

	_ ugus
A. D. Wallace, Acyclicity of compact connected semigroups	99-10
M. Henriksen, J. R. Isbell, D. G. Johnson, Residua class fields of	
lattice-ordered algebras	
R. L. Wilder, A converse of a theorem of R. H. Bing and its generalization	
A. Hajnal, Proof of a conjecture of S. Ruziewicz	
W. Szmielew, A new analytic approach to hyperbolic geometry	
L. E. Ward, Jr., Characterization of the fixed points property for a class of	
set-valued mappings	159-164
A. Mostowski, Axiomatizability of some many valued predicate calculi.	165-190
K. Sieklucki, The family of dendrites R-ordered similarly to the segment	191-193
K. Borsuk, Remarks on the homotopic join of maps	195-206
B. Eckman and P. J. Hilton, Structure maps in group theory	

Tous les volumes des FUNDAMENTA MATHEMATICAE sont à obtenir par l'intermédiaire de

ARS POLONA

Warszawa 5 (Pologne), Krakowskie Przedmieście 7

Le prix de ce fascicule est 2 \$

Acyclicity of compact connected semigroups

by

A. D. Wallace (New Orleans, Louisiana)

0. For the purpose of this note a *semigroup* ([14]) is a non-void Hausdorff space together with a continuous associative multiplication, denoted by juxtaposition, $(x, y) \rightarrow xy$. In more detail a semigroup is such a function

$$m: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$$

that S is a non-void Hausdorff space, m is continuous and satisfies

$$m(x, m(y, z)) = m(m(x, y), z)$$

for all $x, y, z \in S$. In all that follows S will denote a semigroup.

An element t of S will be termed a *left unit* (*left zero*) if it satisfies the equation tx = x(tx = t) for each $x \in S$. It has been known for some time ([13]) that a compact connected semigroup with left zero and left unit has the chohomology groups of a point-space (is *acyclic*). Thus, for example, a simple closed curve cannot be a semigroup with left unit and left zero. Also, as may be shown from results in [15], a compact connected locally connected one-dimensional metrizable semigroup with (two-sided) unit is either a tree (dendrite) or contains exactly one simple closed curve.

Without some restriction on the algebraic structure of a semigroup it is not possible to conclude much about its topological structure. For example, for some point p in a simple closed curve we may define xy = p for all points x and y.

Perhaps the first positive result which relates to the problem considered here is given in a paper by R. J. Koch and the author ([8]). More recently L. W. Anderson and L. E. Ward, Jr., have proved that if S is a compact connected locally connected one-dimensional semigroup which is commutative (xy = yx) for all $x, y \in S$ and idempotent $(x^2 = x)$ for all $x \in S$ then $x \in S$ is a tree ([1]). Their methods are order-theoretic and do not seem to extend to the proofs of results given here.

We terminate the introduction with an indicative result of this paper. Adopting the notation

$$AB = m(A \times B)$$

Fundamenta Mathematicae, T. L (1961)

for subsets $A, B \subset S$ and putting

$$E = \{x | x \in S \text{ and } x^2 = x\}$$

we have-

If S is a compact connected semigroup with zero which satisfies also the conditions (i) S = ES = SE and (ii) E is commutative, then S is acyclic.

I am greatly obliged to Miss Anne Laster and Professor R. J. Koch for their several comments and to the National Science Foundation for its support.

- 1. We state here some definitions and preliminary results. The Alexander-Kolmogoroff-Spanier cohomology groups will be used as explicated in [9], [10] and [12], though we shall generally employ the terminology of [6] and [12]. The coefficient groups is fixed but anonymous throughout. The following is easily proved from the definition—
- (1.1) For the space X and any connected set $A \subset X$ the homomorphism i^* is an epimorphism and hence δ , the coboundary homomorphism, is 0—

$$H^0(X) \xrightarrow{i^{\bullet}} H^0(A) \xrightarrow{\delta} H^1(X, A)$$
.

We recall ([11]) that a compact Hausdorff space is fully normal and hence that results of [12], in particular the Map Excision Theorem, may be used. From this it follows that the isomorphisms demanded in [6], p. 43, are available and we may then use the Mayer-Vietoris exact sequence give there—

(1.2) If X is compact Hausdorff and if $X = A_1 \cup A_2$, with A_1 and A_2 closed then there is an exact sequence

...
$$H^p(A_1 \cap A_2) \stackrel{A}{\rightarrow} H^{p+1}(X) \stackrel{J^{\bullet}}{\rightarrow} H^{p+1}(A_1) \times H^{p+1}(A_2) \dots$$

such that $\Delta = 0$ if p = 0 and if $A_1 \cap A_2$ is connected.

The assertion that $\Delta=0$ follows from (1.1) and the construction given in [6] for this homomorphism. (Our notation differs a little from that in [6].)

The following notation is convenient. If $P \subset Q$ and if $h \in H^p(Q)$ then h|P denoted the image of h under the natural homomorphism induced by the inclusion map of P into Q. Using this notation the homomorphism J^* may be described thus—

If
$$h \in H^p(X)$$
 then $J^*(h) = (h|A_1, h|A_2)$.

We denote the *closure* of a set by affixing an asterisk, thus the closure of A is A^* .

It is convenient to state the Reduction Theorem ([12])—

(1.3) If X is compact Hausdorff, if A is closed and if $h \in H^p(X)$ such that h|A=0 then there is an open set U about A such that $h|U^*=0$.

A tower is such a family \mathcal{A} of sets that if $A_1, A_2, \epsilon \mathcal{A}$ then either $A_1 \subset A_2$ or $A_2 \subset A_1$. It is a consequence of the Hausdorff Maximality Principle that any tower is contained in a maximal such.

2. We shall need some results on semigroups.

(2.1) If S is a connected semigroup with zero such that S = SE then $AS \cap BS$ is connected for any subsets $A, B \subset S$.

Proof. Upon writing $R = AS \cap BS$ we have $RS \subset R$. Moreover, if $x \in R$ then x = ye for some $y \in S$ and some $e \in E$ so that

$$xe = ye^2 = ye = x$$

and thus

$$R \subset RE \subset RS \subset R$$
.

We have

$$R = RS = \bigcup \{xS | x \in R\}$$

and S, being connected and multiplication continuous, we see that R is the union of a family of connected sets all of which contain the zero element of S.

(2.2) If E is commutative, if $E^2 = E$, and if S = ES, then for any sets $A, B \subset E$ there is a set $C \subset E$ such that $AS \cap BS = CS$.

Proof. If $a \in A$ and $b \in B$, then ab = ba and $ab \in Ea$, by assumption. It is clear from this that $ab \in aS \cap bS$ and thus

$$abS \subset (aS \cap bS)S \subset aS^2 \cap bS^2 \subset aS \cap bS$$
.

Also $abS \subset aS^2 \subset aS$ and similarly, $baS \subset bS$. It follows that $aS \cap bS = abS$. Now

$$AS \cap BS = \bigcup \{aS \cap bs | a \in A \text{ and } b \in B\}$$
$$= \bigcup \{abS | a \in A \text{ and } b \in B\}$$
$$= ABS.$$

A subset $A \subset S$ is a subgroup if it is not empty and if

$$xA = A = Ax$$

for each $x \in A$. From [3] or [7] it may be seen that each subgroup of S is contained in a maximal such and that no two maximal subgroups intersect.

(2.3) If S is the union of its subgroups then S = ES = SE and if A and B are subsets of E there is a subset C of E such that $AS \cap BS = CS$.

Proof. If $x \in S$ then there is one and only one maximal subgroup, G(x), which contains x; let u(x) be the unit of G(x). Then x = xu(x) $\in Su(x) \subset SE$ and thus S = SE. Similarly we see that S = ES. Now if A and B are subsets of E we shall prove that $AS \cap BS = u(AS \cap BS)S$.

For this purpose it is enough to show that $aS \cap bS = u(aS \cap bS)S$ for each $a \in A$ and each $b \in B$. Let $x \in aS \cap bS$ and let x' be the inverse of x in G(x) so that xx' = u(x) = x'x. Then, from $x \in aS \cap bS$, we obtain

$$u(x) = xx' \subset (aS \cap bS)x' \subset aSx' \cap bSx' \subset aS \cap bS$$

so that $u(aS \cap bS) \subset aS \cap bS$ and right multiplication by S gives one inclusion necessary for the desired equality. Moreover,

$$x = u(x) x \in u(x) S \subset u(aS \cap bS) S$$

so that $aS \cap bS \subset u(aS \cap bS)S$ and the proposition is proved.

This result is implicit in [3].

From the continuity of the multiplication in $\mathcal S$ we readily obtain the following—

- (2.4) If A is compact and if U is an open set containing AS, then there is an open set V containing A such that $V*S \subset U$.
 - 3. The principal result of this note follows—

THEOREM. If S is a compact connected semigroup with zero, if S=SE and if E_0 is a closed subset of E and

(*) If A and B are closed subsets of E_0 then $AS \cap BS = CS$ for some closed subset C of E_0

then PS is acyclic for any closed subset P of Eq.

Proof. From (2.1) we know that PS is connected and hence has the 0-dimensional groups of a point. We proceed inductively, letting n be a positive integer.

If $h \in H^n(PS)$ and if $h \neq 0$ let Q be a maximal tower of closed subsets of P such that $h|QS \neq 0$ for any $Q \in Q$. Denoting by R the intersection of all the members of Q we show that $h|RS \neq 0$. In the contrary case, that is if h|RS = 0, there is an open set $U \supset RS$ such that $h|U^* = 0$, by the Reduction Theorem (1.3). From $RS \subset U$ we obtain, by (2.4), an open set V about R with $V^*S \subset U$. Since Q is a tower whose intersection is contained in V, there is an element Q of Q contained in V and thus $QS \subset U$ so that h|QS = 0. Since this contradicts the definition of Q, we conclude that $h|RS \neq 0$.

We consider first the case in which $\operatorname{card} R = 1$. We know that RS is a compact connected semigroup with unit (the element of R) and zero (the zero of S) and thus that $H^n(RS) = 0$, by [13]. But then h|RS = 0, a contradiction.

Thus $R = M \cup N$ where M and N are closed proper subsets of R and hence $RS = MS \cup NS$ so that upon putting h' = h|RS,

$$h'|MS=0=h'|NS.$$

We apply (1.2) taking X=RS, $A_1=MS$, $A_2=NS$ and p=n-1. From the last equation of the preceding paragraph we have $J^*(h')=0$. If n=1 then $A_1 \cap A_2$ is connected by (2.1) and thus A=0 and A=0 is a monomorphism. If n>1, $A_1 \cap A_2=CS$ for some closed set $C \subset E_0$ by (*) and, by the inductive hypothesis, we have $H^{n+1}(CS)=0$ so that h|RS=0 and again A=0 is a monomorphism. We conclude that A=0, i.e. A=0 and this contradiction completes the proof.

COROLLARY 1. If S is a compact connected semigroup with zero and if either S is the union of its subgroups or if S = ES = SE and E is commutative then S is acyclic.

Proof. The first case follows from the theorem and (2.3). The second follows from the theorem and (2.2) if it is observed that when E is commutative the product of any two idempotents is again an idempotent.

Recall that a *semilattice* is a commutative semigroup S for which S = E. We improve slightly the result of Anderson and Ward ([1]) —

COROLLARY 2. If S is a compact connected semilocally connected semilattice of codimension 1 ([4]) then S is a tree.

Proof. First of all, we know that S has a zero, which is indeed the unique element of the set

$$\bigcap \{xS \mid x \in S\}$$
.

Since S is compact and card S=1, we have at once that $H^1(A)=0$ (see Cohen [4]) for any closed subset $A\subset S$. By a result of Borsuk [2] and Čech [5] we know that any subcontinuum of S is unicoherent. If S is not a tree then, by definition, there exist two points a and b such that no point separates a and b in S (in the strong sence). By a suitable modification of an argument of Whyburn's ([17], p. 50), it follows that there is, for any p different from both a and b, a continuum P irreducible from a to b and which does not contain p. If q is a element of P distinct from a and from b there is also a continuum Q irreducible from a to b and which does not contain q. But then $P \cap Q$ is a subcontinuum of S which is not unicoherent because $P \cap Q$ is clearly not connected. This completes the proof. Actually, it is not necessary to assume commutativity to obtain the stronger result but a different argument must be used.

We recall that I is an *ideal* of S if I is not void and if $SI \subset I \supset IS$. The next result can be improved somewhat but, since it is unlikely that even the improved version is in any sense a final result, we remain content to state it in its present form, which is somewhat easier to prove than the more general version.

COROLLARY 3. Assuming the hypotheses of Corollary 1 but with the deletion of the assumption that S has a zero, we have $H^p(S)$ naturally isomorphic with $H^p(I)$ for any closed ideal I of S.

Proof. Upon endowing $S \times S$ with coordinatewise multiplication we see that it is a semigroup. Let D be its diagonal and let R be a closed reflexive symmetric transitive subset of $S \times S$ which satisfies also the condition

$DR \subset R \supset RD$,

which is equivalent, under the assumptions on R, to $R^2 \subset R$. Let S/R denote the set of equivalence classes for the relation R and let f denote the function which assigns to each $x \in S$ the equivalence class $f(x) \in S/R$ which contains x. For simplicity of writing we put T = S/R and observe that there is one and only one multiplication on T, denoted by juxtaposition, such that

$$f(xy) = f(x)f(y)$$

for all $x, y \in S$. Since S is compact and since R is closed, it follows that T is a semigroup, termed the *quotient of S by R*. Clearly the natural map f is a homomorphism of S onto T.

Adhering to the notation and assumptions of the preceding paragraph it may be shown without difficulty that if S is the union of its subgroups then so is T and also that when S satisfies the second set of conditions in Corollary 1 then these are also satisfied by T.

Now let I be a closed ideal of S and let

$$R = I \times I \cup D$$

It is readily verified that R satisfies all of the hypotheses of the first paragraph. Moreover, f collapses I to a point q, f(I) = q, and f is a homeomorphism on $S \setminus I$ (the complement of I in S) onto $T \setminus q$. The Map Excision Theorem ([12]) may be applied and, denoting by f^* the appropriate homomorphism induced by f, we have

$$f^*: H^p(T, q) \approx H^p(S, I)$$

for any non-negative integer p. Now it is readily verified from the fact that f is a homomorphism that q is the zero of T and thus, since T satisfies the conditions of Corollary 1, we know that it is acyclic. Using the acyclicity of T and of q and the exact sequence for the pair (T,q) we have $H^p(T,q)=0$ for all non-negative integers p and thus $H^p(S,I)=0$ for the range of p. From the exact sequence for the pair (S,I) it is readily seen that $H^p(S)$ is naturally isomorphic with $H^p(I)$, as was to be shown.

Employing the above corollary and the results of [16] we may prove the following— $\,$

(i) If S is a compact connected manifold without boundary, if S is the union of its subgroups and if S is prime in the sense of Borsuk then either S is a Lie group or else has one of the multiplications

$$xy = x \text{ or } xy = y \text{ for all } x, y \in S$$
.

(ii) If S is a compact connected manifold without boundary, if S = ES = SE with E commutative and if S is prime then S is a Lie group.

Since the above results are unlikely to be final, we omit the proofs.

References

- [1] L. W. Anderson and L. E. Ward, Jr., One dimensional topological semilattices, Illinois Journ, Math. 5 (1961), pp. 182-185.
- [2] K. Borsuk, Über die Abbildungen der metrischen kompakten Raume auf die Kreislinie, Fund. Math. 20 (1933), pp. 224-231.
- [3] A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. 42 (1941), pp. 1037-1049.
- [4] H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. Journ. 21 (1954), pp. 209-224.
- [5] E. Čech, Sur les continus Péaniens unicohérents, Fund. Math. 20 (1933), pp. 232-243.
- [6] S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton 1952.
- [7] J. A. Green, On the structure of semigroups, Ann. of Math. 54 (1951), pp. 163-172.
- [8] R. J. Koch and A. D. Wallace, Admissibility of semigroup structures on continua, Trans. Amer. Math. Soc. 88 (1958), pp. 277-287.
- [9] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis, Berlin 1955.
- [10] E. H. Spanier, Cohomology theory for general spaces, Ann. of Math. 49 (1948), pp. 407-427.
 - [11] John W. Tukey, Convergence and uniformity in topology, Princeton 1940.
- [12] A. D. Wallace, The map excision theorem, Duke Math. Journ. 19 (1952), pp. 177-182.
 - [13] Cohomology, dimension and mobs, Summa Brasil. Math. 3 (1953), pp. 43-54.
 - [14] The structure of topological semigroups, this Bulletin 61 (1955), pp. 95-112.
 [15] Topological invariance of ideal in mobs, Proc. Amer. Math. Soc. 5 (1954),
- pp. 866-868.
 - [16] Retractions in semigroups, Pacific Journ. Math. 7 (1957), pp. 1513-1517.

[17] G. T. Whyburn, Analytic topology, New York 1942.

Reçu par la Rédaction le 20, 8, 1960