them is the free
{s}-algebra with the free generators ¢, ..., ¢y.
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A set of independent generators of «f will be called o basis. A we-
quence composed exactly of all elements of a basis (i.o. an ordered hasiy)
will be called a basic sequence. We note that in a hasic sequence no elomaont;
is repeated. If the basis is a reduced set (Def. 3), the corresponding hasic
sequence will be called reduced. Given any sequences y s (¢, .., ¢,)
8 = (dy, ..., dy), we define the composition p %4 an follows o

YR8 == (Cry ey Cgy yy ooy dy) .

DEFIN.I’J.‘ION 6. We denote by = the equivalence relation between
sequences in 4,, which is determined by the conditions
(I) 6 =0 when ¢’ is & permutation of 4,
(II) if 6= o % a, oe(dn), then § (o) %a,
(IIT) if 6= % B, o < (dw), then § = w(g) % .
.Remark. It follows that if an r-soquence and a f-sequence are
equivalent, then ¢t--r is a multiple of @ == { .

Lmyvwa 4. AU basic sequences of the olgebra «ly form o single equi-
valence class with respect o = '

. Prqof. We show first that if § is a bagic sequenco and 6 .= &, then
4’ 18 basic. Clearly we can assume that this equivalonce i of the 1‘.y]i(5 (TT)
or (ITT). Suppose that & =o' bolds by (IT), i.o. & = o a, &' = p(0) %
Then the elements of ¢’ generate «f, because (p(0) =5 . To pr(m;
that ‘F,he elements of ¢’ are independent we have to show {hat '(lwu‘rv
mapping 1, of the sequence ¢ (cf. Definitions 2 and B) into <l can ‘b‘o
extended to an endomorphism. Define the mapping py of 8 i‘;r(.:): 5, l)y"

(13) Mo = ohp(o), ma=la.

eaSﬂBy assimpﬁion #y can be extended to an endomorphism p. Tt iy
e =Ylszent hham )7 s'&tlsfles /,L(p('o‘) = Lo(o), by (2) and (13). Tence, by
= 1@y the mapping A = u is the desired extension of Ao I 8 e

olds by (III), then the proof is analogous.
I‘OduZZgJ Prove now that every basic sequence is equivalent to a (basic)
n;w et se((lluence. Suppose we have given a basic sequence & which is
nos xed 1;ce . Let n be 1'._he greatest number such that all termy of some
b neoessa,rseq%ence o or L<se(‘-1uence ¢ in "4 appear in 4, Then, replacing o
o oo fzrl,my ; permutation of thig sequenco, wo may u.Hmu}m that (;

" 0- v h s <] ) o

Aty a or ¢%p. By Lemma 2 (b), tho sequences @(o), w(p)

are in ] ave a8 !
iL=J0 4. Thus we have a sequenco o = (o) %a or 8 w= w(g) %p

which is equi 6 i
s (slgq:;ﬁfégs tlgl ?Mzmc}] .Wgnlch has the property that the nwmber
which have all their terms : ing in ¢ 1
o nommal | \ T terms appearing in 8 is
maller nmz; ]1;21;3 cgr:e.zspondlng nu‘mber for 5. Applying the above PLOCOSS
Of Times, we arrive to a reduced bagic sequonoé
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To complete the proof of Lemma 4, it in sufficiont to show that
whenever ¢ and & are reduced basic sequencos, one is o pormutation
of the other. This is indeed so because, by Lemma 3 (Romark), ovory
reducod basic sequence ¢ i composoed oxactly of all the free generators
Auy ey G OF Sl (there are no other elements in 8 gince a proper gubset
of @ basis is never a basis). Thiy completes the proof of Lemma 4.

Calling the number of elemeonts of o basis of an algebra a rank of
this algebra, we prove the following

TaMA 5. A free Wy~ algebra olm 8 isomorphio to o free Wy - algebra
A &f and only if n is @ ranl of “m-

Proof. Suppose that ol and let 7 be the isomorphism of oln
onto Ap. I Dy ooy by are tho free generators of lm, thon Thy, vy Th
generate oy, froely, i.e. every mapping of these elements into any algohre
A e Wy can be oxtendoed 1o & homomorphism of «ly into o0 Tn parti-
cular any such mapping into ol can be extonded. to an endomorphism
and thiy proves that by, ..., vhn are independent genovators of «lp.

To prove the 4’ part of our lemma consider the following assertion.

(A) If & is a sequence in A such that every mapping w, of 0 into an
algebra o € gy can be extended o & homomorphism g of lm 4040 1,
then, for &' == 0, every mapping i, of & dnto <l oan be extended to a homo-
morphism A of ol into <A

The proof of (A) is analogous to tho firgt part of the proof of Temma 4:
(where one hag to replace mappings into «lm by mappings into ).

+ Suppose now that & is a basie n-sequence in Am. Wo have to show
that every mapping 4 of &’ into an algebra A € Wy can bo extondod
to a homomorphism of «lm into «f. This is certainly the case when o'
is replaced by the sequence & = (ay, ..., ) of the free generators of «lm.
Since we have &' =4, by Lemma 4, our assortion follows by (A). This
completes the proof of Lemma 5.

5. Proof of Theorem 2. We observe firgt that if 1= m <k,
then ¢, has no other basis except the set of the free generators {Gy, .., tm}.
Tndeed, no basic sequence 8’ can be equivalent to 8 == (@yy ore y ), Dy (1)
or by (III), since this would imply m = %, Thus, by Lemma 4, evory
bagic sequence is a permutation of (@, .., am). Tt follows now, by Lemma 5,
that none of the algebrag vim, L5m<k, iy igomorphic to an algebra ola,
where n = M.

To complete the proof we congider the algelr: . We show first
that each rank of «fy is of the form k- gd, where d == I—T; ¢ == 0,1, 2, ..,
Tt is clear, by the remark following Definition 6, and Dy Lomma 4 that
a rank of of, must be of the form % = gd. Supposing that & namber k- qd
(g > 0) is a rank of «i;, we have that Ap-ea <G holds, by Lemma 5.
As we noticed above, this is impossible. Using again Lemma 5, we soe
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that if ol elm, m £k, holds, thon m == k- ¢gd for somo q 2 0. Since
?: k@, the algebra o, cannot have any rank 4, sueh that - .s~v - ]
It rema-ins b0 prove that 7 is a rank of «fp. Tndead, if § = (ayy ... a,,a)‘i;;
‘ohe. basic sequence of the free gencrators of oy, then the Huq‘uun:an ()
defined by (7) is a basic sequence composed of I olementy (ef. Lemmy 4-)’
This completes the proof of Theorem 2. } -
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Independence and homomorphisms in abstract algebras
by
E. Marczewski (Wroctaw)

I have shown in. 1958 that many notions called independence in
different branches of mathematics are particular cases of a certain general
notion defined in terms of abstract algebra ([4]).

This general concept of independence has subsequently been treated
by several authors. They have diseussed some of its properties in finitely
generated algebras (Swierezkowski [10]), algebras in which all elements
are independent and, more generally, algebras in which every » elements
form a basis (i.e. a set of independent generators; Swierezkowski [10],
[12], Marczewski and Urbanik [7]), bases of an algebra and the set of
their cardinal numbers (Goetz and Ryll-Nardzewski [2], Swierczkow-
ski [13]), and self-dependent clements of an algebra (Goetz and Ryll-
Nardzewski [2], Nitka [9]). The study of algebras in which independence
has the properties of linear independence (Marczowski [6], Urbanik [14])
constitutes a special domain in this research. A discussion of independence
in the algebras of sets and Boolean algebras (Marczewski [6]) is the first
gtep in the study of this general concept in particular classes of algebras
usually considered.

The purpose of this paper is to formulate and to prove explicitly
geveral simple but fundamental properties of the notion of independence,
no special hypotheses about the algebra in question being postulated.
Some concrete algebras quoted below serve merely as counterexamples.

Chapter 1 contains preliminaries without any new results. Chapter 2
contains some lemmas on the extension of mappings to homomorphisms
(2.1), the definition of independence, and some equivalence theorems
(2.2); one of these (iii) enables us to define the notion of independence
by that of homomorphism (*). The following section (2.3) treats of some
propertios connected with the idea of independence but defined by the
notion of the algebraic closure only, i.e. without the use of algebraic
operations. It seems interesting that these properties (ag well ag other

(*) The notion of independence is related to that of free algebra, and the equi-
valence theorem 2.2 (iii) is a particular case of the known equivalence of two definitions
of a free algebra.
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