122 R. L. Wilder

is of at most dimension k and is not a local r-separating set of C for r < &,
and such that there exists an e-transformation of C into U v T'. For n = 9m
or 2m+1, k=m—1, and in case n =2m-+1, H,(0) is finilely generated.
Then C is a closed, orientable (n—1)-generalized closed manifold (3).

Proof. Let U and V denote distinet domains of which C is given
as the common boundary in the statement of the theorem. We ghall show
that U and V are ulck,

Let 0 <r <k, ¢> 0, and p a point of C. Since C is r-le, there exists
d> 0 such that every r-cycle of '~ §(p, d) bounds on O~ S(p, ¢/2).
Suppose there exists a cycle C, in U ~ S(p, d) which is non-bounding
in Un8(p,e). Then ([2]; p. 159, Lemma) there exists ¢ > 0 such that
every s-transformation of ( ig linked by C, in 8(p, 3¢/2). By hypothesis,
there exists an s-transformation f(0) = 0 into V u T, where T ig a cloged
subset of ¢ of dimension at most %, and which is not a local r-goparating
set of C. .

Now 0,~0 in S(p,d)— 1T, since r <% and dimT < k. Using the
notation of [4]; p. 203, Lemma 1.13, let M be a closed subset of S(p,d)—T
carrying the homology C,~0, K a carrier of ¢, in U~ § (p,d), and L
the closure of S(p, d)— U. Then (loc. cit.) there exists on M ~ F(L)y—
and hence on Cn 8(p,d)—a cycle Z, such that C,~Z, on M ~ U.
As M does not meet T, Z, is on O—T; and by the choico of d, Z,~0
on 0~ 8(p, ¢/2). Therefore, since T is not a local r-separating set of C,
Zr~0 on C ~ 8(p, ¢/2)—T. But then (by combining homologies) O,~0
in 8(p,36/2)— €, in contradiction to the choice of s and /. We conclude
that such a cycle as O, cannot exist, and that U (and likewige V) is ulck.

When 7 = 2m, then, U and V are both ulem-1, and since (m—1)
+(m'—1)=2m—2=n—2, it follows ([4]; p. 308, Th. 7.1) that O is
an orientable (n—1)-gem. When # = 2m+1, 2m—2 = n—3, and since
Hn(0) is finitely generated, it follows from the Alexander Duality Theorem
and [4]; p. 308, Th. 7.3, that O is an orientable (n~1)-gem.
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Proof of a conjecture of S. Ruziewicz
, o
A. Hajnal (Budapest)

§ 1. Introduction. Let § be an infinite set of power m. Let F ()
be a set-mapping defined on 8, i.e. a function which associates to every
element # of 8 a subset F(x) of 8 such that x ¢ F(x). Suppose that, for
every @ e 8, F(x) <mn where n iz a given cardinal number less than m
(finite or infinite). A subset 8’ of § iz called a free set (with respect to the
set-mapping F(x)) if, for every pair o,y ¢ 8’, v ¢ F(y) and y ¢ F(x).

The following proposition has been conjectured by 8. Ruziewicz.

Under the above conditions S has & free subset 8’ of power m (V).

This theorem was proved firstly for n = &, and m either of the form 27
or of the form 8., (see [2] and [3]), secondly for m a regular cardinal
number, or m a countable sum of cardinals smaller than m (see [4]), and
thirdly for m not the sum of n or fewer cardinal numbers less than m
(see [B]). )

Finally P. Erdoés proved —using the generalized continuum hypo-
thesis—that the conjecture ig true in the general case (see [6]).

The aim of our paper is to prove the above mentioned conjecture
without using the generalized continuum hypothesis.

§ 2. TEroREM 1. Let S be anm infinite set such that S =m. Let F(x)
be a set-mapping defined on 8§ such that F{w) <n for every w e 8, where
n < m. Then there exists a free subset 8’ of 8 such that §' = m.

Proof. We distinguish two cases (i) m is regular and (ii) m is singular.

Case (i) (%). Let ¢ denote the initial number of the cardinal number n.
We are going to define a séquence {8}, of type ¢ of subsets of § by

(1) See [1]. Questions of this type have been first posed by P.Turin — see:
G. Grinwald, Hgy halmazelméleti tételrol,” Math. Fiz. Lapok 44 (1937), pp. 51-53.

In some of the cited papers binary relations of form yRx are Investigated, where
the corresponding set-mapping is to be defined by the stipulation F(x) = {y: yRa}.

(*) In this case the theorem is well known (see the papers cited). However, for
the convenience of the reader, we reconstruct here a simple proof of it. This proof is
due to D. Lézar. .
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transfinite induction on » as follows. Suppose that 8, is defined for every

v <y for a v <o

(1) Let S, be a maximal free subset of S— | J 8, .

vy

Such an 8, exists by Zorn’s lemma.

It §, =m fora v< @, then the theorem is true, thus we may suppdse

that

(2) 8, <m. for every wv<g.

Taking into consideration that § = n < m and that m is rogular

by the assumptions and by (i), we get from (2) that

(3) U Sy<m  for every »<p,.

Put §* =8~ 8,. It follows from (1) and (3) that

<

(4) 8, is non-empty for every » < P B B,y =10 for v v < @

and from (3) we get
(8) 8 =m.

By the maximality of 8, and by (4) corresponding to overy element »

of 8% we can single out an element yf@) of 8, such that

(6) either y,(z) ¢ F'(z) or @ e F(y(@)) for every » < .

Put §** =) | F(x). We have

r<p xeS,

m . D;ITw)<'nF,.<m

ZE

by (2), hence by the regularity of m we get
(8) F5<m.

Its results from (5) and (8) that §*—
an element of it, Then Yo%) € F (@)
7 Yu(to) for every’ y, - vy <@ by (4)
to the assumption.

) Case (ii). Pat m = Na.
kind; cf(a) < a. Let § be a

(9)
(10) Let further (a)
type weq of ordinal numbers less than «

8** is non-empty. Lot @, bo
for every v <o by (6), and y,,(a,)
» hence F'(w,) > n in contradiction

Then_ a is an ordinal number of the second
L n ordinal number such that
ef(a) < g+1, n<Npq1 and BH+l<aqa.

h<ogw De & monotone increasing sequence of

cofinal with a.
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We may suppose that the sequence (¢)y<uwy, satisfies the following
conditions:

(11) g, is-regular for every v < weyw

(e.g. a, is of the form p,+1),

(12) a, > B+1 for every v < weg(a)-
It follows from (10) that

(13) D) Moy =Ha.
!’<wcf<a) .
Let now (8.),<apy, be a sequence of type wet of subsets of 8 such
that } .
14) 8= U 8, 8= N, for every v < wew and 8,8, =0 for
’<‘”c£(u)
every v, % v; < Wet(a)-

Consider the set mapping F,(z) induced by F(x) on 8, defined by
the following stipulations :

F,(x) =F ()8, for every =ze8,

where » < we is arbitrary.

Then §, = N., is regular by (11), 7y < F(@) < n by the assumption
and by (9) and (12). It is obvious from the definitions that if a subset 8’
of 8, is free with respect to F,(z) then it is also free with respect to ¥ (z).
Thus it follows from the case (i) of Theorem 1, which has already been
proved, that there exists a subset S, of §, satisfying the following con-
ditions :

(13) 8C8,, 8= No, and 8, is a free subset of § with respect to F(x).
The set |J |J F(#) has power less than %, for every » < ot

v'<y x€S,
since U F(2) < 8y < Moy < ¥, by (9) and (10), N, i3 regular by (11)
TeSy
and v < Rot(a) < N.,v by (9)
Put =8 — U U Fa)
vi<y TS,

It follows from (15) and from the definition that
(16) S:C 8, &= R, and 28y, yel, implies y¢ F(w) for every
<y < Wet(e) (3)

(*) The construction of the sets Sy, 8}, S) is well known. The next step contains
the main idea of our proof. '
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Now we are going to define a sequence (Sﬁ)y;%t(a) of type weym of
subsets of § by transfinite induction on » as follows.

(17) Put 8 = SE.

‘ Taking into eox;sideration that by (12), §:§ = ,S:'% = Ny, > 8p4, there
exists a sequence (Suolo<ey,, Of tyDe wpra of subsets of S5 satisfying the
conditions

1 8 __ 8. B .
(18) 0<Eg+1 Boe=8; S, = Ragj ‘5'3,9’ N ‘Sg.e =0
for every o' # ¢ < wpps.
Suppos’e that the sets Sy and 8}, are alveady defined for ovory
@< g4y, ¥ <9 for a ¥ < wey In such a way that

B 8 8 8 ‘
a<=L»,£+1 ve=8y and Sy,A8,y=0
for every o # o < wpyr, v < ».
- Put Z,= ,,L;J, 8y and Z,,= \J 8,. Then Z,= | Z,, and
ZyynZy=10 f LT e<agy,
fw,gz ve = U 10T every ¢ # ¢" < wgiy. Let @ be an arbitrary element
of 8,. Then F(z)~ Z, =0<E§s]+ (F(#) ~ Z,,). Taking into consideration
1
zlfla: by .zhfe assumption ‘and by (9) F(a) < n < Rg41, from the regularity
p+1 it follows that for every & e 2 there oxists an ordinal number
g(m,;) < g4y Such ‘uha‘n2 F(@) ~ Z,, =0 if o(w,7) < o < wpps-
Itutf 1]},, ={® 2e Sz, and g(x, ») < o} for every o < wpiq.
ollows that 8, = |J 7,, and Toy C I,, for every o' <o,

o<y
<@gy Taking into consideration that b
) : ¥ (11) and (12) 8544 < 8, and K
Is regul=ar, it results from (16) that there exigtg 8 gy = gp(v) < :(; su flv
that var = Na, 0 e

(19) Put & = T, for such a g,.

Taking into considerati 3 ‘
a sequence (8¢ on that by (12) S =y > #pys there exists

condition, wle<agyy Of tyDe wpyy of subsets of & satisfying the following

20) 8= o . |
( 0) Sy U Sp,e, Sf,q = sa,. and Sia I Sfm, = (

e<wgiy
. s for every o 5 <ﬂ‘w5+1.
3 .
us 8, and 8}, are defined for OVEry ¥ < o), 0 < wpyy and it

£ . N f y
E]] OWS -l iy d ]:t]ﬂ n from (17 8 19 20 h - ]9 a]]d 20 I]O ds
for every << . ( )7 (1 )’ ( ) a'nd ( ) t at ( ) ( ) :
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By the construction S, has the following properties:

(21) 85C 8}; there exists a o(») < wpyq such that F(w) n Z,, =0 for

every ¢ > ¢(») and for every z e &8;.
In fact, 8 =T,, and g, = o(») satisfy the requirement of (21).
(22) Pubt R, = {2(¥)hev<ayy 10T every » < oom-

Then R, < Retwy < 841 by (9). Hence by the regularity of spi
there exists an ordinal number g*(») such that

o*(») < wgyy  for every v < Wota) ,

23
(23) o(¥') < o*(») for every v <¥ < Wot(a) -

(24) Put St= | &, for every »< wps; and 8= U 8.
e*()<e<wpyy v<®Wef(q)

It follows from (20) and (23) that §=Na,, for every » < weta-
Taking into consideration that S C 8 C 8, C 8, C 8, it follows from (13)
and (14) that
(25) F= D wy=ta.

) ”<“’c£(u)
On the other hand we have
(26) 3 €S, »eSy implies y ¢ F(z) for every » < v < o).

In fact, §%C 8%, hence if xSy, then F(w)n Z,,=0 for every
o= o(¥') by (21), hence F (@) Zy,=0 for every ¢ = o*») by (23).
Thus -

F@)nSi= U (Fl@)~8,) =0 f{forevery »<v.
Q*(<e<wgyy

Now we are going to prove that

(27) ; 8’ is a free set .

8 = |J 8 by (24). Let #,y be two arbitrary distinet elements
'<"’cl‘(u) !
of §’. By (14) there exist uniquely determined ordinal numbers Y1y ¥y

such that »e 8%, ¥ e8h,. By reason of symmetry, we may suppose v < .
If », = v, then y ¢ F'(s) and x¢ F(y) follows from (15) taking into con-
sideration that &), C&,. If » < # then y¢F(z) by (16) and z¢F(y)
by (26). Hence = ¢ F(y) and y ¢ F(») in any cases.
8’ satisfies the requirements of Theorem 1 by (25) and (27). Q.e.d.
Remarks. In their paper [7] P. Brdés and G. Fodor prove the fol-
lowing theorem.
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Iifi_f be a set, S=m>=r,, F(a) a set-mapping defined on 8 such
that F(z) <n<m for every zef, for an n < m. Let further {She
be a system of disjoint subsets of § satisfying the conditions: g, = 7;:
for every » < g and g <m. Then there exists a free subset §'C & such
that 8" ~'8, = m for every » < ¢.

The proof given in [7] makés use of the generalized continuum hy-
pothesis in the case when m is singular.

It is easy to see that using the idea of the proof of our Theorem 1
this generalization of the Ruziewicz conjecture can also be proved without
using the generalized continuum hypothesis.

On the other hand in his paper [8] G. Fodor states the following
generalization of the Ruziewicz conjecture.

. Let 8 be a set, § =m >x,, and F(z) a set-mapping defined on 8.
satisfying the condition F(z) < n < m for every @ 8 for some n < m’
Let further /7(S’) den 4 f 'y §'C 8

' (8") denote the set ww‘%w' (F(@) ~ F(y)) for every 8'C §.
Then there exists a subset 8’ C 8, 8§ = m such that TT@";) < m.

'Fodor proves this theorem for singular m using the generalized
continuum hypothesis; our method does not enable us to prove this
theorfam without using this hypothesis. The simplest unsolved problem
here is: Ts it possible to prove Fodor’s theorem without using this hypo-
theses for m = &,, or for m = 8y, ?
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A new analytic approach to hyperbolic geometry

* by
\

W. Szmielew (Warszawa)

Introduction

Hilbert was the first who constructed in plane hyperbolic geometry
without the axiom of continuity a commutative ordered field &
=(H#, +,-,<> and founded an analytic geometry over it (see [3]
or [2], Appendix IIT). The field € is known in the literature as the end-
caleulus since the class H consists of pencils of parallel half-lines, which
Hilbert refers to as ends. The analytic geometry over & is based upon
a coordinate system for straight lines. . _

In this paper a new commutative ordered field & = ¢S, +, s, <>
is constructed in the same system of geometry. This field seems to be
conceptually simpler and more adequate for the foundation of analytic
geometry than & It is generated by a hyperbolic calculus of segments,
more precisely by an algebraic system & = {S, +, «, <) in which the
class S consists of the segments. The operations + and « of © are defined
in terms of such simple notions as the Lambert quadrangle and the right
triangle and are not relativized to any fixed geometrical objects, while
the relation < coincides with the usual less-than relation for the segments.
Finally a rectangular coordinate system over S can be constructed (the
two coordinates of a point being elements of S), and moreover the analytic
geometry based on it is identical with that of the two-dimensional Xlein
space the absolute of which coincides with the unit ecircle.

Chapter I is algebraic. We introduce there the notion of a unit interval
algebra and reduce the problem of constructing a commutative ordered
field to that of constructing a unit interval algebra.

Chapter IT is geometrical. In Section 1 we describe the axiomatic
theory 9’ of the hyperbolic geometry in which the field & is to be con-
structed. In Sections 2-13 we counstruct the system &, furthermore we °
prove it to be a unit interval algebra, and consequently, using the result
of Chapter I, we obtain the ordered field &. In Sections 14-18 we outline

the foundations of the analytic geometry over G.
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