is of at most dimension k and is not a local r-separating set of C for $r \leq k$, and such that there exists an e-transformation of C into $U \cup T$. For n=2m or 2m+1, k=m-1, and in case n=2m+1, $H_m(C)$ is finitely generated. Then C is a closed, orientable (n-1)-generalized closed manifold (3).

Proof. Let U and V denote distinct domains of which C is given as the common boundary in the statement of the theorem. We shall show that U and V are ulck.

Let $0 \le r \le k$, e > 0, and p a point of C. Since C is r-lc, there exists d > 0 such that every r-cycle of $C \cap S(p,d)$ bounds on $C \cap S(p,e/2)$. Suppose there exists a cycle C_r in $U \cap S(p,d)$ which is non-bounding in $U \cap S(p,e)$. Then ([2]; p. 159, Lemma) there exists s > 0 such that every s-transformation of C is linked by C_r in S(p,3e/2). By hypothesis, there exists an s-transformation f(C) = C' into $V \cup T$, where T is a closed subset of C of dimension at most k, and which is not a local r-separating set of C.

Now $C_r \sim 0$ in S(p,d) - T, since $r \leq k$ and $\dim T \leq k$. Using the notation of [4]; p. 203, Lemma 1.13, let M be a closed subset of S(p,d) - T carrying the homology $C_r \sim 0$, K a carrier of C_r in $U \cap S(p,d)$, and L the closure of S(p,d) - U. Then (loc. cit.) there exists on $M \cap F(L)$ —and hence on $C \cap S(p,d)$ —a cycle Z_r such that $C_r \sim Z_r$ on $M \cap \overline{U}$. As M does not meet T, Z_r is on C - T; and by the choice of d, $Z_r \sim 0$ on $C \cap S(p,e/2)$. Therefore, since T is not a local r-separating set of $C_r \sim 0$ in S(p,3e/2) - C', in contradiction to the choice of s and f. We conclude that such a cycle as C_r cannot exist, and that U (and likewise V) is ulc^k .

When n=2m, then, U and V are both ulc^{m-1} , and since (m-1)+(m-1)=2m-2=n-2, it follows ([4]; p. 308, Th. 7.1) that C is an orientable (n-1)-gcm. When n=2m+1, 2m-2=n-3, and since $H_m(C)$ is finitely generated, it follows from the Alexander Duality Theorem and [4]; p. 308, Th. 7.3, that C is an orientable (n-1)-gcm.

References

- [1] R. H. Bing, Pushing a 2-sphere into its complement, Amer. Math. Soc. Notices 6 (1959), p. 838, Abstract No. 564-165.
- [2] R. L. Wilder, Concerning a problem of K. Borsuk, Fund. Math. 21 (1933), pp. 167-167.
 - [3] On free subsets of En, Fund. Math. 25 (1935), pp. 200-208.
 - [4] Topology of Manifolds, Amer. Math. Soc. Coll. Pub. 32, 1949.

Reçu par la Rédaction le 17. 9. 1960

Proof of a conjecture of S. Ruziewicz

by

A. Hajnal (Budapest)

§ 1. Introduction. Let S be an infinite set of power m. Let F(x) be a set-mapping defined on S, i.e. a function which associates to every element x of S a subset F(x) of S such that $x \notin F(x)$. Suppose that, for every $x \in S$, $\overline{F(x)} < n$ where n is a given cardinal number less than m (finite or infinite). A subset S' of S is called a *free set* (with respect to the set-mapping F(x)) if, for every pair $x, y \in S'$, $x \notin F(y)$ and $y \notin F(x)$.

The following proposition has been conjectured by S. Ruziewicz.

Under the above conditions S has a free subset S' of power m (1).

This theorem was proved firstly for $n = \aleph_0$ and m either of the form 2^p or of the form $\aleph_{\alpha+1}$ (see [2] and [3]), secondly for m a regular cardinal number, or m a countable sum of cardinals smaller than m (see [4]), and thirdly for m not the sum of n or fewer cardinal numbers less than m (see [5]).

Finally P. Erdös proved—using the generalized continuum hypothesis—that the conjecture is true in the general case (see [6]).

The aim of our paper is to prove the above mentioned conjecture without using the generalized continuum hypothesis.

§ 2. THEOREM 1. Let S be an infinite set such that $\overline{S} = m$. Let F(x) be a set-mapping defined on S such that $\overline{F(x)} < n$ for every $x \in S$, where n < m. Then there exists a free subset S' of S such that $\overline{S'} = m$.

Proof. We distinguish two cases (i) m is regular and (ii) m is singular.

Case (i) (2). Let φ denote the initial number of the cardinal number n. We are going to define a sequence $\{S_r\}_{r<\varphi}$ of type φ of subsets of S by

⁽a) For the definition and properties of a generalized closed manifold (= gcm), see [4]; VIII.

⁽¹⁾ See [1]. Questions of this type have been first posed by P.Turán—see: G. Grünwald, Egy halmazelméleti tételről, Math. Fiz. Lapok 44 (1937), pp. 51-53.

In some of the cited papers binary relations of form yRx are investigated, where the corresponding set-mapping is to be defined by the stipulation $F(x) = \{y: yRx\}$.

^(*) In this case the theorem is well known (see the papers cited). However, for the convenience of the reader, we reconstruct here a simple proof of it. This proof is due to D. Lázár.

Proof of a conjecture of S. Ruziewicz

transfinite induction on ν as follows. Suppose that $S_{\nu'}$ is defined for every $\nu' < \nu$ for a $\nu < \varphi$.

(1) Let S_r be a maximal free subset of $S - \bigcup_{v' \in v} S_{v'}$.

Such an S, exists by Zorn's lemma.

If $\overline{\overline{S_r}} = m$ for a $r < \varphi$, then the theorem is true, thus we may suppose that

(2)
$$\overline{\overline{S}}_{\nu} < m \quad \text{for every} \quad \nu < \varphi$$
.

Taking into consideration that $\overline{\varphi} = n < m$ and that m is regular by the assumptions and by (i), we get from (2) that

(3)
$$\overline{\bigcup_{\nu' < \nu} S_{\nu'}} < m \quad \text{for every} \quad \nu \leqslant \varphi.$$

Put $S^* = S - \bigcup_{\nu < \varphi} S_{\nu}$. It follows from (1) and (3) that

(4) S_r is non-empty for every $r < \varphi$, $S_{\nu_1} \cap S_{\nu_2} = 0$ for $\nu_1 \neq \nu_2 < \varphi$ and from (3) we get

$$\overline{\overline{S^*}} = m.$$

By the maximality of S_r and by (4) corresponding to every element x of S^* , we can single out an element $y_r(x)$ of S_r such that

(6) either $y_{\nu}(x) \in F(x)$ or $x \in F(y_{\nu}(x))$ for every $\nu < \varphi$.

Put
$$S^{**} = \bigcup_{x < \varphi} \bigcup_{x \in S_*} F(x)$$
. We have

$$(7) \qquad \overline{\bigcup_{x \in S_n} F(x)} \leqslant n \overline{S_r} < m$$

by (2), hence by the regularity of m we get

$$(8) \overline{S^{**}} < m.$$

Its results from (5) and (8) that S^*-S^{**} is non-empty. Let x_0 be an element of it. Then $y_{\nu}(x_0) \in F(x_0)$ for every $\nu < \varphi$ by (6), and $y_{\nu_1}(x_0) \neq y_{\nu_2}(x_0)$ for every $\nu_1 \neq \nu_2 < \varphi$ by (4), hence $\overline{F(x_0)} \geqslant n$ in contradiction to the assumption.

Case (ii). Put $m = \aleph_{\alpha}$. Then α is an ordinal number of the second kind; $\operatorname{cf}(\alpha) < \alpha$. Let β be an ordinal number such that

(9)
$$\operatorname{cf}(\alpha) < \beta + 1$$
, $n < \aleph_{\beta+1}$ and $\beta + 1 < \alpha$.

(10) Let further $(\alpha_r)_{r<\omega_{\mathbf{cf}(\alpha)}}$ be a monotone increasing sequence of type $\omega_{\mathbf{cf}(\alpha)}$ of ordinal numbers less than α cofinal with α .

We may suppose that the sequence $(a_r)_{r<\omega_{\mathbf{cf}(a)}}$ satisfies the following conditions:

(11) \aleph_{α_n} is regular for every $\nu < \omega_{\text{cf}(\alpha)}$

(e.g. a_r is of the form $\beta_r + 1$),

(12) $a_{\nu} > \beta + 1$ for every $\nu < \omega_{\text{cf(a)}}$.

It follows from (10) that

(13)
$$\sum_{\nu < \omega_{\rm rf}(a)} \aleph_{a_{\nu}} = \aleph_{a} .$$

Let now $(S_{\nu})_{\nu < \omega_{\mathrm{ef}(\alpha)}}$ be a sequence of type $\omega_{\mathrm{ef}(\alpha)}$ of subsets of S such that

(14) $S = \bigcup_{\mathbf{r} < \omega_{\mathrm{cf}(a)}} S_{\mathbf{r}}, \ \overline{\overline{S_{\mathbf{r}}}} = \mathbf{N}_{a_{\mathbf{r}}} \text{ for every } \mathbf{r} < \omega_{\mathrm{cf}(a)} \text{ and } S_{\mathbf{r}_1} \cap S_{\mathbf{r}_2} = 0 \text{ for every } \mathbf{r}_1 \neq \mathbf{r}_2 < \omega_{\mathrm{cf}(a)}.$

Consider the set mapping $F_{r}(x)$ induced by F(x) on S_{r} defined by the following stipulations

$$F_{\nu}(x) = F(x)S_{\nu}$$
 for every $x \in S_{\nu}$

where $\nu < \omega_{\text{cf}(a)}$ is arbitrary.

Then $\overline{S}_{\nu} = \aleph_{a_{\nu}}$ is regular by (11), $\overline{F_{\nu}(x)} \leqslant \overline{F(x)} < n$ by the assumption and by (9) and (12). It is obvious from the definitions that if a subset S' of S_{ν} is free with respect to $F_{\nu}(x)$ then it is also free with respect to F(x). Thus it follows from the case (i) of Theorem 1, which has already been proved, that there exists a subset S_{ν}^{1} of S_{ν} satisfying the following conditions

(15) $S_{\nu}^{1} \subset S_{\nu}$, $\overline{S_{\nu}^{1}} = \aleph_{\alpha_{\nu}}$ and S_{ν}^{1} is a free subset of S with respect to F(x).

The set $\bigcup_{\nu' < \nu} \bigcup_{x \in S_{\nu'}} F(x)$ has power less than $\aleph_{a_{\nu}}$ for every $\nu < \omega_{\operatorname{cf}(a)}$, since $\overline{\bigcup_{x \in S_{\nu'}} F(x)} \leq n \overline{S_{\nu'}} \leq \aleph_{a_{\nu}} < \aleph_{a_{\nu}}$ by (9) and (10), $\aleph_{a_{\nu}}$ is regular by (11) and $\overline{\nu} < \aleph_{\operatorname{cf}(a)} < \aleph_{a_{\nu}}$ by (9).

Put
$$S_{\nu}^2 = S_{\nu}^1 - \bigcup_{\nu' < \nu} \bigcup_{x \in S_{\nu'}} F(x)$$
.

It follows from (15) and from the definition that

(16) $S_{\nu}^{2} \subset S_{\nu}^{1}$, $\overline{S_{\nu}^{2}} = \aleph_{\alpha_{\nu}}$ and $x \in S_{\nu'}^{2}$, $y \in S_{\nu}^{2}$ implies $y \notin F(x)$ for every $\nu' < \nu < \omega_{\text{cf}(\alpha)}$ (3).

⁽³⁾ The construction of the sets S_{ν} , S_{ν}^{1} , S_{ν}^{2} is well known. The next step contains the main idea of our proof.

Now we are going to define a sequence $(S^3_{\nu})_{\nu < \omega_{\mathrm{cf}(a)}}$ of type $\omega_{\mathrm{cf}(a)}$ of subsets of S by transfinite induction on ν as follows.

(17) Put
$$S_0^3 = S_0^2$$
.

Taking into consideration that by (12), $\overline{S_0^3} = \overline{S_0^2} = \kappa_{a_0} \geqslant \kappa_{\beta+1}$ there exists a sequence $(S_{0,\varrho}^3)_{\varrho < \omega_{\beta+1}}$ of type $\omega_{\beta+1}$ of subsets of S_0^3 satisfying the conditions

(18)
$$\bigcup_{q < \omega_{\beta+1}} S_{0,q}^3 = S_0^3; \quad \overline{\bar{S}_{0,q}^3} = \aleph_{a_0}; \quad S_{0,q'}^3 \cap S_{0,q}^3 = 0$$

for every $\varrho' \neq \varrho < \omega_{\beta+1}$.

Suppose that the sets $S^3_{\nu'}$ and $S^3_{\nu',\varrho}$ are already defined for every $\varrho < \omega_{\beta+1}$, $\nu' < \nu$ for a $\nu < \omega_{\mathrm{ct}(\varrho)}$ in such a way that

$$\bigcup_{\varrho<\omega_{\beta+1}}S^{\vartheta}_{\nu',\varrho}=S^{\vartheta}_{\nu'}\quad\text{ and }\quad S^{\vartheta}_{\nu',\varrho}\cap S_{\nu',\varrho'}=0$$

for every $\varrho' \neq \varrho < \omega_{\beta+1}, \nu' < \nu$.

Put $Z_{\nu} = \bigcup_{\nu' < \nu} S_{\nu'}^3$, and $Z_{\nu,\varrho} = \bigcup_{\nu' < \nu} S_{\nu',\varrho}^3$. Then $Z_{\nu} = \bigcup_{\varrho < \omega_{\beta+1}} Z_{\nu,\varrho}$ and $Z_{\nu,\varrho'} \cap Z_{\nu,\varrho} = 0$ for every $\varrho \neq \varrho' < \omega_{\beta+1}$. Let x be an arbitrary element of S_{ν}^2 . Then $F(x) \cap Z_{\nu} = \bigcup_{\varrho < \omega_{\beta+1}} (F(x) \cap Z_{\nu,\varrho})$. Taking into consideration that by the assumption and by (9) $\overline{F(x)} < n < \kappa_{\beta+1}$, from the regularity of $\kappa_{\beta+1}$ it follows that for every $x \in S_{\nu}^2$ there exists an ordinal number

 $\varrho(x,\nu) < \omega_{\beta+1} \text{ such that } F(x) \cap Z_{\nu,\varrho} = 0 \text{ if } \varrho(x,\nu) \leqslant \varrho < \omega_{\beta+1}.$ Put $T_{\nu,\varrho} = \{x: x \in S^2_{\nu} \text{ and } \varrho(x,\nu) \leqslant \varrho\} \text{ for every } \varrho < \omega_{\beta+1}.$

It follows that $S^2_{\nu} = \bigcup_{\varrho < \omega_{\beta+1}} T_{\nu,\varrho}$ and $T_{\nu,\varrho'} \subset T_{\nu,\varrho}$ for every $\varrho' < \varrho$

 $<\omega_{\beta+1}$. Taking into consideration that by (11) and (12) $\kappa_{\beta+1}<\kappa_{\alpha_{\nu}}$ and $\kappa_{\alpha_{\nu}}$ is regular, it results from (16) that there exists a $\varrho_0=\varrho_0(\nu)<\omega_{\beta+1}$ such that $\overline{T_{\nu,\varrho_0}}=\kappa_{\alpha_{\nu}}$.

(19) Put $S_{\nu}^{8} = T_{\nu,\varrho_{0}}$ for such a ϱ_{0} .

Taking into consideration that by (12) $\overline{S}_{r}^{\overline{3}} = \kappa_{a_{r}} \geqslant \kappa_{\beta+1}$ there exists a sequence $(S_{r,\rho}^{3})_{\varrho < \omega_{\beta+1}}$ of type $\omega_{\beta+1}$ of subsets of S_{r}^{3} satisfying the following conditions

(20)
$$S_{\nu}^3 = \bigcup_{\varrho < \omega_{\beta+1}} S_{\nu,\varrho}^3$$
; $\overline{S_{\nu,\varrho}^3} = \aleph_{a_{\nu}}$ and $S_{\nu,\varrho}^3 \cap S_{\nu,\varrho'}^3 = 0$ for every $\varrho' \neq \varrho < \omega_{\beta+1}$.

Thus $S^3_{r,\varrho}$ and $S^3_{r,\varrho}$ are defined for every $\nu < \omega_{\text{cf}(a)}$, $\varrho < \omega_{\beta+1}$ and it follows by induction from (17), (18), (19) and (20) that (19) and (20) holds for every $\nu < \omega_{\text{cf}(a)}$.

By the construction S_r^3 has the following properties:

(21) $S_{\nu}^{3} \subset S_{\nu}^{2}$; there exists a $\varrho(\nu) < \omega_{\beta+1}$ such that $F(x) \cap Z_{\nu,\varrho} = 0$ for every $\varrho \geqslant \varrho(\nu)$ and for every $x \in S_{\nu}^{3}$.

In fact, $S_{\nu}^{8} = T_{\nu,\rho_{0}}$ and $\rho_{0} = \rho(\nu)$ satisfy the requirement of (21).

(22) Put $R_{\nu} = \{\varrho(\nu')\}_{\nu < \nu' < \omega_{\text{cf}(a)}}$ for every $\nu < \omega_{\text{cf}(a)}$.

Then $\overline{R}_{\nu} \leqslant \kappa_{\mathrm{cf}(a)} < \kappa_{\beta+1}$ by (9). Hence by the regularity of $\kappa_{\beta+1}$ there exists an ordinal number $\varrho^*(\nu)$ such that

(23)
$$\begin{aligned} \varrho^*(\nu) &< \omega_{\beta+1} & \text{for every} & \nu &< \omega_{\text{cf}(a)} \,, \\ \varrho(\nu') &< \varrho^*(\nu) & \text{for every} & \nu &< \nu' &< \omega_{\text{cf}(a)} \,. \end{aligned}$$

(24) Put
$$S^4_{\nu} = \bigcup_{e^{\bullet(\nu) \leq e^{<\omega_{\beta+1}}}} S^3_{\nu,e}$$
 for every $\nu < \omega_{\beta+1}$ and $S' = \bigcup_{\nu < \omega_{\text{eff}(a)}} S^4_{\nu}$.

It follows from (20) and (23) that $\overline{S}_{\nu}^{\overline{4}} = \aleph_{\alpha_{\nu}}$ for every $\nu < \omega_{\mathrm{cf}(\alpha)}$. Taking into consideration that $S_{\nu}^{4} \subset S_{\nu}^{3} \subset S_{\nu}^{2} \subset S_{\nu}^{1} \subset S_{\nu}$ it follows from (13) and (14) that

(25)
$$\overline{S}^{\overline{r}} = \sum_{\nu < \omega_{\text{ct}(\alpha)}} \aleph_{\alpha_{\nu}} = \aleph_{\alpha}.$$

On the other hand we have

(26) $y \in S_{\nu}^4$, $x \in S_{\nu}^4$ implies $y \notin F(x)$ for every $\nu < \nu' < \omega_{\text{cf}(a)}$.

In fact, $S_{\nu'}^4 \subset S_{\nu'}^3$, hence if $x \in S_{\nu'}^4$, then $F(x) \cap Z_{\nu',\varrho} = 0$ for every $\varrho \geqslant \varrho(\nu')$ by (21), hence $F(x) \cap Z_{\nu',\varrho} = 0$ for every $\varrho \geqslant \varrho^*(\nu)$ by (23). Thus

$$F(x) \cap S_{\nu}^4 = \bigcup_{q^*(\nu) \leqslant \varrho < \omega_{R+1}} \left(F(x) \cap S_{\nu,\varrho}^3 \right) = 0 \quad \text{for every} \quad \nu < \nu'.$$

Now we are going to prove that

$$(27) S' is a free set.$$

 $S' = \bigcup_{\mathbf{r} < \omega_{\mathrm{ef(a)}}} S^4_{\mathbf{r}}$ by (24). Let x, y be two arbitrary distinct elements of S'. By (14) there exist uniquely determined ordinal numbers v_1, v_2 such that $x \in S^4_{\mathbf{r}_1}, \ y \in S^4_{\mathbf{r}_2}$. By reason of symmetry, we may suppose $v_1 \leqslant v_2$. If $v_1 = v_2$ then $y \notin F(x)$ and $x \notin F(y)$ follows from (15) taking into consideration that $S^4_{\mathbf{r}_1} \subset S^1_{\mathbf{r}_1}$. If $v_1 < v_2$ then $y \notin F(x)$ by (16) and $x \notin F(y)$ by (26). Hence $x \notin F(y)$ and $y \notin F(x)$ in any cases.

S' satisfies the requirements of Theorem 1 by (25) and (27). Q.e.d.

Remarks. In their paper [7] P. Erdös and G. Fodor prove the following theorem.

128

A. Hajnal

Let S be a set, $\overline{S} = m \geqslant \kappa_0$, F(x) a set-mapping defined on S such that $\overline{F(x)} < n < m$ for every $x \in S$, for an n < m. Let further $\{S_r\}_{r < \infty}$ be a system of disjoint subsets of S satisfying the conditions: $\overline{S}_v = m$ for every $v < \varphi$ and $\overline{\varphi} < m$. Then there exists a free subset $S' \subset S$ such that $\overline{S' \cap S_{\nu}} = m$ for every $\nu < \varphi$.

The proof given in [7] makes use of the generalized continuum hypothesis in the case when m is singular.

It is easy to see that using the idea of the proof of our Theorem 1 this generalization of the Ruziewicz conjecture can also be proved without using the generalized continuum hypothesis.

On the other hand in his paper [8] G. Fodor states the following generalization of the Ruziewicz conjecture.

Let S be a set, $\overline{S} = m \ge \kappa_0$, and F(x) a set-mapping defined on S, satisfying the condition $\overline{F(x)} < n < m$ for every $x \in S$ for some n < m. Let further H(S') denote the set $\bigcup_{x \neq y, x, y \in S'} (F(x) \cap F(y))$ for every $S' \subset S$. Then there exists a subset $S' \subset S$, $\overline{S}' = m$ such that $\overline{II(S')} < m$.

Fodor proves this theorem for singular m using the generalized continuum hypothesis; our method does not enable us to prove this theorem without using this hypothesis. The simplest unsolved problem here is: Is it possible to prove Fodor's theorem without using this hypotheses for $m = \aleph_{\omega_2}$ or for $m = \aleph_{\omega_1}$?

References

- [1] S. Ruziewicz, Une généralisation d'un théorème de M. Sierpiński, Publications Math. de l'Université de Belgrade 5 (1936), pp. 23-27.
- [2] W. Sierpiński, Sur un problème de M. Ruziewicz de la théorie des rélations, Fund. Math. 29 (1937), pp. 5-9.
- [3] D. Lázár, On a problem in the theory of aggregates, Compositio Math. 3 (1936), p. 304.
- [4] Sophie Piccard, Sur un problème de M. Ruziewicz de la théorie des relations
- pour les nombers cardinaux $m < \kappa_{\Omega}$, Comptes Rendus Varsovie, 30 (1937), pp. 12-18. [5] G. Fodor, Proof of a conjecture of P. Erdös, Acta Sci. Math. 14 (1951), pp. 219-227.
- [6] P. Erdös, Some remarks on set theory, Proceedings Amer. Math. Soc. 1 (1950), pp. 133-137,
- [7] P. Erdös and G. Fodor, Some remarks on set theory, VI, Acta Sci. Math. 18 (1957), pp. 243-260.
- [8] G. Fodor, Some results concerning a problem in set theory, Acta Sci. Math. 16 (1955), pp. 232-240.

Recu par la Rédaction 26. 9. 1960

A new analytic approach to hyperbolic geometry

W. Szmielew (Warszawa)

Introduction

Hilbert was the first who constructed in plane hyperbolic geometry without the axiom of continuity a commutative ordered field E $=\langle \bar{E}, +, \cdot, < \rangle$ and founded an analytic geometry over it (see [3]) or [2], Appendix III). The field E is known in the literature as the endcalculus since the class \overline{E} consists of pencils of parallel half-lines, which Hilbert refers to as ends. The analytic geometry over $\overline{\mathbb{E}}$ is based upon a coordinate system for straight lines.

In this paper a new commutative ordered field $\overline{\mathfrak{S}} = \langle \overline{S}, +, \cdot, \langle \rangle$ is constructed in the same system of geometry. This field seems to be conceptually simpler and more adequate for the foundation of analytic geometry than $\overline{\mathfrak{C}}$. It is generated by a hyperbolic calculus of segments, more precisely by an algebraic system $\mathfrak{S} = \langle S, +, \cdot, \cdot \rangle$ in which the class S consists of the segments. The operations + and \cdot of \mathfrak{S} are defined in terms of such simple notions as the Lambert quadrangle and the right triangle and are not relativized to any fixed geometrical objects, while the relation < coincides with the usual less-than relation for the segments. Finally a rectangular coordinate system over \$\overline{ two coordinates of a point being elements of \overline{S}), and moreover the analytic geometry based on it is identical with that of the two-dimensional Klein space the absolute of which coincides with the unit circle.

Chapter I is algebraic. We introduce there the notion of a unit interval algebra and reduce the problem of constructing a commutative ordered field to that of constructing a unit interval algebra.

Chapter II is geometrical. In Section 1 we describe the axiomatic theory \mathcal{H}' of the hyperbolic geometry in which the field $\overline{\mathfrak{S}}$ is to be constructed. In Sections 2-13 we construct the system S, furthermore we prove it to be a unit interval algebra, and consequently, using the result of Chapter I, we obtain the ordered field E. In Sections 14-18 we outline the foundations of the analytic geometry over \(\overline{\mathbb{E}}.