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Acyclicity of compact connected semigroups
by
A. D. Wallace (New Orleans, Louisiana)

0. For the purpose of this note a semigroup ([14]) is a mnon-void
Hausdorff space together with a continuous associative multiplication,
denoted by juxtaposition, (2, ¥)—~oy. In more detail a semigroup is such
a function :

m: §xX 8§—8

that § is a non-void Hausdorff space, m is continuous and satisties

m{z, m(y, 2)) = m(m(z,y), 2)

for all w,y,2e8. In all that follows S will denote a semigroup.

An element t of S will be termed a left unit (left zero) if it satisfies
the equation t» = x(tx = t) for each @ e S. It has been known for some
time ([13]) that a compact connected semigroup with left zero and left
unit has the chohomology groups of a point-space (is acyclic). Thus, for
example, a simple closed curve cannot be a semigroup with left unit and
left zero. Also, as may be shown from results in [15], a compact connected
locally connected one-dimensional metrizable semigroup with (two-sided)
unit is either a tree (dendrite) or contains exactly one simple closed curve.

Without some restriction on the algebraic structure of a semigroup
it is not possible 1o conclude much about its topological structure. For
example, for some point p in a simple closed curve we may define ay = p
for all points 2 and y.

Perhaps the first positive result which relates to the problem. con-
sidered here is given in a paper by R. J. Koch and the author ([8]). More
recently L. W. Anderson and L. B. Ward, Jr., have proved that if §
is a compact connected locally connected one-dimengional semigroup
which iy commutative (zy = yx for all @,y ¢ §) and idempotent (a? = @
for all ® € §) then 8 is a tree ([1]). Their methods are order-theoretic and
do not seem to extend to the proofs of results given here.

We terminate the introduction with an indicative result of this
paper. Adopting the notation

AB = m(4 x B)
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for subsets 4, BC S and putting

E={x| el and 2* = x}
we have—
If 8 is a compact connected semigrowp with zero which satisfies also
the conditions (i) 8 = BS = S and (ii) B s commutative, then § is acyclic.
I am greatly obliged to Miss Anne Laster and Professor R. J. Koch
for their several comments and to the National Science Foundation for
its support.

1. We state here some definitions and preliminary results. The
Alexander-Kolmogoroff-Spanier cohomology groups will be wused as
explicated in [9], [10] and [12], though we shall generally employ the
terminology of [6] and [12]. The coefficient groups is fixed but anonymous
throughout. The following is easily proved from the definition—

(1.1) For the space X and any connected set A C X the homomorphism i*
is an epimorphism and hence 6, the coboundary homomorphism, is 0—

H(X)S Ho(4)-S> B (X, A).

We recall ([11]) that a compact Hausdorff space is fully normal
and hence that results of [12], in particular the Map Excision Theorem,
may be used. From this it follows that the isomorphisms demanded in [6],
. 43, are available and we may then use the Mayer-Vietoris exact sequence
give there—

(1.2) If X is compact Hausdorff and if X = A, v A,, with 4, and A,
closed then there is an emact sequence

e B Ay ~ Ag) S BPP(X) S BPYA) x BPYYA,) ...

such that A =0 if p =0 and if A, ~ A, is connected.

The assertion that 4 = 0 follows from (1.1) and the construction
given in [6] for this homomorphism. (Our notation differs a little from
that in [6].)

The following notation is convenient. It P C@ and if h ¢ H®(Q) then
h|P denoted the image of h under the natural homomorphism induced
by the inclusion map of P into @. Using this notation the homomorphism,
J* may be described thus—

If b e H(X) then J*(h) = (h|4y, h|4,).

We denote the closure of a set by affixing an asterisk, thus the closure
of A is 4* '

It is convenient to state the Reduction Theorem ([12])—

- (L3) If X is compact Hausdorff, if A is closed and if h e HY(X) such
that h|lA = 0 then there is an open set U about A such that h|U* = 0,
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A tower is such a family of of sets that if A,, 4,, € of then either
A; CA4, or A,CA4,. It is a consequence of the Hausdorff Maximality
Principle that any tower is contained in a maximal such.

2. We shall need some results on semigroups.

(2.1) If 8 is a connected semigroup with zero such that 8 = SH then
A8 ~ BS is connected for any subsets A, BC 8.

Proof. Upon writing R = 48 ~ BS we have RS CR. Moreover,
if # ¢ R then # = ye for some y ¢ 8 and some ¢ ¢ ¥ so that

re=1Ye =ye =0
and thus
RCRECRSCR.
‘We have
R= RS =J{x8| 2R}

and 8, being connected and multiplication continuous, we see that R is
the union of a family of connected sets all of which contain the zero
element of S.

(2.2) If E is commutative, if E* = B, and if S = HS, then for any
sets A, BC I there is a set CCE such that AS ~ BS = C8.

Proof. If a ¢ 4 and b € B, then ab = ba and ab € Ha, by assumption.
It is clear from this that ab € a8 ~ bS and thus

abS C (a8 ~ bS)S C a8 ~ bS2C al ~ bS.
Also abST a82C a8 and similarly, baS CbdS. It follows that aS ~ bS
= abS. Now
AR ~ABS=J{a8 ~bs| ae A and b e B}
=|J{ab8]| a e A and b e B}
= ABS.

A subset AC 8 is a subgroup if it is not empty and if
24 = A = Ax

for each # ¢ A. From [3] or [7] it may be geen that each subgroup of §
is contained in a maximal such and that no two maximal subgroups
intersect.
(2.8) If 8 1is the union of its subgroups then S = BS = SE and if A
and B are subsets of E there is a subset O of B such that AS ~ BS = 08.
" Proof. If # e § then there is one and only one maximal subgroup,
G(x), which contains x; let u(s) be the unit of G(x). Then # = au(®)
€ Su(z) CSE and thus S = SE. Similarly we see that § = HS. Now
if A and B are subsets of # we shall prove that 48 ~ BS = (48 ~ BS)&.

8#
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For this purpose it is enough to show that a8 A b8 = u(aS ~ b8)8 for
each ae A and each b eB. Let weal ~ b8 and let @ be the inverse of
@ in G(x) so that oo’ = u(x) = #'w. Then, from » e al ~ bS, woe obtain

w(z) = a2’ C (a8 ~ b8)a’ C aSa’ ~ bS2' C al ~ bS8

so that (a8 ~BS)Cal ~ bS and right multiplication by § gives one
inclusion necessary for the desired equality. Moreover,

2 =u(w)w e u(@)S CulaS ~ 5SS

g0 that a8 ~ b8 Cu(al ~ b8)8 and the proposition is proved.

This result is implicit in [3].

From the continuity of the multiplication in § we readily obtain
the following— :

(2.4) If A is compaci and if U is an open set containing AS, then
there is an open set V containing A such that V*S§C U.

8. The principal result of this note follows—

TamorEM. If 8 is @ compact connected semigroup with zero, if 8 = QW
and if By is a closed subset of B and

(x) If A and B are closed subsets of B, then A8 ~ BS = 08 for some
closed subset ¢ of B,

then P8 is acyolic for amy closed subset P of .

Proof. From (2.1) we know that PS is connected and hence has
the 0-dimensional groups of a point. We proceed induetively, letting
be a positive integer.

If h e HY(PS) and if &+ 0 let Q be a maximal tower of closed subsets
of P such that %[Q8 # 0 for any ¢ e Q. Denoting by R the intersection
of al% t_he members of Q we show that h|RS # 0. In the contrary case,
that is if h|RS = 0, there is an ppen set T D RS such that h|T* = 0, by the
Reduction Theorgm (1.3). From RSC U we obtain, by (2.4), an open
set V‘ abm}t R with _V*;S’ C U. Since Q i a tower whoge intersection is
0011:1?1;167?[ g])n V, there is an element ¢ of O contained in V and thus QSC U
5o tha )8 = 0. Since this contradicts the definiti ;
that ML 0 ! inition of Q, we conclude
_~ 'We consider first the cage in which card R — 1. We know that RS
l(iha; compait ch?nn?icted semigroup with unit (the element of R) and zero

780 o and thus that H"(RS) =0, b b =
a contradiction. ) » by [13]. But then HES =0,

Thus B= Mo N where M and ¥ ar

e closed proper subsets of R
and hence RS = M8 NS so that upon putting A’ = :i]RS,

W|MS =0 =n|NS.
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We apply (1.2) taking X = RS, 4, = M8, 4, = N8 and p =n—1.
From the last equation of the preceding paragraph we have J*(h') = 0.
If » =1 then A, ~ 4, is connected by (2.1) and thus 4 =0 and J* is
a monomorphism. If # > 1, 4; ~ 4, = 08 for some closed set OC H,
by (x) and, by the inductive hypothesis, we have H"(08) = 0 so that
h|RS = 0 and again J* is a monomorphism. We conclude that &' = 0,
i.e. h|RS = 0 and this contradiction completes the proof,

COROLLARY 1. If 8 is a compact connected semigroup with zero and
if either 8 is the union of its subgroups or if § = ES = SE and H is commu-~
tative then S is acyclic. '

Proof. The first case follows from the theorem and (2.3). The second
follows from the theorem and (2.2) if it is observed that when F is commu-
tative the product of any two idempotents is again an idempotent.

Recall that a semilattice* is a commutative semigroup S for which
8 = E. We improve slightly the result of Anderson and Ward ([1]) —

CoROLLARY 2. If 8 48 a compact connected semilocally connected
semilattice of codimension 1 ([4]) then 8 is a iree.

Proof. First of all, we know that S has a zero, which is indeed the
unique element of the set

N @8] @ e8y.

Since 8§ is compact and card S = 1, we have at once that H'(4) =0
(see Cohen [4]) for any closed subset 4 C 8. By a result of Borsuk [2]
and Cech [5] we know that any subcontinuum of § is unicoherent.
If 8 is not a tree then, by definition, there exist two points a and b such
that no point separates @ and b in § (in the strong sence). By a suitable
modification of an argument of Whybuwrn’s ([17], p. 50), it follows that
there is, for any p different from both a and b, a continuum P irreducible
from @ to b and which does not contain p. If ¢ is a element of P distinet
from ¢ and from b there is also a continuum @ irreducible from a to b
and which does not contain g. But then P ~ @ is a subcontinuum of §
which is not unicoherent because P ~ @ is clearly not connected. This
completes the proof. Actually, it is not necessary to assume commutativity
to obtain the stronger result but a different argument must be used.

‘We recall that I is an ideal of 8 if I is not void and if SICID IS.
The next result can be improved somewhat but, since it is unlikely that
even the improved version is in any sense a final result, we remain content
to state it in its present form, which iy somewhat easier to prove than
the more general version.

COROLLARY ‘3. Assuming the hypotheses of Corollary 1 but with the
deletion of the assumption that S has a zero, we have HP(S) naturally iso-
morphic with H®(I) for any closed ideal I of 8.


Artur


104 A. D. Wallace

Proof. Upon endowing 8x 8 with coordinatewise multiplication we
see that it is a semigroup. Let D be its diagonal and let R be a closed
reflexive symmetric transitive subset of §x 8 which satisfies also the
condition

DRCRORD,

which is equivalent, under the assumptions on R, to R2C R. Let S/R
denote the got of equivalence classes for the relation R and let f denote
the function: which assigns to each e § the equivalence clags f(») ¢ §/R
which contains #. For simplicity of writing wo put T = 8/R and observe
that there is one and only ome multiplication on T, denoted by juxta-
Position, such that

Hay) = f(@)f(y)

for all z, y € 8. Since 8 is compact and since R is closed, it follows that 7
is a semigroup, termed the guotient of 8 by R. Olearly the natural map f
18 & homomorphism of § onto 7.

. Adhering to the notation and assumptions of the preceding paragraph
1t may be shown without difficulty that if  is the union of ity subgroups
!:hen 80 is T and also that when § satisfies the second set of conditions
in Corollary 1 then these are also satistied by T.

Now let I be a closed ideal of 8 and let

R=IxIuD.

It is readily verified that R satisfies all of the hypotheses of the first
paragraph. Moreover, f collapses I to a point ¢, f(I) = ¢, and f is a home-
omorphism on §\I (the complement of I in 8) onto T'\g. The Map Execision
Theorem ((12]) may be applied and, denoting by f* the appropriate
homomorphism induced by f, we have

f*: HY(T, ¢~ H?(8, I)

for 81y non-negative integer p. Now it is readily verified from the fact
tha_t f 18 & homomorphism that ¢ is the zero of T and thus since 1T’
satisfies t.h(? conditions of Corollary 1, we know that it is acycl’ic. Using
the acyelicity of 7 and of q and the exact sequence for the pair (T, q)
we have H*T, q) = 0 for all non-negative integers p and thus H?(8,I) ; 0
for t-he range of p. From the exact sequence for the pair (S,I’) it is
iza(:ﬁz Ws;sen that HP(S) ig naturally isomorphic with HY(I), ag was to

Bmploying the above corollary and
the following— Y and the results of [16] we may prove
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(i) If 8 is a compact connected manifold without boundary, if 8 is
the union of ils subgroups and if 8 is prime in the sense of Borsuk then
either 8 is a Lie group or else has one of the multiplications

wy=a or zy=y for all

(i) If 8 is a compact connected manifold without boundary, if 8§ = BS
= 8B with E commutative and if S is prime then 8 is a Lie group.
" Since the above results are unlikely to be final, we omit the proofs.

z,yel.
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