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Local properties of solutions of elliptic partial differential equations
by
A. P. CALDERON and A. ZYGMUND (Chicago)

Introduction. The purpose of this paper* is to establish pointwise
estimates for solutions of elliptic partial differential equations and systems.
The results presented here differ from the familiar ones in that they give
information about the behavior of solutions at individual points. More
specifically, we obtain two kinds of results. On the one hand, we establish
inequalities for solutions and their derivatives at isolated individual
points. On the other, we also obtain results of the ,,almost everywhere”
type. Theorems 1 and 2 below summarize the main results.

1. We begin with notations and definitions.

By ©,v,... we denote respectively points (3, 2, ..., &)
(W1, Yoy --+» Yn), --. Of the n-dimensional Euclidean space BE; dimension
n is fixed throughout the paper. The class of measurable functions f(x)
sueh that ||f(2)], = ([1f(#)Pdz)'? < co will -be denoted by I”(E,) or,
simply, I”; here and elsewhere dr stands for the element of volume in
B,, and | means f All functions we consider are complex-valued, unless

otherwise stated. The symbols #-+y and iz, where 2 is a scalar, have the
usual meaning; we also.use the notations |#| = (@224, - al)",
DY = By Y1+ BaYgtee By, a0d i o = (ay, a5, ..., a;), Where the q;
are non-negative integers, we will write

la| = al-l—ag—{—...—{—a,” ot = ol o,

o=ttt (s =n (] ) ()

Finally fxg will stand for the convolution of f and g.

The symbol ¢ with various subseripts will stand for a constant, not
necessarily the same at each occurrence, which depends only (unless other-
wise stated) on the variables displayed. Dependence on the dimension,
though, will not be indicated. Thus ¢ without subseripts will indicate either
an absolute constant or a quantity depending on the dimension only.

* Research resulting in this paper was partly supported by the NSF, contract
NSF -8205, and the Air Force, contract AF-49 (638)-451.
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172 A. P, Calderdén and A, Zygmund

We denote by O the class of infinitely differentiable functions with
compact support.

It seems that the notion of differentiability which is most suited
to the treatment of the problems that concern us, is not the classical one,
It appears that it is more convenient to estimate the remainder of the
Taylor series in the mean with various exponents. This type of differen-
tiability is much move stable than the clagsical one in the sense that it is
preserved at individual points under various operations such ag fractional
integration and singular integral transformations.

Definition 1. Let u be any number Z —u/p. By 7% (x,) we shall
denote the class of functions f(a)eL” (H,) such that there exigts a poly-
nomial P (z—a,) of degree strietly less than u (in particular P = 0 if u < 0)
with the property that

(o™ f(@) =P (a—a)[? do)" << 4"

—2gl <o

(1.1) (0 < p < o0)

with 4 independent of ¢. Here 1 << p << oo; when p = oo the left side
of (1.1) means, as usual, Iess sup |f(z)—P(z—w,)|. Instead of T (z,) we
2 | <5
shall simply write T, (x,). ’
Definition 2. Let f be a function in 7% (s,). We shall say that f
belongs to 15 (), if there exists a polynomial P(x—m,) of degree less than
or equal to u such that

(1.2) (@—” f Jf(w)—P(w—-mo)F’dm)]m:o(g”) a8 o-—»0.

le—2gl <o

As in definition 1, we shall denote ¢ (w,) by 1, (%,)-

In both definitions the polynomial P is unique, as easily seen by con-
sidering the difference P,—P, of two such possible polynomials and ob-
serving that the inequalities (1.1) and (1.2) imply that it must vanish
identically. Any function in I* belongs to 1% (z,) with u = —n /p for any
#,. The familiar result about the Lebesgue set of a function can be éxpressed
by saying that if feI”, p < oo, then fet®(w,) for almost all .

The clagy 1% (wg) i8 & linear space in which we introduce a norm. Tt
will be convenient to use the rather unorthodox notation T%(wy, f) for
the norm of an feT% (%,). We define 1% (,, f) as the sum of | fllp, the moduli
of the coefficients of the polynomial P(z—2,), and the least admissible
value of 4 in (1.1).

o In the definition of 7% (z,) or &5 (m,) the value of the function at #,
Iy irrelevant. Nevertheless, if the function f in I? belongs to (x,) With
% 2 0 (and so also if f belongs to 7% (x,) with v > 0) for each x, belonging
to a set of positive measure, then at every «, in the Lebesgue set f()
coincides with the constant term of the corresponding P(x—ua,); con-
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sequently be redefining f, if necessary, on a set of measure zero, we may
agsume that this condition is always satisfied.

Definition 3. Let @ be a closed set. We shall say that the bounded
funetion f belongs 1o the class B, (@), u > 0, if there cxist bounded functions
fay lal < u, such that

4 W
D grfen)+Rufa, b
1Bl <u—la}
for all # and @+ % in @, with |R, (2, h)| < C|h[*'*. We say that f belongs to
b (Q), u = 0, if there exist functions f, with || <« such that
i
2D Gy fen@) + Falo, )
pl<u—lat
for all 2 and z+h in @, with |R,(z, k)| < C|h" ™ and, in addition,
R.(z,h) = o(|R])*"" as |k] — 0, uniformly in ze@.

Definition 4. Given a non-negative integer &, I} will denote the
class of functions in L7 with distribution derivatives of orders less than
or equal to kin I*. The norm ||fl}, ; of a function fin Ij is, by definition,
the sum of the norms in I? of f and its derivatives of orders less than or
equal to k.

Definition 5. Let f = (fi, fay ..., fr) be a vector valued funetion

fulw 1) =

ful@+h) =

and.
D A%
Lf= D a@|=-) f =9
z
laf<m
where ¢ = (¢1, oy ---, §s) 18 & vecbor valued function of s components,
s >r, and a,(z) are s xr matrices. We shall say that the operator .2,
or the equation .2f = g, is elliptic at the point x, if the characteristic
maitrix

(1.3) D a0 £

faj = m

has the property that for £ =1
det|( > al(m) &) () aulan) &)= ul@) >0,

al=m laj=m
where a* denotes the conjugate transpose of a. We shall call the largest
admissible value of u(w,) the ellipticity constant of £ at @,.

THEOREM 1. Let Lf = g be an equation of order m with coefficients
in To(x), w >0, which is elliptic at x, in the sense of definition 5. Let
l<p<oo, u=v>= —n/p and v be non-integral. If feIb, and geT% (x,)
in the sense that their componenis belong to these spaces, then
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() for 5 =1,2,...,7 and || < m,
D \" o r
- \ ' \Y
(14) T (w (@) f«) <O D) T80, 99+ 3 filly,n],
=l F=1 b

where 1fp221/g 2 1jp—(m—lal)fn 4f Llp—(m—lal}fn >0, p < ¢< oo
if Up <(m—lal)fn, or p < q<'co if Lfp = (m—|al)jn, and ¢ depends
only on v, p, 1, 8, u(@,) and the least upper bound of the norms in Ty (m,)
of the coefficients of .LC.

(1) If in addition the leading coofficients of the equation are whiformly
continuous and the equation is uniformly elliptic in the sense that the constant

,
of ellipticity w(w) s bounded away from zero, then the quantity D filloon
’ < Il

El =1
on the right of (1.4) ean be replaced by (7[2”‘;‘}”,, + DNgilly], where € depends
=1 =
on L.

(i) If gety (@), then (0)0x)" f belongs 1o byt With the same g as in
part (i).

TumoreM 2. Let 2f = ¢ be an equation of order m which is elliptic
in the sense of definition B at all poinis x, belonging to a set Q of positive
measure, and whose coefficients belong to Ty, (1), u 3= 1, for all @y 1 Q). Let v
be @ positive integer not larger than w. Then, if ged% (@), 1 < p << o0, for
all @y in Q, and felf, the functions (8 [00)"f, |a| < my belong 10ty ()
Jor almost all xy in Q, where ¢ is the same as in part (1) of Theorem 1.

TurorEM 3. Let L2f =g be an equation of order m with coefficients in
Tu(#o), w > 0, for all o, in a closed set Q. Let the norms of the coefficients in
Tu(m) be bounded in Q and L be uniformly elliptic in Q, that is, let the constant
of ellipticity p(mo) of £ be bounded away from zero in Q. Then if geT% (2)

8

Jor all @y in Q and 3 T2 (z,, ¢;) is bownded in @, 1 < p < oo, v is positive
=1

and non integral, —m <o < u, and fel?,, the funclion I helongs to
By ym(@)-

If in addition g ety (m) for all x,¢Q, then f by (@)

Tt has already been observed (see [71), and the idea iy basic for the
Present paper, that, roughly speaking, a differential operator is the compo-
sition of fractional differentiation and a singular integral transformation.
Accordingly, our method will consist in, deriving estimates for solutions
of differential equations from estimates for fractional integraly and gingular
integral transforms.

Definition 6. Let f be a tempered digtribution in 1,,; the fractional
integral of order u of f, denoted by J"f, is defined by

AN N
TUf = (1 dm2|a|2) 2,

©
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where f stands for the Fourier transform of f, that is,

fla) = [e™eDf(g)ay,
Eﬂ
if f is an integrable function.

This definition of fractional integration is different from the familiar
one due to M. Riesz. It has some advantages, namely it is defined for any
u real or complex and thus is a one-parameter group of operations, and
furthermore, for % >0 it is a bounded operation on I?, 1 <p < oco.
This notion of fractional integration was introduced in [1] and [5;1,
page 25].

THEOREM 4. Let u>= —nfp, v >0, u+0v=0,1,2,..., 1 <p < oco.
Then J* maps continuously :

(i) Th(mo) into T3 .. (x), provided

1> 1> 1 [} i <n

T = T = T T T ) st

(a) p q 7 0 V4 P

(b) P<g<oo, if o <SPS
. n

(e) pELg<co, if - =P

(i) (@) mto 18, (@), with u and v as in (i).

THEOREM 5. Let u and v be non-negative integers. Then if feTh(2,),
1 <p< oo, for all @, in a set Q of positive measure, we have J*f ety ., (x,)
for almost all zyeQ, p and g being related as in part (i) of Theorem 4. If
u~+v =1, the assertion is valid for 1 < p < oo.

This theorem asserts in particular that if « is a positive integer and
1< p < oo the condition feT%(z,) imples fetl(z,) almost everywhere;
the case 4 = 1 and p = oo is the familiar result of Rademacher-Stepanov;
the ease u >1, p = oo was proved by Oliver [12]; related results are
Theorem 11 and 12 below which extend some known results (see [8] and
[47).

) We shall now consider singular integral operators of the following
form:

UAf = alo)f(o)+[ ke, s—y)f (W) dy,

where a(x) is a bounded measurable function and %(x, ¢) is homogeneous of
degree —n with respect o 2, that is, such that k(w, A2) = A™"k(w, 2) for
all 2 >0, and further k(z, 2) has for each z mean value zero on [2| = 1.
In addition we shall agsume that k(z,2) is infinitely differentiable with
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respect to 2 and is uniformly bounded for [¢| = 1. The preceding integral
must of course be intexrpreted as a principal value integral. Associated
with the operator X is its symbol o(K) which is defined as

o(K) = al@)+Te(@, £),
where %(z,2) is the Fourier transform of k(z, 2) with vespect to ».

Definition 7. An operator X as above is said to belong to the class
To(m)y w2 0, if ¢(K) and its derivatives with respect to coordinates of
z of orders < 2n+-u-1 belong to 1), (x,) for each 2 5 0, mniformly in l#]=1.
The norm T4 (my, UA) of an operator of elass 1 (w,) is, by definition, the
leagt upper bound of the norms in T\ (x,) of o(K) and its derivatives
with respeet to 2 of orders less than or equal to 2n--u-+1 evaluated in
|¢| = 1. Operators of class ¢,(%,) are analogously defined.

THEOREM 6. Let X be a singular integral operator of class T, ().
If 1 < p < oo, and v is not equal o zero or a positive inieger and is larger
tham or equal to —mn[p, then K maps T3 (x,) continuously into T (i), with
norm legs than or equal to Oy, o Tyy(2, K), provided w = v. The corresponding
result for operators of class t,(w,) end the spaces @ (x,) is also valid.

THEOREM 7. Let u be a non negative integer and f a function belonging
to Th(m), 1 < p < oo, for all @, in a set @ of positive measure. Then there
ewisis a subset Q of Q such that Q—G has measure zero and such that for
every singular integral operator X belonging to Ty(m,), #yeQ, F belongs
to T ().

2. In this section we establish certain propertics of the spaces T%(z,),
1% (%,) which we shall need later.

Lemma 2.1, If —nfp <u <o, 1 <p < oo, then T (m) D T (),
and T4 (x,, f) < T3 (o, f)-

Proof. Assume u > 0. Let P, be the sum of the terms of degree
< u in the Taylor expansion of f, R, the corresponding remainder, and
let P, and R, be similarly defined. Then P, is the sum of the terms of P,
of degree less than w. For ¢ <1, we have |Py(h)— P, (h)| < T2 (xy, f) 11"
and

[m| f< g |Ry ()7 dh]”” < [W f a |Py (1) — Py (1) " dh]’”’ + W( | R,,(h)mlh]‘/a

< OT5 (@0, ) ¢4 T3 (o, f) 747 < OLF (0, ) "

And for ¢ >1, since |Py(h)| < T2 (m,, f)o" for |h| <
[ [ Ramran]™ <ifl+{ [ 1Puhyran]”™

hi<e Ihi<e

¢, we have

< T (20, ) 4-OTE @y, f) €74 < OTE (a4, 1) "4,

icm®
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and thus
. 1 v 1ie
sup o | [ 1RamPaR]" < 072 (04,1,
e @ thl <e

This, as easily seen, implies the desired result.
For » << 0 we have, if ¢ <1,

171 b P11 i1
Sl [wernra] <<% [iesnra]”,
el g, - el s,

and, if o >1,

1[1 I L
sz [raenea]” <,

h<e

which again implies the desired result.

LEMMA 2.2. The spaces Ty(x), 1 <p < oo, 4 = —nfp, are com-
plete. _

Proof. Suppose that the sequence f, is such that T7%(xy, f,—f.) =0
as v and p tend to infinity. Then, in the first place, f, converges in IP
to a limit f. Let P = lim P,, where P, is the Taylor expansion of f,;

7> 00

P exists since the coefficients of P, converge. Then, for each o,
171
sle

—tm % [ W= B PP < i 22, ) < .
; lm

n—>oo0 @

1/p
[ \U(mo+h>~f,<mo+h)]~[P(h)»P,(h)]F’dh]

hi<e

hi<e #>oo

This shows that feTI%(%,), and as » tends to infinity we find

171 up
sup - [—7-; [1u-fy—@—-rrar]” >o.
e & m'<e
From this it follows that T%(wy, f—f,) - 0 as v — oo.

Lemma 2.3. Let —nfp <4, 1 <p < oo,

(i) The space t5(m,) s a closed subspace of T ().

(i) If f is @ function in t(xz,) and @(z) is a function in OF such that
fe@dz = 1, then f* = \p(iz)*f(x) converges to f in T% () as . tends
to infinity.

(ili) The space OF is demse in 15(2).

Studia Mathematica XX
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Proof Suppose f,eth(z) and Th(%, fi—f) =0 as v — oo, Then,
if R, and R are the respective remainders,

171 o T
sws| s [ m—rpae]” <, s-n.

[e—%g|<e

Consequently, the left-hand side is less than any preassigned e if » is suffi-

ciently large. Since

111 I L
lim - [ —— f |]gv|ﬂde == 0,
et @ l g

it follows that

— 1T1
lim — F

il
0 @ G| e

1y
| R (1) l”(lm] o3 &,

Since ¢ i3 arbitrary, this implies that fetd ().

To prove (i) we will assume, without loss of generality, that p(z)
vanishes for |¢| > 1, and that @, = 0.

Denote by P* the sum of terms of the Taylor expansion of f*(x
@y =0 of degree < u. Set R* = f*—P* Then, by Holder’s 1nequa.hty,

we have
1. e
[ 1R@)an < (*[— [ ir@pa
4 ]

<o |2|<<e

< Cel0) o,

where R i3 the remainder in the expansion of f at @, = 0 and z(p) is
bounded and tends to zero as ¢ tends to zero. Without loss of generality
we may assume that (o) decreases to 0.

We first show that the coefficients of P* converge to the coefficients
of P. By differentiation we obtain

( ) = [ o= 29) Puly) dy + S, (— 2 Ry dy,

where f =P+R, P, =(0/0n)"P and ¢, = (7/dz)"p. The first integral
converges to P,(0) as 2 — oo, and for the second we have

14— ||
e f v =Ry | <N+ [ [Riy)iay @ONe(—l—) (]) :
i1 A\

where N is a bound for |p,|, |a| < u, and o it tends to zero as A — oo.
Sinee [|[f*—fl,, tends to zero ag A — oo, it remaing to show thatb

Slzvp “:E [in f | R} (@) —R(a))? dm]lm

1zl<e
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tends to zero as A — co. Let n > 0 and let m; be the sum of the absolute
values of the coefficients of P,—P. Then for g >» we have

11 L yp
T[—,; | 1R’~—R|’dm] < ﬂ,z,.u 0= fl+ 7[ [ #i—pras]

e z|<e ¢ i<

< "/mu”f —fll+ nmw[ f(l—{-[m[“ﬂ)dx]l/z’»

lel<e

and the right hand side fends to zero as 1 — co, uniformly in o > 7.
On the other hand, we have

#) = [[rome— = XL -] ew+ o).
I“KM

Since ' (Ax)xP is a polynomial @, the contribution of P to this infegral
is @ minus its Taylor expansion at # = 0, and so is zero. Thus P may be
dropped in the preceding expression. If ¢ > 1/3 we have, using Young’s
inequality,

Bt <[ [ Rora]”+

|l lzl<2e
J [[ ot aa]”

Jrtlal
+2
« [®l<e

SRR
< O‘us(zg) Qn/lz»bu_{_oz Ne (7) (7) Q[ [ nfp

YRR

< Cue(20)e

If o <1/A and if N now denotes a bound for |p,(#)], |a| = [u+1], we
have

< O (A,

il"ﬂl (@—y)]— Zl”“”‘ Pu{—H)

lal<u

whence

|B} (@) < 0LV (Ao 2 [ |R(@)ldy < Cu e( ) et
wi<z/a
and

2 2 n,
[ f IR w)lpdw]l/p < CuE(I) Jlu+1l-u Qn/11+[u+l] < Oy (7)9 |

lz|<e

This combined with the inequality obtained above gives

[ f]R‘ Ivdw]psou[s(zg)Jre@)]

lzl<e
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for any p and A. Consequently,

171
ale )

@l<e

D4

1/p
[R*~R|"dm] <0u[s<2a>‘|~e(e)-|--(—“—)l:ﬁoufz -e(i
e 7S £(20)+ 1)]’

and thus the left hand side comverges to zero uniformly in 0 a8 A — oo
Th1§3 proves (if). Part (iii) is a consequence of the fact that functiong f
in #(m,) with compaet supports ave dense in & (x,), and for e ']‘ b 7
F* belongs to CF. ) e,
Lemma 2.4, Let fed%(my), 1 <Xp << 00, 4 32 —n/s i
fel WP oo oz —aulp, and el ()
v2u v =0 Then fgelti(n,) and Th(wy, fo) < CTU(w,, )T, o ) It
J Lo\ JU) S Gy s Lo\ Byy ().
Feth (@) and gety(an), thon fyet(a). 7 o DIt o) 1y
Proof. If » <0, our assertion is obvious. Suppose that v >0, and
let r be the largest integer less than «. In view of Lemma 2.1, we7n1ay
assuylf f;h;,t v = u. Then g(w,+h) = Py(h)-+ R, (), where Py (h) is poly-
nomial of degree r and | B (h)| << 1, (2, ¢)|h|*. On the other hand
L 2 . 2 h/
= Py(h)+R,(h), where Jlooth

[1
Q“
L P L ] f terms i
Then ef now P denote the sum of terms of degree < r in P,P,.
f@oth)g(@+h) = P(h)-+ (B, Py+ Rog+ P, P,—P) = P+ R,

say. Sinee |g] < Ty(wy, g) and Py(h) < Tu(my, f) for |h| <1, and since
the sum of) the absolute values of the coefficients of P, P, does not exceed
Tula, 9) T4 (@y, f); we have |PyPy—P| < [h™1 T, (24, g) T2 (ay, f) for 5] < 1
From this and the estimates for R, and R, we obtain, for é <1, e

’ 1n
[ mz(hw’dh] < T2z, f) 0"

1h<e

1 1/p
—U D
4 [*n f IR(h)I”dh] S OTu(@o, 9)T4(m, f), @ < 1.

1hl<e

For o=1,|h <o, we use the inequaliti R P
_ qualities | B|<|fl 9|+ |P| and
1P (B)| < ¢ Ty, g) Th (w5, f), and obtain U

_ 1
@“[‘&T

The other terms that enter in the nor i
2 orm of NC jor
o u( ’ ) ’ ) fg are also magonzed b;
When dea,lmg with the spaces ’lqp Xy) an (%
) 0) d ¢ :Z') we take r to be the
largest lnteger less than or equa,l to wu. We TJ];.LGD have |El(h)J = O(I‘LJ )7

_ 1/p
f|R(h)i"lh] < 07 Il llg o0 Ty (w0, g) T2 (o, )

Ihi<e

< OT, (my, Q)Tﬁ(‘wo,.f)-

e ©
Im Elliptic partial differential equations 181
|P.Py—P| = o(|h[") and

1 1/p
[ [ mra]” = o),
hi<e
for |b| and ¢ — 0. From this the desired result follows at once.

LemMa 2.5. Let feTh(m), 1 <p < oo, 4 = —nfp, and let gely(m),
0>0, v=u, and g(z)=0. Then fgeTf(m) and TE (@0, fg) <
CTh (%, f) T (o, ), where

(i) w = min(u+o,) if » <1,

(i) w = min(z+1,0) if v=1,
and

(ill) w = u+1 i >0, v=1 and f(z) =0.

Proof. The argument is parallel to that of the preceding proof.
The case % < 0 is immediate. Assume therefore that » > 0, and let R,,
P,, R,, P, be as in the preceding proof, and r the largest integer less than
w. Then

F@o+ 1) g (@y+ 1) = P(R)+ (By Pyt Rog+P1P,—P) =P+,

where P is the sum of terms of P, P, of degrees less than or equal to 7.
We then have the inequalities

\9( -+ )| < Tolmy g) 1R, if
19 (@+ 1) < Ty(@y, g)max (1, |R]),
|P(R)] < Ty, 9) T2 (%, Hmax (1, [B]*).

if o=l

Consequently, if o> 1,

n
hi<e hi<e

2

Ihi<e

1/ e
BN Eapan] g[—l,; i ‘|g(wo+h>f(mo+h)l”dh] +

1p
|1_°(h)¥”dh] < OTy (30, 9) T2 (@0, f)° -

If o <1, we have
1 ur 3 2w
|5 [ 1matigtant Pan] " < OTuta, o) T8 w0 e
{hl<ce
On the other hand, if k| <1 we have [Py(h)| < T8 (2, f) in the cases
(i) and (ii), and |P,(h)| << T5(a,, f)1h| in the case (iii). Thus, since |R;(h)]
< |B) Ty (wy, g), We have

[_1— f lRl(h)PZ(h)ll)dh]lm < 0T, (0, EAC )] 27

‘7
Ihi<e
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iom®
if ¢ <1. Finally, sinco |PyP,—P| << Ty (ay, g) 1% (@, f)IA for Il <1,
we have

1 . Lfp
[7 f {Pl.Pz—P["dh,]

|hi<<e

S 01'1,(.%’0, ) TZ; (#, .f) Qw

for ¢ < 1. Collecting results we find that

l . 1[?7
[7 f |Jﬂ(h)|"dn]

1hi=ze

< O ay, f) Ty, f) 6

for all p. Since the snm of the moduli of the cocfficients of P does not
exceed 0 (@, f) Ty (w,, g), and since lflly =< I% (g, ) T, @y, ¢), the lomma
follows.

LeMMA 2.6. Given an tnleger m, m =0, there eaisls a Sfunction ()
infinilely differentiable with support o |w| << 1, such that Sfor every 1 >0
and every polynomial P of degree < m,

J#ol2@—y)1P@)iy = P(a)
holds.
Proof. Consider the class of all infinitely differentiable funetions
¢ (%) supported by |#[ < 1, and the mapping of this linear space into the
vector space V of points {£dy 0 < o] < m, given by

&, = /rp(w)w“dm.
If the range of this mapping is not the entire space V, then there exist
numbers 7., 0 < || < m not all zero, such that

Z%fa = ffl)(w)Z'l)uw”dw = ()

for all p. In particular, if y (i) is an infinitely differentiable function suppor-
ted by || < 1 which is positive in [#] < 1, and @(z) is w(®) X)n.2"% we obtain

fw(w)\me“j?dw =0.

This implies that '.a" =0 in |s| <1 and consequently », = 0,
0 <la| <m, which contradicts our assumption. That iy, the range of

:Ee mapping is all of V, and therefore there exists a function @ (x) such
at

f«p(w)dm =1, f(p(w)m"dw =0,

1t @ is any polynomial of degree <, then evidently Jo(2)@(z) de = Q(0).
Given # and 1 we change variables in the Dreceding integral by setting

¢ = Jo—Jy and replace @ (z) by @(2) = P(s—2/1), and the desired result
follows.

0 <lal < m.
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The next proposition seems to be of independent interest.
THEOREM 8. Let Q be a closed set in B, and f. a fugwtion in B,, such

that feTh (@), 1 <p < o0, 4 >0, for aT:l_aooe Q, ;mth T8y f) <_ M <ﬂoo,

for mpeQ. Then feB,(Q). If in addition f eth(w,) for all wye@, then

f Ebu(Q)' . . .

Proof. Denote by f.(x,) the coefficient of‘ (#— 2y)“/a! in the expan-
sion of f at @, and let # = x,+ kb be another point of Q. Let ¢ be :ﬁhe fu}]llc—
tion of the preceding lemma with m > u, and ¢.(z) = (0/0z)"p. Then
if P(z) is any polynomial of degree <{m we have

J‘ Zn(p[l(m__y)]l?(y)dy = P(a),

and by differentiating under the integral sign we obtain
a a
[ g, [Ao—y) 1Py dy = (%) P ().
Consider the case when feT%(w,) for all #,¢Q. Then we have

) = D ) ly—ad+ R, ),
lef<u
— ful@)(y— @) +E (2, 9),

al
u

A

|a
Whel‘e 1/p I nn+e
[ 1B, pPay]” < MM,

1y —xgl<e

i <
and similarly for B(z, y). Set now A7 = [h| = |#— x| and given §, 0 <
< |B] < u, consider.the expression

I = [P —y)1f () dy.
If we replace here f(y) by the first of its expressions above we get
L uta) (L) w—an+ [0 gpao— R, 1)y
= ¥ = fal@)|5-) (@—a)+ | ¥ gplle—y 01
T AN
lal<u

L frla) o—aof + [ 7P, (10— 1)1 R (a0, 1)y
wi<u—ig ©°

On the other hand, if we use the second expression for (), we find

I = fy(a)+ [ 1P gpla(e—9)]B(@, y)dy-
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Consequently,

o= Y S hme)e—alt [ 2@y iR, 5 -
ri<u-1g "

—R(z,, y)ldy.

Since ¢(z) vanishes for [z > 1, and A = |[p—m,|~1 = |4|~, if N is a bound
for lp,| we find that the last integral is dominated by

[ R, play+ [ R, y)dy| m=-vy,
“/‘..ztl;j:a;j‘_.’lm (1 —wl<|h]
and an application of Holder’s inequality shows that the last expression
is less than or equal to C 01 B,
A parallel argument gives the desired result in the case Seth(m).
It is not difficult to see thabt in this case the theovem holds also if
%= 0.

3. The results of this section will only be needed in the proof of theo-
rems 2, 3, 5 and 7. Essentially they are reformulations and slight exten-
sions of theorems of Whitney [14] and Mareinkiewicz [10]. The proof of
theorem 9 is taken from [5; II, p. 57 1

Lemua 3.1 Let Q be a closed set in B, and U the netghborhood of
Q consisting of all points of B, whose distance from Q s less than 1. Then
there is a covering of U—Q by means of mon-overlapping closed cubes K
with the property that } < dife; < l—H/ﬁ, where ¢; is the length of the
edge of K; and d; is the distance between K; and Q.

Proof. Counsider the subdivisions m; of B, into the cubes m; /21 <
<m0 2k, 1= 0,1,... Select all cubes in =, which intersect U-@
and are at disbance not less than % from Q. Having already selected cubes
from m;_;, select all cubes in 7; which are not contained in the previously
selected cubes which intersect U—@, and which ave at distance no less
than 27~ from . The collection K; of eubes thus obtained has the required
properties. First of all, every meU—@ is contained in one of the Ky
for if d is the distance between z, and @, and K is the cube in m,, with
d > 27"/, which contains #,, then the distance between K and Q is
not less than 2~**'Vn—2="Vn = 9~"Vi, whence it follows that if K
was not selected at the »'™™ step then K was contained in one of the pre-
viously selected eubes. It is clear that the distance between cach K; and
@ is not less than one half the length of the edge of K. Finally consider
K; and let ¢; = 27" e the length of its edge. Let K be the cubein =,_,
which containg X;. Since £ was not selected the distance between K and
Q must be less than 2, consequently the distance d; between K; and @
is less than 2~"(14-¥n), whenee dle; < 1-+Vn.
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LEMMA 3.2. Let @ and U be as in the preceding lemma, and I?t d(x)
denote the distance between 2 and Q. Then there ewists an infinilely differen-
tiable function &(x) defined in U—Q and o positive number &, & <1, such
that
d(x), zeU—@Q,

L O, 3eU—0Q.

Proof. Let I; be the covering of U—@Q of the preced:iug 161):111131,
and 2¥ the center of I;. Let »(x) >0 be an infinitely differentiable
function which vanishes outside the cube

1 1 1 L ’
*}‘—"——‘:’ii’f’j <5k T =1,2,..,n,
2 4V 2 4¥a
and which exceeds 1 in —3§ < ;< §. Setb

o [r—a?
5 (@) = Z em( - )
7=1 /

We shall show that &(x) has the required properbies. It is readily
a:—ar;‘”) vanishes in @. On the other hand, as we will

verified that ?7(
presently prove, thejre is an integer m such tha.f: no more than m terms
of the series are distinet from zero afb each point.

) .
For let 2pe U—@ and let n (—%———w—~) = 0. Then the distance between
0 o

! , .
z, and K; does not exceed e[+ and since $¢; < d; §.(1+1/on?6,- Weh.f:;i
tlulat d(®,), that is the distance between &, and @, satisfies the inequa

Ve eVn = dlm) = Ly
(1+ n)e;+4+e, = A%, 1

where e,-l/a_z is the diameter of K;. This means that a sphere with ce;lfjr
at @, and radius d(w,) (1~|—41/ﬁ) contains a.ll.the cubes I; corrf:espdoi]:.om%
to berms of the series not vanishing at . Since these cubes ar j

n], i their
and their edges are not less than d(s) [5/4+21/'n.] 1, it follows thab the

ber does not exceed a fixed integer m. ) o )
numLe;t N, be a bound for (8/0x)*n(w). Then differentiating .the geries

term by term we find that
< E ¢ " N,

(2wl 5
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)

]
the sum being extended over all j for which 5 (ﬁzw—) does not vanish.

’
But for these terms we have ¢ < 4d(x), from which it follows that

5] o0

if J«|<1; and similarly for |«| > 1, since ¢; = Od(2) (see below), Pinally,
if weK;, then clearly

< 4mN,d(z) ",

-
6(33')?8177 S = ¢,
7

and since well; implies that d(z) < d;-+e;Vn < (1—}—21/5)6,', it follows
that 6(2) > d(x)(1+2Vn)1. The lemma is thus established.

THEOREM 9. Let f be a function in I7, 1 < p < oo, such that fel%(x,)
and T5(2y, f) < M < oo for all m, in a closed set Q. Then there ewists a
function f in B,(E,) such that, for || < u, (002 F () = fa(mo) for w,e.
If in addition fetl(zm,) for all m,cQ, then 7 can be chosen to be in b, (E,)
in such a way that (0)0s)"}(z,) = fo(®y) for 18| < wu, and all x,¢Q.

Proof. Let U be a neighborhood of @ as in Lemma 3.2 and d(»)

the corresponding funetion. For z¢Q define f(@) = f(x), and for ze U—q,
seb

Fo) = o)™ [pl(a—y)6-2(a)f () dy,
where ¢(z) is the funetion in Lemma 2.6.
Let us consider the case feT%(m,) for all z,¢§). We shall study first
‘f:he behaviour of f near points z in U—Q. By differentiation under the
integral sign it is readily seen that 7(®) is infinitely differentiable in U—g.

Let # De given arid Z be a point in @ such that |#—%| = d(x). Then we
can write '

flo) = Z‘f“(ﬁ) (0—%)"+R(z, ).

al
laj<u

Let D (2, y) = (3/0m)*|6(x) "o [(#—y)8(x)~*]}. By differentiation under
the integral s'gn we obtain

(?aw')ﬂf(”) = (%)ﬂ[‘s(fv)"”feﬂ[(w—y) 5—%)][2 f“f) (y—o‘a)"] dy]+
“lal<u E
—{_fdjﬂ(my y)R(ﬁ’ y)dy.

According to Lemina 2.6, the first term on the right is equal to

(ol [ 55|

lal<u

e ©
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Consequently we have

on (o)1= 3 LoBaars [ aevne .
Iyl <u— 1Al

To estimate the remainder here, we need estimates for O,(x, y). It is readily

verified by induction that &y(x,¥) is a sum of terms of the form

const - 67" " (@), [(w—y) 671 p- (2 —9)",
where p is a product of derivatives of 8, sueh that if ¢ is the number of
factors in p and w the sum of its orders, then r+w—t— la] = Iﬁ.|, and ¢,
is a derivative of ¢ with |y| < |f]. Sinee ¢[(w—y)d—(a)] vanighes for

lz—y| > 6(x), we have |(#—¥)"| < 8(z)™ on the su.ppm-‘t of Dy(z,y).
Trom thiz and the estimates for &(z) and its derivatives it follows that

B2, 9)| < Cp(m) ™,
Consequently we have
| [ @, ) R(E, )| < Cpa)™ " [IRE, )dy,

where the integral on the right is extended over ]y_~ z| < 6(«), which 2
contained in the sphere |y—%| < cd(x), since |#—T| = d(z) and é(x) <

< L d(z). Now
4

]n U ,

[ IR@, wldy < OTLE, f)[ed(@)]"™ < O [ed()
& ed(x)

and from this it follows that i

M@ ([L-__E)VI

< Cp Mlp—7*"1.
7/!

a0 \f. )
. — m —
52 (5] 7
Let us consider now any point #;, in . Given the assumptions on f,
it follows from Theorem. 8 thab

frﬂ ;:}(?1) (

fyl<te— Il

z "El)y < Gauﬂ[m - Ellu-dm'

fu(i)_

Ipl<u-lal
If we replace these values of fu(%) in (3.2) we obtain

o\ Ny (z—F)
(2o 3,

- 1
1 7!
Iyl <u—1B] 4 Inl<u—|B+vl

fﬁ+v+ﬂ (ﬁl) (@-_—fl)n

=il (=
< Opd =3+ CpipuM lo—E[" BT

[pl=<u—18|
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Sinee |z—F| < [.m——aili and [B—%,| < [F—a| 4 lo—7| < 2|p—
Taylor’s expansion for polynomials this inequality gives

Iy o\, z
(3.3) ‘(5;) f(m)-| ‘Z -'-~—f”’;§ J (@—2)" | < Op M | — 7,181,
y|<—|8|

which holds for any z¢ U —@Q and any z, 0. r i i
also hﬁo_lds if  and %, belong both Zo ;Q.QTlﬁg scilcl)iggegai tiffenfl'equa"hty
(0)02)°F (), ze U—@, are continuous bounded extensions of the funcf?}fms
f,,(fz), ze@), and th@t these extensions have a Taylor expansio Hlfﬁctlons
};omt of Q Since f is infinitely differentiable in U—@Q, it fdlloﬁvsa t]ea’td}
as faontmuous bounded derivatives of orders less 1’3ha.n % i U1 "
rema,.xgs to show that the highest order derivatives of f sati 'f/ . 5] N
condition of appropriate order. WY b Holder

Let 7 be the largest integer loss th 1 oo
the inoquality (3.3) gives o ThOm, I If] = and aycq,

a\f a\F
2] @)= (‘0‘;) 7 (m5)
If both o, and x, belong to U—Q, we distinguish two cases. First, if |z, — u,]
v 2

=d ( 1)/‘)7 ” f Q 1 1 2l 2
& € ch & I —'x‘|(u| — e havVe Ly—
1 he: 0 8§ 1t < 2| X W d
‘<\ j:‘z ‘v11 “El x] < 3 |.ﬂ 1 a‘QI! and ﬁOIll b

((%)ﬁm’)_ (a%)ﬂ? (@)

’( 9\ 9\,
] ﬁ) f(mg)~(~3;) f(i:)(g CuM |, —F[""

Z,|, using

< Oy M oy — my.

< Ou]][fml—fi‘”nr’

we obtain

( 9\, aVv. |
N Flmy) ~ (%) (@)
T, on t : i

, on the other hand, |21 —m,] < d(2,)/2, we let % be point in Q such

that o, —%| = d(x,), and re EIRY
i present; p)f . .
mean value theorem we obgalinen (9/00)] by means of (3.1). Using the

i 0 ﬁ_ 0 ﬁ_ l n

where z, is a point of the segment By, By

Now 30 (m,, y)/oz; vani i D — & @
. _ ¢ j vanishes outside the sphere [y <cd il
15 dominated in absolute value by Opd () "=1~1 — oL‘iz(m )ﬂi”‘\"c‘I ( Wn)hcallllze
‘0 H 2

(a%)ﬁf (1) — (a%)ﬁi(mzn

S Ol —aald(m)™= [ R, y)lay.
Y—ap|<ced(zp)

< O M |y — [

a
?)TE}' D (m,, :’/)‘ [2(@, y)ldy,

(3.4)
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Sinee d(x) = d{wy)— |4, — @] > d(2,)/2 > @ —ms|, the sphere |y—mxq|
< ed{m), is conbained in the sphere |y—%| < ed(m)+ Iy — 7| < ed () +
o |y — ]+ d (1) < (6 3)d (), and therefore

RE, A< [ IRE,y)dy < M{(e+3)d(@)]" .
gl <ed(wp) ly—zi<(e+3)d(2g)

This, combined with d(x,) > |2, — %, shows that the left-hand side of
(3.4) is dominated by O M |2, — @[ }

The function f as constructed above is defined only in U; finding an
7 whieh is defined everywhere now offers little difficulty: we merely mul-
tiply the f already obtained by an infinitely differentiable funection 7% (x)
with bounded derivatives of all orders and which is equal to 1 for d(z) < }

and vanishes for d(z)> .
The case when f el (a,) is treated in exactly the same way, and further

explanations do not seem to be necessary.
OQOROLLARY. Leét feTB(o), Th(wo, ) < M < o0, 1< p < oo, for all
@, in a closed set Q. Then f = fy+fa, where f eBy(B,) and fyeTh(x,) for
all 2,¢Q, and
1 e
[7 [ lfz(m)l”dw] < ¢,31¢"
¢ {—-2gl<o
for all wyeQ and all ¢> 0. If, in addition, feth(xo) for all zye @, then the
left-hand side of the inequality above is o(o*) as o — 0.
This is merely a reformulation of the preceding theorem with f, = f.
TrEoREM 10. Let feI”, 1 < p < oo, be such that
/»
[i [ If(w)\”dna] =0(e", >0,

0
J
le—zgl<e

for all @, in a measurable set 8. Then

1/p
o [ w5 [ vara] =, oo,

ERn
| — 2| je—Tgl<o

for almost all %, in S.

Proof. We may assume without loss of generality that the set §
is bormded. Given ¢ > 0 we can find a closed subset @ of § such that § —@
has measure less than ¢ and that

M
jo—dgl<e

1 1/n
) pae] " < e, <o,

for all @, in Q and all o >0. Let U be a neighborhood of @ and K; & cov-
ering of U—@ as in Lemma 3.1. Let d(z) denote the distance between
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# and Q. Since the distance between the ecomplement U of U and Q is 1,
it follows that
[f#)]
—
U

for all @ye Q. On the other hand,

(3.5) Qfdﬁ“,,flm—l—f%l) fd Z f{%—% T
T 2

If ¢; denotes the edge of K; then, according to Lemma 3.1, |z — )
> ¢;/2. Further, since the distance between K; and ¢ does not exceed
(1+Vn)e;, if T in Q is within that distanee from K, we have, setting
o= (1+2Vn)e;,

[If@)dz <
ch

| [1f@rde” <[ [ |f@)rdn]"

K; | <0
< ENL+2Vn) g PN, where g = "ITP“I

Jonsequently,

[ 1f(@)do < CMe,

Kj
and since |v—ay| 2 ¢;/2 for zckK;,

da,
e L O
9 ‘w_mdngu wvy o3

which combined with the previous inequality gives

da, L
f If(@)] Um%] o < Oy Me!
Q

Ej

Summing over j we find that the left-hand side of (3.5) is less than
G,,MZ@}‘ = 0 ,M|U—Q|, which is finite. Hence the inner integral there
7

ig finite for almost all w,¢Q, and (i) is established.
To prove (ii) in the case p < oo, we merely apply (i) to the function
g = |f” and conclude that for almost all 4, in Q we have

f{m a:”*”“ f[m

dx < oco.

m U

icm
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At every point where this holds (ii) is evidently valid. If p = oo, then
|f(z)| < Md(2), and (i) is satisfied at every point of density of Q.
4. We pass to the study of the properties of the fractional integra-
tion introduced in definition 5.
LeMyA 4.1. Let 0 < u < n-1, and let f be a tempered distribution.
Then J*f = G, f, where
(R—u-1)/2

Gulo) = playe™ f = (t+ .

0
p(u)t = (23)(“-1)/221'/21’(_“_) p(ﬁ:ﬁ.{)
2 2
Proof. The inverse Fourier transform of (1 4z2{z2) ™", u >n > 2
can be calculated in polar coordinates by

[+ dmly(2) 2™ ENdy = [ [ (14 dn oY)~ R0 - 1d0 g,

B, 20

where |y| = g, |#| =7, @'y =rgcost, X iz the sphere |y| =1 and do
is the element of area of X. If we set

(P(S) — feiseosﬂ(sin 0)"_2d9,
0

and denote by w, the area of the unit sphere in E,, the last integral
becomes

oo
n [ (L4 4m20?) 7" ¢~ g (2nr0) do
[

Using suceessively the formulas (6) page 48, (2) page 434 and (4) page 172
of [13], and seftting ¢ = s-+1 in the integral in the last formula we find
that the Fourier transform of (1-4=?|z|?)~™? is the function @,(z) of
the lemma, provided » < n-1.

Consider now the function G,(z) for 0 < v < n+1. Then, since

g . 12 \(—u-1)2
— |z — x|
e e 1+ — dt

[ efg)
0

12 \(n—u-1)p 4
< g f (t+ ) dt+0ue""'f e~y
1 1

< Cuo¥ 14 o7+ log o),

it tollows that G, (z) is integrable for 0 < u < n-+1. In addition Gu()
is, for each fixed z, an analytic function of » in 0 < R(u) < n+1, which
in a neighborhood of each u of the sbrip is majorized by an integrable


GUEST


192 A. P. Calderén and A. Zygmund

function of # independent of u. From this it follows that the Fourier
transform of G, (%) is also an analytic function of u in 0 < R(u) < n+1,
and consequently it coincides with (1 47%|»|2)~""? there. The assertion
of the lemma follows now from convolution theorem for distributions.

The formula for G, is still valid in the case n =1, for 0 < u < 2
This follows as before if we use the formulas (28), page 14, of [2;] and
formula (19), page 82, of [3].

Lemma 4.2, The function Gy, (@) of Lemma 1 is non-negative, has integral
over B, equal to 1 and satisfies the followiny inequalities:

Gu(@) < Oye W14 |o| 7™,  for 0 < u < n;

\ o1
Gy () < Ce ! (]. +log —), for  wo=n;

[
2o

|'/‘”|”7”“”]”[)7
Proof. We have

< 12 (n-u-1)/2
Gu(2) = p(n)e '”lf e*]r”( ) dat
[

¢ -] tz {—n-j N |t -1
< (e t+ dt -} [ di

0

L Oy e (14 laf >0, 0<u< 1.

from which the first two inequalities follow. Differentia.ting the expression
for G, (x) we find by induction that (8/92)" G, (%) is a sum of terms of the

form
n—u—1)/2
~iel j —litys ( )(' " at

0
where ¢,(0) is & homogeneous function of degree —# and 7-+s< laf.
The desived estimate follows now by decomposing the integral as before.
Definition 8. Let ®; be the operator on L” defined by

1 r =Y
Rif = —z—:"‘"*l)’“]“(n + )Iim —mi——yi_—ff(()/)d@/.
2 [ a0 e 1B y™ ’

Then A is the operator on I¥ given by

. n a
Af =z2 R gl
“

Ieyva 4.3, If feIP, 1<p < oo, Ryf is defined almost everywhere
as an ordinary limit. The operation R; transforms L% continuously into

icm
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LE, k> 0,1 < p < co. The operation A transforms LY, continuously into

P, k=0, 1< p << co. Furthermore we have
d 7] J
— Q) =W ——3; o = —iR; A,
om; “ox;” o !

Proof. According to [7], Theorem 1, °R; is defined almost every-
where and is continnous in I*, and transforms If into L. The eontinuity
of ¥%; in If ig an immediate consequence of the faet that
————— Ryf = {‘h"——?——f for feI¥

%; Oy !
which was established loc. cit. The identity 9/0z; = —i9%; 4 was proved
in [7], p. 309. Since evidently d/dx; maps Li , continuously in LY, the
same holds for A in view of its definition.

Levma 4.4, Let feIP, 1< p < oo, and let ¢ = 0G,/0z;, then the
ordinary limit

m [ g@—yf(y)dy

0 ir_yive
exists for almost all x.

Proof. Differentiating with respect to =z, the expression for @, in
Lemma 4.1 and setting s =¢+1 in the integral one obtains

i} P
G = g.(x) = —~(1 2(2—n}/2 ) —Jels -1 (n—2)/2 7,
7y (o) = i) = —p(2EETE [ (@ 1) s,

Now, for s>1 we have s(s*—1)""32 = s*~14 0(s""*) and consequently,

.
i (‘T‘) =0 |m‘fz+_1

+7r(xz),

where r(x) =O0(l2|~""") as |#|—0 if » >1, or r(z) = O(logla]) if n =1.
In either case r is locally integrable.
We may assume that f has compact support. Then

—ninay=c [ Fimas [ ore-nfway.

Z-vl>e lz-y|>¢

The second integral on the right is absolutely convergent for e = 0 and
almost all 2. On the other hand, according to Lemma 4.3, the first integral
has a limit as ¢ tends to zero for almost all .

Leyuma 4.5, If feI?, then Af = 9=|alf.

Studia Mathematica XX 13
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Proof. It is well known, see e.g., [9] or [7], p. 914, that if gel?,
then
P -
PVWig = ——
iy 2] g
and this combined with the definition of A gives the desired identity.
In what follows we will write systematically J for Jt.
Lexwa 4.6. The operator J transforms L” continuously dnto Iy,
1< p < co. Furthermore for m = 0 we have

AT = I+ a PP+ ad*+ .o+ 0, I — O,

o
where a ; < 0 for all j, Za,- =—1 and the operation Q,, is convolution with
j=1

a positive integrable function with derivatives which are integrable up to
order 2m+1, and bounded and continuous up to order 2m+1—mn, if
2m+1 2 n. In particular, I—AJ is convolution with a positive integrable
function of integral 1, and with integrable first order derivatives.

Proof. Let f be a function in OF, that is, 7 is infinitely differentiable
and has compact support. Aceording to Lemmas 4.1 and 4.2, Jf = GQyxf,
where @, is a positive integrable function of integral equal to 1. By differ-
entiating ¢,+f under the integral sign it follows that Jf is in I7. Con-
sequently, by Lemma 4.5, we have

ATF = 2101 (14 Alaft i f,
Set 4 = (14 4=*||?)~'%. Then
2m x| (L+ 42" 1of') 7 = VI—f = L4 a0+ apud ...+ aput™ 4
=1+a9" 4., .+ a,u™ — R, (u).

00
The coefficients a; are all negative and 2o =—1; and 0 < R, (u)
<™ for 0 <u < 1. Consequently =1

1—2m o) (1+ 42 |pf2)-1/2 = _ Z“f (1 dr? |oj2)-1/2]2

F=1
and this shows that I—AJ is convolution with a positive integrable
function of integral equal to 1. Furthermore,

o
EnlQH 4=t o) 0] = — BT (14 drtjapp) 202,
J=m+41
and this in turn shows that Qn 18 also a convolution with a positive

integrable function hy,. We shall now show that hn has the properties
stated in the lemma,.

icm®

Elliptic partial differential equations 195

We have in fact A, (z) = R, (u) < ™™, where u = (1+4n%jof) 12
Consequently i, (x) is integrable for |a/< 2m-1—n and therefore
k(%) has continuous bounded derivatives up to order 2m -+1—n. Further,
from the last inequality of Lemma 4.2, it follows that 0G,(2)/0x; is in-
tegrable for 1 < u < n-+1, that is #;(1+4=2jz[*)"*2 has an integrable
inverse Fourier transform. Since (1+-4=2|x{?)~7'* also has an integrable
Fourier transform we find that the inverse Fourier transform of
@ (14 4=% o)~ {5 integrable for |a| < 2m +1. From this it follows that
(0/0x)*h,,, whose Fourier transform is

(2miz)" (1442 2?) 77V ap(1 - 4 o) o,
m+l
is integrable for la| < 2m-+1.

It remains to show that J transforms I” into LY. If feCy, then
Jf = Gyxfel? as we already saw, and according to Lemma 4.3, dJf/dx;
= — iR, AJf. Since AJ—1I is convolution with an integrable function
and ®; is continuous in I, 1 < p < oo, it follows that l0Jf{da;ll,
< Oy lflp. It f is now a function in I” and f, is a sequence of functions
in OF converging to f in L*, Jf, converges in LY. This shows that JfeI?.

Leyva 4.7, If m ds an integer, m > —k, and 1< p < oo then J™.
transforms Ly continuously onto If.,.

Proof. Since J transforms I* continuously into L? (see Lemma 4.6)
and since (8/dx)"J = J(0/0x)°, as seen by taking Fourier transforms,
it follows that J transforms I} continuously into L, ,. On the other hand,
since J-1 = (I —4)J and sinee (1— 4) maps Lf., continuously into L%
we find that J-* maps If_, eontinuously into L{. From this the lemma
follows.

Leyva £.8. If feLf then feL with 1/g = L/p—k/n if 1<p<nlk,
or ¢ is any number p <q< oo if p=nfk, or g =00 if p >nlk.

Proof. The case 1 <p < nfk is an immediate consequence of So-
Dboleff’s theorem which also holds for p = 1 (see [11]). The case p = nlk
follows from the fact that f = J*g = Gy +g, where geI”, from the ine-
qualities for @ given in Lemma 4.2 and Young’s theorem on convolutions.
The case p > nfk is obtained by applying Hélder’s inequality to G = g.

Proof of Theorem 4. Let feT%(x,) and assume for simplicity thab
@, = 0. Then f = P4 R where P is a polynomial of degree < u if u >0,
or zero if w < 0 and R(x) is such that

1 1/p
(41) [—n [ 1R(m)|"dm] < Ti{m, )¢
Il <e

We shall first consider the case where 0 < v < n. We have
Jf =G *kf = @ux P+ G+ R.
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Sinee, according to Lemma 4.2, &,(x) decreases exponentially at infinity,
both convolutions on the right of the preceding equation are meaningtul.
Furthermore, by differentiating under the integral sign one sees readily
that G,* P is a polynomial of degree < % whose coefficients are dominated
in absolute value by C,,T% (%, f).
Consider now the integrals
[ R (@)| |o|™"da, [ |R(@)| o) " da.

ol <e 1z >0

If we set
plo) = [ |R(@)|do
Zl<e
and use Holder’s inequality and (4.1) we obtain
7 (p-1)
p@<0] [IR@[a]"e T < OTi(m, f)o" .
%] <o

Hence, if n+u—7r >0

[ RB@) o7 am = [ s~ dp(s) <7 [ pls)s™ ds+-p() 0"

e<|ti<e

o
<o (20, f) [rf grtu=T=1gg 4 vau—rJ < Gr, uTﬁ(wo; Fi) Qn-{,uan
0

that is, if n+u—7r >0, then
(4.2) [ IR @) ol dn < O, T8 (@0, f) " 7.
<o

Similarly, if #n-4u—r < 0, then

[ 1R @) o] do = | s dp(s) < [ s p(s)ds,
o lw= 3
8o that ) ) )

(4.3) [ R @) 101" do < € u T2 (3, ) @
1% =e
Let us write g for @, and g for (0/0z)*@,, and assume that 2|z| <Cp.
Then, by the mean-value theorem,
(@2R)(@) = g5B = [go—1)RW)ly = [ gla—y)Ra)ay+

wi<e

wa (L :

44 2 (gu(— : g
@+ M o fa—nrwa- 3L [ —prea+

laf <o ld<uds ~ pi<e

mu
+ D % [ ges—y)R@ay 0,
lat={u40]+1 " i>g
) If uto<<0 we merely decompose the integral of g(x—y)R(y) into two,

extended over |y| < ¢ and |y > ¢ respectively, and the argument simplifies.
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where 0 < @ < 1. Now, according to Lemma 4.1, |g.(—y) < O, [1+
H TN e O [y 7™ whenee setting r = n—ov+ ol in (4.2)
it follows that for |a| < w-+v the integral

(4.5) [9.(— ) R(y)dy

ig absolutely convergent and is dominated in absolute value by
Cw T2 (2, f). Furthermore

(4.6) [ [ (=R Y| < CuTh(w, )™+
m<e
for o] < u-+w.
For the functions g,(@s—y), |a] = [u+v]+1, we have |g,(Ox—y)|
< O |@n—y 7" 1 O [y ™™+ it [y{ > ¢ > 2|a]. "Consequently it
follows from (4.3) on sefting » = n—ov+|a|,

(+7) | [ 9020 R @] < Cuo T, e
i>e
It remains to estimate the first term of the right-hand side of (4.4).
If 1fp—v/n < 0 the inequality {g(y) <C,ly|™™*", (4.1) and Hoélder’s
inequality give, with ¢ = p/(p—1),

| [ sle-nroai<] |

Wi<e I<e

R@ray"[ [ e@iray]”
<2

4.8 . 40
(4:8) < O T (2o, ) 07

If, on the other hand, 1/p—=v/n > 0, replacing g(z—y) by C,ly|~"*" and
applying Soboleff’s theorem with 1/g = 1/p—v/n we obtain

wo [fao] [ o—nrmaf" <] [ poral”

< Oy Th(00, )24 = o T, ) "4

It now follows from the estimates (4.6) to (4.9) that the assertion of the
theorem is valid if feT% (%) with 1/g =1/p—v/nif 1/p—v/n > 0,0r ¢ = co
if 1/p—o/n <0, provided 0 < v < n. This result can now be extended to
general v by repeated application of the case 0 << v < n using the group
properties of J°.

To cover the case 1/p = v/n and the other values of ¢ in the other
cases we argue as follows. .

Suppose that feT% () and J°f e T, (@) With # > p. Then J°fe Ty, (%)
for all 5, p <8< 7, and

T o (@0, I°F) < OLT (@) T21)+ 1flp]-
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This is an immediate consequence of the inequalities

EN |R‘(w>r“‘dw]”s<o[%,,,-

le—zg| < 0

1R<w>|"‘dm]”",

&~ < o
WAl < W FIR N Al < ITP AR A0 << W F et 1l

which are obtained by applying Holder’s inequality, and where E is the
remainder of the expamsion if J'f at #,, and 0 < 6 < 1.

This combined with the results already obtained gives: if 1 <p< oo
and utv #£0,1,2,..., then J° maps T%(z) continuously into T% ., (z,)
provided

1 1 1
@ ->=>=-2 gy 1.7
R R ) [/
} 1 )
(b)P<Q<°°, if — <<
D m
() p<g< oo, if _1_23.
P n

Only (e) requires additional explanation. If 1/p =v/nand 0 <e<o,
then, according to (a), J* maps T2 (x,) continuously into 7%, (z,) and J*=°
maps 77, («,) continuously into T%4emo) with 1/p > 1/g > 1/p— (v— &) [n
=¢/n. Thus J* = J"~°J° maps T%(x,) continuously into 77, (w,) for all
q such that 1/p>1/g > ¢/n.

To prove that J'fetl,,(x,) if Seti(m) 1t is enough to observe that
if feOF then J°f is infinitely differentiable and thus belongs to 12, ().
Since, according to Lemma, 2.3, OFis dense in #(x,) and, 2 1o(%) is a closed
subspace of T2,,(w,) the desired conclusion is obtained by a passage to
the limit.

Remark. If utvisa non-negative integer then the preceding argu-
ment shows that JfeT%,,(z,) (or 1o () if we assume in addition that

| (y)|
|y — "

T_his validates (4.4) for || = u-- v, which is what fails otherwise if
?H— visan integer. An alternative assumption could be f(x,+ ) = f(z,—h)
if w4+ is odd, or fl@y+h) = —flwo—h) it u+wv is even. This makes the
left-hand side of (4.6) vanish if |a| = u-4o.

The proof of Theovem 5 will be based on Theorem 11 helow. The
latter is analogous to the special case of Theorem 4 when » — 1 and makes
stronger assumptions, but in return it conclusions are also stronger:
the case p =1 is included, and the only exceptional u is u = —1.

dy < co
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TueorEM 11. Let f have first order derivatives f; in IP, and let f; €T (),
i=12,..,n, —ufp<u = —1. If
1°1<p<m and feL'(?) with 1jg=1/p—1/u, then feTi, () and

n
Th1 (7, ) < Cp Y Th(a, £i);
=
2°4f n < p<K oo and feB(B,), then feT, i (2,) and

Tuer (20, ) < Cou|[ B+ X Th(20, £3)],
=1
where B(f) is the essential least upper bound of |f};
3% df feL with 1/p > 1/r >1jp—1/n, then feT%, (a,) and

Toa (@0, ) < Cra1fl+ X Thae, £7)]5
j=1

1° the preceding statements hold with the spaces T replaced by the
spaces 1.
Proof. We will first prove the inequality in 3° with p = r assuming
that fe0y. Let
1 &y

k() = — ——
i w, o’

where o, is the surface area of the unit sphere | = 1. Then
n

g k =0

PARY TN M (r) =10,

1

and counsequently if fe( using Green’s formula we obtain

n

1 )
. -l = [ T,
i=1 [5-¥ize y-zi=e -
where do is the area element of the sphere lz—y| = 0. As p tends to zero
the right-hand side tends to f(z). Thus we bave the following represen-

tation of f(x):
kil
fla) = ) [~y
=1
(*) The assumption fe LY is almost superfluous. For if fjsTg (g), then f}.eLl’ and

using Soboleff’s Theorem one can show that f differs by an additive constant from
a function in L% Our assumption makes it certain that this constant is zero.


GUEST


200 A. P. Calderén and A, Zygmund
Let us consider first the case —n/p < u < —1. Let (2] < o and set

flay =D iy
2y—Yl <2
+ Z f kilw—y) fiy

7 - v=2

Yy = fi(@)+ fa(a),
say. Then an application of Young’s theorem on convolution gives

= [ wora]"< Y|

[ iy )tdu]

(4.10) Ep—-vi<e vl < e
1 17
< [ mwra]”< @Zl (0, )
[eg—~Ul <20 j=1

To estimate fy(x) we proceed as follows. First we observe that

1 A 1 Lp 3
T = m(y)\”dy] < Oz, f) "

lzp—¥l <e

1

fiwlay<c [j;

|29 ~vl <e e
whence

| we-wswal<o [

To-VI=2¢ 20

AFy(s) -
S 7,1 < G (@0, f) € +

Consequently,

1 1/»
(411) [E"‘ \fzw)v’dy] <

Cu D Th(an, £ ¢

T ~vi<e
From this and (4.10) we obtain
- 1
(4.12) [Z’T

lrg—-vi<<e

1/p
If(y)\”dy] <

Cu ) Th(ay, f) 0.

We next prove a similar inequality for —1 < » < 0. We have again

~fla) =3 [ Ele—yfimdy+

|5g U1 << 2¢

+3 [

|Zg~v] =20

-3 J

leg~¥l <2
= f1(@)+fs(x)+ (o),
say. Then, as before, f,(») satisties (4.10). It F;(p) is defined as in the

—Y) =k (@ — Y15 (y) dy —

ki (mo—y) 3 (y) dy
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previous case, then, since [k;j(@—y)—k{r,—y)| < Colo,—y|™ for |r,—y!

> 20, we see readily that f,(x) satisfies (4.11). Finally,

] —c [ 4200 <

H

ks (swo—y) < CuTh(my, fi) 07
lzg—vi <20
Combining these results we obtain
1 » e v P F

@) |5 O —feldy [ <Cu > Tha, f)e
lrg-vi<e

We now consider the case u > 0. Let P denote the sum of the telms
of degree less than w41 of the Taylor expansion of f at x,; seb f = f—P

and f; = f;—P;. Then, using polar coordinates,
[ wral”<| [ f DHils, ©)ayds iy do|™
W—xyl <o r<o

< C y[ f?n%—zl Zf”j('s m 1(,15(27 (Z(D] n

r<e

<o 3 [ (s, o) dsdo] "

i s<e
ot 1)) H)® Up
= (jgm+2-1ip — e dy| .
) 92[1:/ rfo|<a ly — |~ ]

On the other hand, setting

[ Hwrdy = Fe),

-yl <o

we find that F;(o) < T (x, f;)F o" 7™ and

]f)(J)] de 5 (s) < (’Tﬂ(fﬂgy‘fj)QPMJFI‘

o VST Ji—1
[v-Tgi<e 1y — @l

This combined with the inequality obtained previously gives

i/p
wn [ [ vw-rwra) <o X mepnes.

1y —zgl<e

Since all the coefficients of P except the consta,nt term enter in the
T% (w0, f;) 16 remadns to estimate P(2,) = f(a,). Leb (), lp| <1, be a function
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in 07 which is equal to 1 in |#|<1 and vanishes in |z| > 2. Set
¥(o) = p(¢—). Then
F(@o) = () () Z J il W) dy+ > f Jy vi(y)dy,
whence
()l dy
& é ] 1 Y .
o) -,-EW‘ f| R [ irwnay
Tol< Tyl<2
Let w > —1 and v = min(u, 0); then, by Lemma 2.1,
1/p
Fle)= | Ihlay<ce [ [ i I”d?] < OT%(my, £) 0™
1y—ayi<e 1—zgl<e
< OT3 (@, f;) o™t
Consequently,
2
ar;(s)
< D[S v0 [ wa,
(4.15) io0 ly~2gl<2

(@)l < O D) T4 (@0, £+ Cfl, -
Now the inequalities (4.12) to (4.15) clearly imply that

(4.16) T 4105 ) < Cu Y] Tk, )+ ClIfll-
The factor ¢, on the right tends to infinity as u tends to —1, but is bounded

away from % = —1. The argument given above covers also the case
= ©o0,
To prove 1° let us denote f(@)—P(x) by }(x), and let ¢(z) be again

a funetion which is equal to 1 for [a:l <1 and vanishes for |x| > 2. Then

0?, [f W) ( m")] =f,-(y)¢(%@)+%f(y)% (Z:Qﬂ’),

and if 1< p < n, Soboleff's theorem, which is also valid when p =1
(see [111), gives, with 1/g = 1/p— —1/n,

[—91— i \f(y)i“dy]l"k[ f(f w("_“)

W—&yl<e

C <o S
+Gp2[ |

=1

rcg{ -
—
=t
=
3
—_—
k
8
S
—
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and applying (4.12), (4.13) or (4.14) to the second sum, as the case may
be, we obtain

(4.17) [—él; f

W—zgl<o

173

.lf(.’/)_P(?/)Eqd."/] ‘ < Oy yTu (®0s f;) 0™

On the other hand, since f;eI” it follows from Soboleff’s theorem that

feZ® and |Ifll, < €, 3 Ifill,. Furthermore it is easy to verify that (4.15)

holds with |If], replaced by [|fl,. Combining this with (4.17) we obtain
n

< sz 217{:(1!0: f)‘)~

j=1

(4.18) T5 1 (@, f)

If p > n, then instead of applying Soboleff’s theorem we use the
representation

(4.19) f(x)e ($_x°)=_E‘fkj(;.:_y)[;j(y)(p(!/—ga'.,) +%f( e (y gm")]dy

4

and Holder’s inequality, and obtain instead of (4.17)

esssup f(¥)— Py)i < Cpy ZTﬂ(%v 7 ev,

W—mpi<o fpey)

and thus, if p >n,

Tosr (@0, f) < 11u
i= 1

To prove the inequality in 3° for general » we use the representation (4.19)
. @
for f(2)e (

exponent r for the left side and exponent s, 1/r = 1/p+1/s—1, for k; on
the right. Then using (4.12), (4.13) or (4.14), as the case may be, we obtain

?uzlm(wo’f] u+1

This combined with (4.13) where we can replace ||fl|, on the right by ||fll,
gives the inequality in 3°.

So far we have been considering functions in 0. We now extend these
results to functions in #(x,). Let f have compact support and have first
order derivatives in #(x,), and let f* = 1"p(iz)xf where ¢ is in CP
and has integral equal to 1. Then f*¢Cy and f} = 1™p(dz)«f;, and, by
Lemma 2.3, f} converges in T%(z,) to f;. Applying to f* the inequalities
we have obtained for functions in €7 we see that under the various hypo-
thesis of the theorem, f* converges in the corresponding space T% 11{(%)
with appropriate ¢ (according to Lemma 2.2, T2, (z,) is complete). On

Ti(xy, ;) +CB(f).

_w") and apply to it Young’s theorem on convolution with
Q

[Di [ 1rw—2w dr/]

T li<e
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the other hand, f* converges to f in L%, consequently feid 11 (), since it
is the limit in 7§, (z,) of functions in Cf° which belong to 2 ,, () (see Lemma,
2.3). In passing to the limit we see that the inequalities also hold for f.
We now consider the case of general f. Let ¢(z) be a function of 0%
which is equal to 1 in |z| < 1 and vanishes in |z| > 2. We consider the
function ff(x) = f(w)ple(e—a,)). IE fieth(x,) then also fieth(m,), provided
f belongs to I” on bounded sets. Now this is part of our hypothesis in all
cases. Furthermore, f; converges to f; in I7 («,). To see this we must verify

that on the one hand ||fi—fll, = 0 as & — 0, and that on the other
1/p

(4.18) sup—glg[—}ﬁ f R () — R, ()P ds

¢ [~y <0

tends to zero with e, where R; and Fj are the remainders of f; and f;
respectively. Now

Fi(@)—R;(2) = fi(o)—f;(2) = —fi(@)[1—p[e(o— ]|+ of (@) s [e(@— )],

and the first term on the right clearly converges to zero in I”. For the
second term we have
1n
()" da
1fe<|t— :r0|< 1
1

[ [ 1ot eta—aipae] ™ < oa
1 1/p-1r
< Ce f(o)"da] (—) = oMM = (1),
1je<slo~wgl<2/e &

where 7 is the exponent of the class to which f belongs (we have, in all
cases, 1—n/p+n/i>0). This shows that |ff—fi, > 0 as &— 0. Since
Ej(#)— R;(w) vanishes for |¢| < 1/e this also shows that (4.18) tends to
zero with . Consequently f* converges to fin T¢, (z,) and 4° is established.

There only remains the case of f;eT%(x,). By Lemma 2.1 evidently
fieth () and T2_,(m,, f;) < CT2(x,, f;) for every sufficiently small po-
sitive &(%). Consequently fetl,, ,(w,) with appropriate ¢ and we have that
the inequalities of theorem 11 hold for f with u replaced by %— e on the
left and in the constants. These constants are bounded functions of u
for w away from —1. Now it is easy to see that if T2 t1-:{@y, ) < M for
sufficlently small positive ¢, then feT%,,(w,) and T% (@, f) < M. Thus
we can pass to the limit in the inequalities by letting ¢ tend o0 zero. Thig
completes the proof of the theorem (4).

THEOREM 12. If felZ, 1<p < oo, k=0,1,2,
almost all m, with Ljp = 1)g > 1jp—k/n if p < n/k, p<
and p< g << oo if p =n/k.

. then feth(@,) for
q< oo if p >nlk,

(*) This presupposes that 4> —n/p. Observe, however, that F2, njp(Tg) = tnyp(xe)-
(Y} Examples showing that the theorem is false for 4 = —1 can be easily con-
structed by means of the function log |xl.
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Proof. The case k = 0 is the familiar theorem about the Lebesgue
seb of a function in I”. The general case is obtained by induction on %
using Theorem 11 and noting that in the first place fieLE_y, secondly
that, according to Lemma 4.8, f is bounded if 1fp < k/u and feI' for
all 7, p<r<oo it 1/p =njk

Leaa 4.9, Let feth(ny), 1 < p

{' if ()}
o

— 1, ,n T ik dx

< ee, and let
[ NN

Then, for v >0, we have J'fet] ,(7,), where 1jp >1[q >
p<unfv,p <qg <o if p>ufv, or p<g<ocodifp=njo

Proof. The case v = 0 is obvious. The finiteness of the integral above
implies that the Taylor expansion of f reduces to the remainder R (),
and therefore

1/p—rv/n if

r[R(®)]
I W dx < 00,
Jo ?

Now the assertion of the lemma follows from the remark to the proof of
Theorem 4.

Proof of Theorem 5. We shall distinguish two cases namely, > 1
and u = 0.

Suppose that feTh(z,), ¥<1l, 1 <p < oo, for all z, in a set § of
positive measure. We may assume without loss of generality that 7% (x,, f)
is bounded on 8, and that S itself is closed and bounded. This presupposes
the measurability of T%(x,, f) 28 a function of x,; we assume this for the
moment. Then according fo the corollary of Theorem 9, f can be written
as f,+fa, where f,eB,(F,) and f, satisfies the hypothesis of Theorem 10
on 8. Further f, can be chosen.to have compact support. But then, if
02 0,J"f, belongs to L}, ,, for all p, and Theorem 12 asserts that J°f; et,, (@)
for almost all z,. Since f, has compact support, J°f;eL? and thus
I fyeld n(w) for almost all @,. On the other hand, sinee f, satisfies the
hypothesis of Theorem 10 on S, fetl(z) for almost all #, in § and, by
Lemma 4.9, J'f,etl,,(,) for almost all #,e8; therefore J°fetl, ,(2) at
every point @, where J°f; etd ,(2,) and J°f, ety , (%)

There remains the case « = 0. If v = 0, then since feI”, 1 < p < oo,
it follows that

1/»
[in [ lf(mo+h)~f(mo)i”dh] =o(1), ¢,

fhi<e

for almost all u,, that is fet] () for almost all #,. If v > 1, then J'fe Ly

and Theorem 12 gives the desired result.
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We now sketeh briefly the proof of the measurability of 7% (s, f)
as a funetion of #,. Let ¢ be the function of Lemma 2.6 and let

falw) = [ 2g Az —9)1f () dy.

Then if feTy (2,) and f,(%,) is one of the coefficients of the Taylor expan-
sion of f at z, we have

a a i
(2 fta = sutan+ [ 24, [Hao— )Ry, where g, = (2],

and R is the remainder in the Taylor expansion of f. The integral above
is majorized by

Anﬂal On

o —2gl <1/

|R(y)|dy = 0 (A",

which tends to zero as A — oco. Consequently the function f,(z,) are limits
of infinitely differentiable functions on the set where T%(w,, f) is finite,
which was assumed to be measurable, and therefore are measurable. From
this the measurability of T%(x,,f) follows without difficulty.

We conclude this secbion with a theorem which may be interpreted
as an extension of the well known theorem of Lusin on the structure of
measurable funections.

TuEOREM 13. Let feLE, 1< p < oo, then given ¢ > 0, there is a func-
tion g(z) with continuous derivatives of orders < k, such that f(z) = g(x)
outside a set of measure < e.

Proof. According to Theorem 12, fetf(s,) for almost all x,, where
¢ is some exponent larger than or equal to 1. Since T%(z,, f) is a measu-
rable function, given ¢ we can find an open set O such that T%(,, f) is
bounded outside O, and whose measure is less than &, and applying Theo-
rem 9 to f and the complement of O the desired result follows.

5. In this section we study the effect of singular integral operators
in the elasses 7% () and & (#,). We will use properties of singular integral
operators which were established in [67.

Leywma 5.1, Let K be a convolution singular integral operator defined by

Kf = lim

0 fey>e

klz—y)f(y)dy,

where k(z) s homogencous of degree —mn, is infinitely differentiable in
i@ # 0, and has mean value zero on |m| = 1.

Then if 1 <p < oo, —nfp<u #0,1,2,..., and feT2(z,), we also
have KfeTh(x,) and

TE(J)“’ C}Cf) < OupBITg(mO!f)’

icm
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where M is a bound for the absolute values [(0/0z) k(2)| on |2| =1, 0< |
Sut+l, f u>0 and |a| = 0 if v < 0.

If, in addition, feth)(m,), then NS el ().

Proof. We assume for simplieity that @, = 0. We choose once for
all a funetion ¢ in C5° which is equal to 1 for || < 1, and we set f = f, £,
with f; = P where P is the Taylor expansion of Jat 0. Then f,eTh(x,)
and it is not difficult to verify that 7%(x,, f,) < CTy(x,, f); consequently
Jo also belongs to T5(x,) and T%(zy, fo) < OT2(xy, 7). We will apply K
to f; and f, separately.

First let us observe that if p is a funetion in Oy which vanishes outside
lz] < 2, then we lave

Ay =lm [ k@p@—ydy =ln [ k@) Ipo—y)—p@)dy,

=0 e 0 e
which shows that the first integral econverges uniformly as & — 0 and that
Kyl < €M,

where (', depends on y. From the uniform convergence of the integral it
follows that
0
Om;

CX"P =X (i)"/%

O;

and thus Ky is an inﬁnitely differentiable function and
a )“ ]
— | Ky <O M.
'(050 C)\,wE\G’,,wH

Furthermore (Ky)(x) < MC, |z for |#|>3. This and the preceding
inequalities show that [Ky|l, < M Cp,y- Tt is easy to see now that Ky e T2 (z,)
and that

TZ: (“"07 CK’P) < aupwﬂl .

Applying this result to #°p(z) we find that
To(@, Ka'e) < Cyp, oM
since the function ¢ is fixed. Consequently, if P = Da,5", we have

Til@o, Kf) € ) 10 T2 (w0, Ka"¢) < Cup MTE (3, ).

lal<u
This is of course trivial if u < 0, since then f, = 0.
Consider next the function f,. Its Taylor expansion vanishes and there-
fore the inequality T%(z,, f,) < OT%(x,, f) implies thab
1 1/p
(5) |= [ inwra]” <one,ne.

Wi<e
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From this we obtain the following inequalities, which are analogues of
(4.2) and (4.3) in the proof of Theorem 4:

[ £ @)yl dy < (@, @™+

vi<e
if n+u—r >0, and
[ 1o ly]™ dy < CruTh(@0, f) @™~
Wize
if n-+u—r < 0. Bxpanding & by Taylor’s formula we can wribe, if « > 0,

(5.2)
(5.3)

Fa(y) (@ —y) dy +

W<e

[Ra—yhway =

+ Zi—:ffz(y)kn(—y)dy»%

laj<n

(5.4) ,,
@
+ 2 - ffz(?/)ha(@ib'—y)dy—
u<al<utl 7 wize
o
- Z pr Fo) ko —9)dy,
iz * wise

where the first fwo integrals are taken in the prineipal value sense. Since
ko (—y)| < My|~™'" and on account of (5.2), the integrals in the first sum
are absolutely convergent near zero. Further ||fyll, < CT% (%, f) and using
Holder’s inequality we see that those integrals are also absolutely con-
vergent at infinity. Combining this with (5.2) we see that the ﬁrs.t sum
on the right of (5.4) is a polynomial P(z) whose coefficients are dominated
by CpuMT5 (%, f)- .

If we assume that 2|z| <o, then |k|(@z—y) < O M ly|™ " for
ly] = o. Consequently, it follows from (5.3) that the second sum in (5.4)
is dominated by C,MT% (g, )™ ™ |a]'™. .

From (5.2) and the inequality for k, it follows that the last sum I8
dominated by C,MTE (2, f) o " o],

Finally, let us consider the first term on the right of (5.4). From the
remark on page 306 of [6] it follows that the norm in L? of this term is
dominated by

U [ [ Ih)Fay]" < 0T, o
lwl<<e
Combining these results we finally obtain
| = P@P o] < M3y, ) g

fx1<a/2
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Since |NAfalls < CpM |Ifsll, (see [6], loc. eit.), combining this with estimates
for the coefficients of P(z) we find that T8 (a0, Kfs) < CopMTE (54, f).
Since the same inequality has been established for kf,, the proof of the
part of the lemma concerning T7%(a,) is complete if « = 0.

If w < 0, instead of (5.4) we write

Jre—f.dy = [ke—phay+ [ ke—y)f)dy.
vl<e W=

The first term on the right can be estimated as before, and for |z < /2
and [y| > ¢ we have [k(z—y)| < CM|y|™, and thus on account of (5.3)
with 7 = 7 we find that the second term is dominated by €, T% (%, f) 0%

To prove that Xfet(m,) it is enough to observe that if feCp® then
K is infinitely differentiable and thus belongs to 2 (@,). Since K iz con-
tinuous in T7%(m) and, according to Lemma 2.3, (% is denge in 5 (zy) we
conclude that U maps #(x,) into itself.

LEMMA 5.2, If w is a non-negative integer and the other assumptions
of Lemma 5.1 are satisfied, then KfeT5(xz,) provided

_ @i

(5.5) .
o=y

dz = N < oo,
Furthermore,
T, Kf) < Cup MTh (0, f)+MN .

If w-is odd and f(z,+ o) and k(z) are of the same parity, that is, they
are both even or both odd functions of x, then the conclusions of Lemma 5.1
hold without the additional assumption (5.5). If u is even we get the same
conclusion provided f(x,--z) and k(z) are of opposite parity.

Proof. We merely observe that the proof of Lemma 5.1 applies algo
if wis a non-negative integer, except at one point: the integrals of the
functions

Fa)ka(— ),

are no longer convergent. However, under the additional assumption
(8.5) of the present lemma the Taylor expansion P of f must vanish and
thus f, = f and the integrals above converge. Under the other hypotheses
f» has the same parity as f, if we assume, as we may, that @ is even, and
the integrals above can be dropped.
Levva 5.3. Let w = 0 and let the other assumptions of Lemma 5.1
be satisfied. Let :
(A (@) = sup| [ kla—y)f)dy| < oo.

£ ly-mpl>e

laf = u,

Then Kf % () and
T% (m, Kf) < OpMTE (1, f)-+C (K * (o).«

Studia Mathematica XX 1
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Proof. Let o >0 be given and let f = f;--f, where f,(x) = j(x)
if Jw—ay| < 20, fi(z) =0 otherwise. Let g; = U fi, ¢=1,2; g = Uf. Then

; 1 NN Y
| J w@ral” <] [ la@ral"] [ el
[z-2ql<e e —-zyl<a ity <o ’
and sinee 9 is continuous in I (see [6], loc. cit.) the right-hand side is
less than or equal to

(5.6)  C,M|fill,+ [ f (lm‘

[zl <o

[ hla—y) = klae—y) ) ayf' |+

W/—2g|>2e
+0Q" (UAS)* (ay).
We have here |k(z—y)—k(s,—y)| < CM |wy—y| "o —ay|. Let
Flo)= [ If(a)lda.

-2yl <e

Then Holder’s inequality shows that F(o) < OT% (@, f)¢". Consequently,

F AR (s
- Uc(w-z/)—k(mu—ynf(wdy[<mnm~m012f e

-1
[V-2p1>2e

< OMTF (@, f)lo— | 07

Substituting the left-hand side in (5.6) and observing that [fullp
< @™ T8 (y, f), We obtain the inequality of the lemma,

a

. Ja\"
Lmyvma 5.4, Let feLf, 1< p < oo, and denote (ﬂ) f by f,. Then

TR, ) < O DT Wbt Y T8 (o, £.)]
<k-1

Jaj< la| =k
for almost all x,.
Proof. The statement is obtained at once by induction on % from 3°
of Theorem 11 with » = p if p << oo, or from 2° if p = oo.

Definition 9. We denote by 92, a convolution singular integral
operator whose kernel is of the form ¥y, (#|s|-!)|z|~", where ¥, is
a complete orthonormal gystem of spherical harmonics and m denotes the
degree of the harmonie.

Levma 5.5. With the notation of Lemma 5.3 we have, for 1 <p < oo
and —nfp<u£0,1,2,...,

IRumflo < Cullfls (R umf) *lo < Cylifll-
To (@0, Romf) < Crupm” T5, (25, 1)
where v = (n—2)/24-[u+1] if >0 and v = (mn—2)/2 if uw<<O.

icm
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Proof. The first two inequalities follow immediately from [6],
p. 306 and 307, Remark, taking into account that the Y, are normalized.
The third inequality is a consequerce of Lemma 5.1 and of the inequal-
ities

AN 7 lpi=1 - (12—2)/2 4[] 1!
'5‘; lm(‘nl‘vl )l‘p! | < Oa'"lr 3 =1,
which follow immediately from the inequality (4) of [7].

The theorem which follows has Theorem 6 as an immediate
corollary.

THEOREM 14. Let K be a singular integral operaior of class T, (w,),
w >0, with kernel k(x,s—y) and symbol h(z, 2). Let
(5.7) (@) = (=1 [ (m4-n—2)]"° fl’l,,, () LR (2, 2)do,

I==1
where Ly(2) = |2]* dg(2), v, = "="F0(Em) | T(dm+3n), v = [n+(u+1)/2].
Then

(1) o, () e Ty () and Tu(“p(n ) < C"nin‘—szu('z’m r}{);

(i) U = a(@)+ > ay,, (@) Ry, in the Jollowing senses:

(@) for feL?, 1 < p < oo, and for almost every x, the principal value
tntegrals in Kf and Ry f ewvist and the series a(@)f(#)+ > apm (@) Ry f
converges absolutely to Kf.

(b) K is a bounded operator in I¥ and T%(is,), provided u £ 0,1,2, ...,
and the series converges to Kf absolutely in the operator norm. The norms
of K in L” and Th(w) do not ewceed C,T,(z,,K) and CupTudzy, K)
respectively.

(iii) If UAety(m,), then O (%) €8 (20) and if feti(n), u #0, 1,2,..,
the function Nf also belongs to ().

Proof. The ay,(x) are nothing but the coefficients of the expansion of
the kernel k(z, z) in series of spherical harmonics Y5, (2) on |2| = 1. The
expression (5.7) for the ay,(z) given above was obtained in [7], p. 913.
Part (i) of the theorem follows from (5.7) taking into account that for

each z, 2] = 1, the derivatives (5) h(®, 2), o] <20+ u, belong to T4, (x,)

and their norms in 7', (%) are dominated by T, (s,, ) (see definition 6).

To prove part (a) of (i) let us consider (92,,f)*. Then since, by Lemma,
5.5, [(“Rpuf)*llp < Cylifll, and sinee for each m the number of distinet
spherical harmonics of degree m is of the order m"~* it follows from (i)
that 3|y, (2)] < CT,(z,, K) and consequently the series

Dt (@) P

is finite almost everywhere. On the other hand, since | ¥y, (2)| < Om("~272

(5.8)
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(see [7], p. 903], and sinece the number of distinet spherical harmonies

of degree m is of the order m™, it again follows from (i) that

D i (@)] | Tom (2)] <

But k@, 2) 21" = Do () Yi,(2) and f(y) |2
ity, integrable in |z—y| > &, whence

OT (w0, IC) .

—y|™" is, by Holder’s inequal-

69) [ ko, o-nidy

[T—y|>e
&r—
= 2 a’lm(m) f Ylm(
]a';
[&—Y|=e

If # is point where 92,f exists as principal value integral for all I
and i, and where (5.8) is finite, then, since the ferms on the right of (5.9)
are dominated by the corresponding terms of (5.8), we can pass to the
limit termwise on the right of (5.9), as & tends to zero. Thus (ii)(a) is
established.

To prove (ii)(b) we merely have to observe that, by Lemma 5.5,
the norm in I” of ay, (2) Ry, is < Opsup |, (#)] < Cp Ty, @z;) and thus,

)IT yI="fna

by (i), the series of the norms of these operators is finite.

Similarly, by Lemmas 5.5 and 2.4, the norm of ay,(2)WRy, in T%(z,)
is less than or equal to Cy,m®7T, (@, a7,,), Where v is as in Lemma 5.5.
It now follows again from. (i) that the series of the norms in ay, (%) Ky,
in T, (%) is finite.

The proof of (iii) is merely a repetition of the preceding one and rests
on the completeness of 5 (m,).

Proofof Theorem 7. Since, as it was shown in the proof of Theorem
5, the norm T7%(x,, f) is a measurable funection of , on @, we may assume
without loss of generality that @ is compact and that T% (=, f) is a bounded
function of @, on Q. We first assume that u is a positive integer. Then
according to the corollary of Theorem 9 and Theorem 10 we can decompose

fas f = fi+f,, where f,eB,(H,) and has compact support and f, is such
that

(5.10) P

A = Ny(m,) < o0

for almost all @, in Q. Since the function f, belongs to B,(H,) and has
compach support it belongs to L. Letb f,, = (2/0x)*f,. Then since, accord-

ing to Lemma 5.5, [[(Rinfia)* [l < Cpllfidl, and the number of distinct
R for each m is of the order m™ %, the sum

Z 2, 7;1,—71(1)@1‘“7#“)*(500) = Nl(mo)

le|=% 1,7
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is finite for almost all &,. Let now x, be a point where N,(x,) and N, (x)
are finite and in addition fi,<T% (z,), |a| = %, and let %K be an operator
in T (z,). We will show that KfeTh(w,) and that

(5.11)  Thig, NS < CupTuley, B[ Thlan, )+ Wfudy+

jal<u

+ X T8 (@0, fra) -+ N1 (@) + Na(ar)|

lal=%

TFor this purpose it will be enough to show that the sum of the norms in
T%(x,) of the terms of the series

CKf = Z alm(w)%lmfl + 2 alm(m)%lmfz
is finite.
We have

TIJ("”(H a’lmc}elnkfz) < OT (a"ﬂy a’lm 1717 $0? Wlmfz
< Om"lz_"’"“[(" FOPLT (29, W) M [Oup Tl @y Fo) -+ Na ()]

The first inequality follows from Lemma 2.4. The second inequality, in
which M,, is the constant associated with 9%, as in Lemma 5.1, follows
from part (i) of Theorem 14, and Lemma 5.2. We have

M, < COm P22+ 1]
(see, e. g., [7], p. 904, formula (4)), and thus
Zm(wor i R f2) < OL, (2, x) [OupTﬁ(waz)—\Lle(%u)].
On the other hand,

Tg ($07 almq'elmfl) < GTu (mo H alm) Tﬁ(mo ’ %lmfl)

§ 0mn/z—2n—z[(u+1)[2] Tu (wu’ 9[)113 (mm ;‘}glmfl) .

Now, by Lemma 5.4 we have

Tﬂ(mm %mel) < Oup [ 2

loj<u

S 2]

lo|=

( ) Run|

i i .
and since —6-—5}21,”, = %zm% (the proof is the same as in the case m = 1;
v

see Lemma 4.3) it follows from- Lemmas 5.5 and 5.3 that

(@, Renfr) < Oup| ) Ifrallo+Co MmZT (@0, fid +C ) (Rinfra) (@0)]

Jal<u la|=u lal=u
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where 1/, is the same as before. Consequently,
Y 2 22 (2t -
Z TZ(“'O’ Ui R} < Zcupm‘nlz 2n-2[ (% H)l2]Tu(-'1/'o, r)t)[ WHflquﬂL_
laf<u

’“{‘ U[)Mm Z-Tfl’ (930, fla) +C 2 (qelmflu)* (mo)J

a] =u lu|=u

< O Tty )| ' a3 T8 (a0, Fr) 4+ (w)].

la]<u laj=%

This completes the proof of the theorem if u > 0.

If w =0 we set f, =0 and argue with f, = f as above, and (5.11)
simplifies to

T3 (%0, Uf) < C, Ty(, WVLE (a0, f) -y ()]
A special variant of Theorems 6 and 7 is the following
]
THEOREM 15. The operators o J map T5(w5) and th(z,), 1 < p < oo,
1

—np<Lu#0,1,2,..., continuously into themselves. I f, on the other
hand, w is @ non-negative integer and f eTh(my) 1 < p < oo, for all @, i a sel

. 0
Q of positive measure, then a_arj Jf belongs to T% (w,) for almost all z, in Q.

Proof. According to Lemma 4.3 we have

C).Tj
Consequently,
7
] = .
i, J Ry AJd,

and an account of Theorems 6 and 7 it will be enough to show that AJ

maps I3 (x,) and () continuously into themselves for w > —n/p.

. We first observe that J maps T3 (%) conbinuously into itself. If u

is not an integer, this is an immediate con sequence of Theorem 4 and of

Lemma 2.1. If u is an integer then for the same reasons J'/2 maps 1% (w,)

continuously into itself. Consequently J = J*2JY2 hag the same property.
According to Lemma 4.6,

Ad = I+a1J2+a2J4-|--_ . ~+a:ngm_Qm'

By what we have just shown, it only remains to prove that (O, maps
T?f(a;o) continnously into (o). If m is large enough, (J,, is convolution
with a bounded integrable kernel with bounded integrable derivatives
up to om'ier [u]+1. Hence, in the first Place, [[Qnfll, < Oyllfll, and Qnf
has continuous derivatives up to order [u]-+1 majorized by Cyllfll,- Thus

meftz(ﬂ”o) and Im(m Q)f)gou < 0, T4 i 4
raot ot S theor:mf” m, Iy < CuTh(,, f). This completes the

icm
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6. This section will be devoted to proving our theorems on differen-
tial equations.

LEmMa 6.1. Let L2 be a system of differential operators with constant
coefficients of homogeneous order m which is elliptic in the sense of Defi-
nition 5. Then

(6.1) L= KA,

where K is an sX 7, s =1, matriz of convolution singular integral operators,
with the property that there exists an rxs matriz 9 of operators of the sume
kind which is a left inverse of K, that s 9K is the identity operator. The
norm of ¥ in the various spaces LP, T (z,) depends only on the space, the
least upper bound of the absolute values of the coefficients of 2 and the constant
of ellipticity u of L.

Proof. According to [7], Theorem 7, the operator .2 has the repre-
sentation (6.1) and the matrix of symbols of operators in X is precisely
the matrix

U(CK) =(— ,[;)mEauzu Izl—-m’

where }a, & is the characteristic matrix of L. The assumption of ellip-
ticity implies that ¢(°X) is of rank r for all 2z s£ 0; consequently if o(%)*
denotes the conjugate transposed matrix, then o(K)*¢(K) is a positive
self-adjoint » xr matrix, which consequently is invertible for all # =£ 0.
Consider now the matrix o(%) = [6(K)"o(K)I10(°K)*. The entries
of this matrix are funections of z which are homogeneous of degree zero,
and so according to Theorem 3 in [7], there exists an »xs matrix 9 of
convolution singular integral operators whose symbols coincide with o ().
Thus, according to [7], Theorem 4, o(AK) = o(N)o( K) = I, where I
is the identity »x» matrix, and consequently 9K is the identity operator.
The norm of the operator 9 in I”, T%(z,) can be estimated using Theo-
rem 14. In what follows we will deal with matrices of operators as a
single operator acting on vector valued functions, and we shall apply

‘to this case our previous results without further explanations. Here we

only add that by the norm of a vector-valued function we mean the
sum of the norms of its components.

Levuma 6.2. Let £2 be a differential operator of order m which is elliptic
at zy in the sense of Definition B and has coefficients in Ty(x,), 4 >0. Let 2,
be the operator obtained from £ by evaluating its leading coefficients at x,.
Let fe Iy, and let b = (1 — AY*Pf if m ds even and h = (1— A)" PG A)f
if m is odd, where A is the Laplacian operator. Then, if KA™ = L2, is the
representation of £, described in Lemma 6.1, 9 is the left inverse of K and
Lf =g, we have

(6.2) h = WG+ U (Lo— L) f+ (W +ANCG)S
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where N, and N, are differential operators with constant coefficients of
orders m—1 and m—3 respectively which depend only on m. When m is
even, the order of M, is m—2 and N, = 0.
Proof. We have

Lf = Lof+H(L—=L)f =y,
and representing .2, as in Lemma 6.1 and multiplying the equation by the
left inverse 9 or" A we obtbain \

A" = Wy -+U(Ly—L)f.

Now it follows immediately from. the definition of A that A% = — A (see
also [7], p. 909, Corollary) and thus we have

b= (L= A)"f = Uy U Lo— L+ [(1— d)" — (— Ay )

if m is even; and if m is odd,
b= (1— )" (i 4 ) f
= UAg+W(Lo—L)f+ [(1— )" DE (4 A)— (—

The lemma is thus established.

LemMA 6.3. Under the assumptions of Lemma 6.2, if w>v
= —nlp,v—w
integer, then

% (w5 1)

A )(m.M 1)/2/1].]’.

Zzw
< min(u, 1) and if in aeddition neither v nor w is an

< T3y, W)+ O poum(1+MN) T ( 0’/‘0, B,

where M 4s a bound for the norms in T, (s,) of the coefficients of L2, and N
is the norm of K as an operator on TZ ().

Proof. Referring to formula (6.2) we have

d\f
(6'3) TD({UO: C)}Zlf m 2 Tg (m(!?fﬂ)) where fﬁ = (_) f
! 0z
Sinee 4 = 43R;8[dx; it follows from Theorem 6 that
(6.4) T3 (o, %f 2 % (@0, fi) -

Bl<m—3

Similarly, if 8, denotes the sum of terms of order <

m—1 of 2—2L,
then

T3 (%, 8, f) < NI (w, 811),

and, aceording to Lemma 24,

w0, ) SOM DT T2(w,, fy).

- iBEm—1

iom®
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Thus

(6.5) T2 (@, WS f) <

CHN X' T3 (a, fy).

18l<m~1

L. Since the
gives

Let now S, denote the sum of terms of order m of 2,—
coefficients of S; vanish at x, and belong to T,(x,), Lemma 2.5

T2 (5, S.f) < CH E T2 (0, f5) -
|Bl=m
Thus

(6.6) T3 (o, HSef) < NTY (g, 8of) S CMN ) Th(any, ).

1B{=m
Combining (6.3) to (6.6) we obtain
(6.7) T3 (o, h)
< T (g, Wg) +Copn [(L+F) - D' Th(my, f)] +CUN Y Th(my, )

1Bl<m-1 18/=m

Now, if m is even, then h = (1—A)"*f = J™f or f = J™h. Thus

(o) r=r.=(2

whence by Theorem 15, Lemma 2.1 and Theorem 4 we have if |a| << m,

) Jm- la] ]L

(6.8) Tf,] (moyfu = Opvmlm(mo f"-—lﬂlh) Gpvr)LT'Iu,J+1n—lat(m0’ Jm—]a]h')

< Cppom Th (@0, 1) 5
and, if |a] = m,
(6.9)

T5(#0, fa) < Coum T (@o, 1)

If on the other hand m is odd, then, since A* = — 4,
ho= @@= BELAf, TV = (i+4)f,
IR = Je+A)f = i+ AT, (—i+A)J"Th = (1—A)J =],

and on account of the definition of A and of Lemma 4.3 we have

m
a\® . 5 5} . i )a m—1a|
(%-) F= [zg%(—a}; J) zJ](am J) Jme,

From this and Lemma 2.1 we find that the inequalities (6.8) and (6.9)
also hold in this case.

Combining (6.7) with (6.8
follows.

The next lemma states a known result.

) and (6.9) the inequality of the lemma
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Lemma 6.4. Let .2 be a uniformly elliptic differential operator of order
m with bounded coefficients whose leading coefficients are uniformly conti-
nuous. Then there emists a constant A depending on £ and D such that

0 fllpn < AL AL+ 117151

for every f in I, 1 < p < oo

Proof. We assume first that the leading coefficients of .2 have bounded
confinuous derivatives of the first two orders. Let now L, denote the
principal part of the operator 2, that is, the sum of its terms of order m.
Then according to Theorem 7 of [7] we have /2, = KA™ where XA is
@ gingular integral operator whose symbol is given by

G'(c)\j) = (—- i)’”’Z au(m)z" Iz]--m’

where Z'au(sq) £ is the characteristic matrix of 2. The assumption of
uniform ellipticity implies that the matrix ¢(9() has a left inverse o ()
which is the symbol of an operator of class C7 (see Definition 2 in [7]).
Now we have '

Lf = Lof +{(L—Ly)f = AA"f+(L—Ly)f = ¢,
and multiplying the equation on the left by % we got

WUKA™f = Wy —U (L—Ly)f,
A = Wg—W(L—L)f+ [(I=5N)A1A"F,
Since o(%)a(K) = I it follows from Theorem 5 of [7] that the operator
In square brackets on the right is bounded on I”. On the other hand,

“7.f is also bounded on Z”, and so taking norms in the last equation we
find that

“Amf”p < OJ_',y( Z | folly-+ 1AM ‘f”p) + 11, -

1Blm—1

Now, according to Lemma 4.3,

9\ '
(aTa = (=) R4, R = RAGR.. R,

whieh implies that for [a| = m we have

Wfelly < Caplla™ .

. o, 0
A= Y Ry
7

On the other hand,

icm®
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and this implies that
14" Sl < O 3 -

1Bl=m—1

This combined with the previous inequalities gives

Z N fulls << Cplifllpm =+ 124l -

|a|=m

(6.10)
Now we use an inequality given in [11], p. 125, namely

Uillo < Com ( 3 180)° 1A = Com (e D) 11Full)° (=0 @ 1,2

{aj=m ] =m
- \ — @l -6 9
< Cpu e D) Nfallp e flL] 5
|a|=m
where 6 = (m— |B])/m, || <m and e is an arbitrary positive number.
Consequently we have

”f“y,m;l < e 2 ”fu“p‘l'(/‘p,s,m”f“ln

fa]=m

(6.11)
and from this and (6.10) we obtain

DSy < Coplifilo+219%gl-

la=m
In the general case, given an elliptic operator .2 whose leading coeffi-
cients are merely uniformly continuous, we approximate .2 by an operator
B which has the same lower order coefficients but whose leading coeffi-
cients have continuous bounded derivatives of the first two orders. Then
Theorem 3 in [7] and the uniform ellipticity of .2 permit us to assert that
it is possible to approximate the coefficients of 2 by those of .2 uniformly,
by less than any preassigned number e, keeping at the same time the
norm in I” of the operator 9 associated with .2 bounded, say, less
than N. Thus from (6.12) we will have

Bf =g+ (L—L)f,
D) fdly < O lfl+21%gl 42 1% (L—2)fl,
< OBl 2N gl 2N [(B— 21,
< OB Alp+ 2N lgly+2Ne D' (i falls

la]=m

and choosing ¢ so that Nes < } we obtain finally

(6.12)

(6.12a) D 15l < Copllfllp+ 4N llgl-

laj=m

This combined with (6.11) gives the desired result.
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Remark. It may be worth noting that the coefficient 4¥ of |g],
in (6.12a) merely depends on the bounds for the leading coefficients of .2
and the bounds for uniform. ellipticity.

Proof of Theorem 1. We refer to Lemmas 6.2 and 6.3. We will
show first that if geTh(s,), 1 <p < oo, p not an integer and the coeffi-
cients of 2 are in T, (), w >0, 4 >0, then heT5(xs,) and sabisfies an
appropriate inequality.

Since f is assumed to belong to Lj,, the funetion h belongs to L7,
and thus also to T2, (), and

T2 1 (0, ) < 2Bl << O 1 [l

The last inequality is obvious from the definition of % if m is an even
integer. If m is odd we use the fact stated in Lemma 4.3 that A
maps Lj, continuously into I _,. Let now k be an integer such that for
y=1,2,

n k4 k1 N
—~+,—(v+—-) = —— 49
p ok P P
is never integral, and
1 1) .
8 = 'n+5— < min(u, 1).

Then the inequality of Lemma 6.3 gives

T{) np+(r+1)8 (moa h) < TrﬂnuH (»+1)8 (5(.0’ r)(g) + Omnn(l +Nﬂ[) — D4 16(x0771)7
y=20,1,..., 5—1. On the other hand, we have
ks nip-{r+1)8 (2o, U g)

where M is, as in Lemma 6.3, the norm of the operator % in T% (u,). Thus

< OT3 (my, “Hy) < CMT (w4, ¢),
T-’n/p-}(w +1y5(@0y 1) < OMTY (@, g) + Oy (14N M) T —n/u 1oy B).

If we write a, = T—-n/p»uﬁ(moz b, f = CJVIT{:("”M gy and y = [Ci‘lvm(l+
4+ NM)] the last inequality can be written as

<Btay YT, <Y+ a,

and summing from v = 0 to » = k—1 we find

W:»H

. 1—5F
Y, <p + ay.
1—y

If we replace Cpyp by 240y then y < 3 and

< [28+ 4]y

icm
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consequently,
T2 (g, ) < o [ MT (0, ) (LN MY~ -T2, (0, B) (1 +N M)
< Omm(l +NM)L [T.f (@05 g) + Hf“p,m] .

Now we use the identities in the proof of Lemma 6.3,

0 a o |( a )n
R — gmlal J )/
fa (8:}0) F=4 9z ) "
it m is even, and

e O R

if m is odd, and using Theorems 4, 6, 15 we finally obtain, with ¢ as in
Theorem 1,

Ta yma (®oy fo) < Opom [1+Nﬂ[] [N (5 9)+ ”f”p ml-

Combining these results with Lemma 6.4 we obtain parts (i) and (i)
of Theorem 1.

To show (iil) we return to equation (6.2) and show that under the
present assumptions hef) (z,). First we observe that the argument given
above shows not only that freT%, o (@) but also foelh mu () C ()
if |a| < m. On the other hand, on account of Theorem 6, <lgety (%).
Finally, the leading terms of (.2,—.2)f have coefficients which vanish
at xy; since f,eT5(x,) it follows from Lemma 2.5 that these terms
represent functions in 3 (z,). Consequently (L2,—.L)fet;(x,) and by Theo-
rem 6 again U (L,—.L)f < (z,). Thus all terms on the right of equation
(6.2) are functions in 1% (x,), and ket (x,). Using the representation of f,
in terms of h given above and applying the same theorems we conclude
that foetd, o (%). Theorem 1 is thus established.

Proof of Theorem 2. We refer again to equation (6.2). We may
suppose without loss of generality that @ is bounded and we will show
that heT? (z,) for almost all z, in Q. If geT5 (2,) and v is an integer, then
also geT%,(w,) with w slightly smaller than v and non-integral and, as was
seen in the proof of Theorvem 1, f,eTh, o (@) C T (#,) for |a| <m, and
faeTh(m,) for all o] <m. Let P(my, #) = > ag(m)(s— mo)” be the Taylor

WM

expansion. of f at #,. Then (0/0x)“P (2,, #) is the Taylor expa.nsmn of fa(a)
at every point @, where geT% (m,) and where, consequently, also feT%,, ., (%,)
and f, eT5  m_«(®). To see this we merely have to consider the functions
f* = Ap(Az)xf where p is a function of O of integral equal to 1; then,
according to Lemma 2.3, f* converges to fin T%,,._ (%) a8 A tends to 1nf1mty
and (9/02)"f* = 1@ (iw)*f, converges t0 fo in 1%y ju—s(%). This clearly
implies that the coefficients of (9/02)“P (2, ©) are the coefficients of the

(6.13)

(6.14)
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Taylor expansion of f,. Let now v be a function in 0F° which is equal
to 1 on @, and let us rewrite equation (6.2) as follows

I = Ug+U (Lo— 2V [P (o 2)p () ]4-
FU (Lo — L) P (@0, @)y (@) + (WG + AU,

, N
or, setting now P(z, ) = ) > bpla)al,
[FIESTRR

(6.15) b= g+ (L= L) [f=P (2, D) p(2)]+
T bylg) W (Lo L) o (@) 4 (W - AN f -

|l Zm

Tvidently (7/0x)"a" (@) Ty (%) for all #, o and f, and 2{a" w()}eT? (2,)
for all z,e Q. Consequently, by Theorem 7, there exists a subset ¢, of ¢
of full measure such that U (L,—L) afp(a) e Ty (o) for all 4y¢Q,, regardless
of the ehoice of the operator 7, which in our case depends on ,. Similaly,
for x, in another subset J, of @ of full measure we have OfgeTy(m,) for
all #,¢@,. On the other hand, since as we saw FaeTh () for |a| < m and
all , in @, we have O, f e T (o) fOr 2@y and using the definition of 4
and Theorem 7 again we conclude that AN ,fe T% () for almost all z,ef).

There remains the second term on the right of (6.15). ‘We note first

that

\" a\f Pla

(Ly— L) [f—P (%o, @)y (2)] = WLJ esl) s [f =P (o, @)y (@)1

<m
where the cg(s) are funchions in T,(#) which vanish at =, and
(8/02)°[f —P (29, ®)] are functions in 77 (x,) which also vanish aﬁo-wa,
for every , in §. Consequently by Lemma 2.5, part (iii), these fupetlol,ls
belong t0 T%.. (%) for all z¢Q. Now, ginee w--1 is not an integer,
Theorem 6 guarantees that

W (Ly— L) [f—P (2, @)y ()]

belongs to 1%, (x,) C Th () for all @ in Q. Summarizing we have found
that heT?D(z,) for almost all @, in @.

Using now the representation of f, given in (6.13) and (6.14) and
applying theovems 15, 7, § we obtain the desired result.

Proof of Theorem 3. Thiy theorem is an immediate consequence
of Theorem 1. For under the given assumptions, it follows thab feZ5,m ()
for all z,¢ @, ‘and that Th, (%, f) is bounded on @; and an application of
Theorem 9 gives the desired result. If g eth(x,) for all z,¢ @, then f et (%)
for all z,¢Q and Theorem 9 asserts thab feby, (@)

7. In this section we make additional observations about the solutions
of the equation .Lf =g.
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It is well known that Theorem 1 is not true when v is a non-negative
integer (Theorem 2 is a substitute result), and the simplest illustration is
the equation Af = g: if g is merely continuous, f is not necessarily twice
differentiable. The only thing we can then say is that f has confinuous
first order derivatives f; = df/0x; (j = 1,2, ..., n) which in turn satisfy
o Holder condition of any order less than 1, or more precisely, have a mo-
dulus of eontinuity w(h) = o(m;log 1%)

It is however not diffieult to see, and this result is a special case
of Theorem 16 below, that if g is continnous at a given point x,, then any
solution f of 4f = g has continuous derivatives f; near », and the f; satisfy
at that point the condition of *“smoothness”:

(7.1) B (g )+ fy{@o— )= 2f;(0) = 0(hl), b 0.

(this notion was first introduced by Riemann).

This result can be interpreted as the differentiability at h = 0 of
the “even part” L[fi(z,-+h)+f;(ze— )] of fi(we+h), and from this it
is easy to deduce that the “odd part” I[f(w,+ h)—flx,—N)] of flwe-+ D)
has a second differential at » = 0. This fact gives a clue to the situation
in the general case. We may add, and the result is familiar enough (see
e. g., 15;, p. 44), that if a continuous function g () satisfies the condition
g(x+D)+g(e—h)—2¢(x) = o({h]) uniformly in a domain, then in every

1
compact subdomain ¢ has modulus of continuity o(]h[log Th—]), so that

the result about the modulus of continuity of the derivatives f; in the
case of the equation Af =g is a corollary of 7.1.

Definition 10. We will say that f(x) belongs to the class A% (),
where u i3 a non-negative integer, if §[f(zy-+ %) —(—1)“f(s,— )] belongs
to T2(0) as a function of h. We will say that f(z) belongs to M3 (a,), where
u is again a non-negabive integer, if 3[f (o h)-+ (—1)"f(@,—h)] belongs
to T2(0) as a function of h. By replacing 75(0) by #,;(0) we obtain the
definitions of () and wl(wm,).

THEOREM 16. Lef Lf = g be an equation of order m with coefficients
in Ty(2,), which is elliptic at x, in the sense of Definition 5. Let u, u <,
be a non-negative integer. Then, if m is even and geTy(zy), 1 < p < oo,
w >u—1, and geA5(2,), the function f, = (8/0x)°f belongs to Af . m_ o (%)
where p and q are related as in Theorem 1. If m is odd the same conclusion
holds with the classes AZ(x,) replaced by ME(z,). Analogous conclusions hold
with classes A replaced by A, or M by u, as the case may be.

We will omit proving in detail the preceding statement, and will
confine ourselves to merely sketeching the main line of the argument.
Referring to Lemma 6.2, one shows first that the function 7 on the left-
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hand side of formula (6.2) belongs to /Ay(w,) or M3 (%) as the case may be.
According to Theorem 1, and the hypothesis made above, f and its deri-
vatives of orders less than m belong to 1%, ;(%,) and the derivatives of order
m belong to T (z,). Since the leading coefficients of 2—.£, vanish at s,
and belong to Ty(x,) where v >u, it follows that (L2,—.L)f belongs to
a class T%(x,), with » > u (see Lemma 2.5) and by Theorem 6 the same
is true of " (L2, — L) f. Consequently all terms on the right of (6.2) except
9 g belong to T%(z,) and a fortiori, also to A% (m,), or ME(a,).

Consider now the term g. If m is even then the symbol of the oper-
ator ‘I is an even function and thus also the kernel of the operator is
an even function. Let O,f be the function of 4 given by }[f(m,+x)—
—(—1y*f(z,—»)] and thus, since the kernel of 9 is even we find that
Oy (Hg) = ¥ (Oyy) and applying Lemma 5.2 we conclude that O,(%yg)
belongs to T%(w,), that is HHgeAZ(w,). A similar argument shows thast
g e My (@) if m is odd. Consequently h belongsto A%(m,) or MZE(x,) accor-
ding to the parity of m. Once this has been established we obtain f and
its derivatives f, from h by means of the identities (6.13) and (6.14). In
cage m is even we obtfain

C’m+uf = Onu-quh = JmOm-}-uha

and taking into account the remark to the proof of Theorem 4 (p. 198),
we find that Onufelh (@), that is fedl, (). A similar argument
employing Theorem 15 (for which a remark analogous to that to Theo-
rem 4 holds) gives the desired result for the derivatives of f. The case
of odd m is treated similarly.

Inequalities for the norms can also be obtained by this argument.
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