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1. Introduction

The notion of convergence is fundamental in many branches of
mathematies and is considered in various meanings. Besides the classical
Cauchy definition of convergence of numerical sequences, & number of
definitions of convergence of function sequences are in use. Moreover,
various definitions of convergence of a sequence of sets are introduced.
Thus, for example, in the measure theory, the notion of set-theoretical
convergence and the convergence in the metric u(ANB)+ u(B\4)
are applied. In topology, the following notions of convergence have been
introduced: econvergence of sequences of sets in the Hausdorff metric,
convergence induced by the limit points (Li and Ls in the terminology
of Kuratowski [9]), which may be considered as corresponding to the
intuitive notion of convergence of sets and is applied for instance in
differential geometry; finally, K. Borsuk [5] has introduced various
notions of distance of closed subsets of & compact metric space assuming
that sets lying in a small distance must possess similar topological
properties.

(*) Some.of these results were presented at the Conference on Functional
Analysis at Zakopane (January 10, 1957) and at the Conference on Theory of Groups
in Wroclaw (October 9, 1959).
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These examples point out the importance of the analysis of various
notions of convergence. On the other hand, they show that notions of
this kind may be introduced in various ways depending on the problem
at hand and that each of those definitions may find its own applications.

The first problem considered in this paper is the investigation of limit
properties of sequences X, consisting of Banach spaces or, more generally,
of linear metric spaces. The method consists here in considering certain
spaces S(X,), ©(X,), GSr(X,) ete., which may be interpreted as limits
of the sequence X,,.

So far these congiderations have not led to results which could be
applied to the solution of some problems of functional analysis. However,
we obtain & method which malkes it possible to find new relations between
the properties of the spaces under consideration and, above all, sets of
new problems, which have not been formulated explicitly.

The question of limit space of an increasing sequence of linear topo-
logical spaces has already been investigated by Kothe and by Dieudonné
and Schwartz [6]. However, there is hardly any econnection between the
investigations presented in this paper and the inductive limits. The basis
difference lies in the fact that in the Dieudonné-Schwartz theory the
topology in the limit space depends on the topolegies in spaces X, , while
the topology in the space ©(X,) is determined by the metric properties
of spaces X, and our considerations regard almost execlusively metric
properties. Especially, it is established in 4.3 that the definition of S(X,)
cannot be generalized to linear topological spaces.

We shall point out that the space S(X,), similarly to other limits
considered in this paper, is not an invariant of linear isometric operations;
the notion of limit depends here essentially on the inclusions between
the spaces. It may easily be stated that no notion of limit according to
those inclusion requirements admits such an.invariantness (cf. 4.2). Of
course, this does not exclude the possibility of another treatment of the
question; however, in that case some other advantages would be lost.
After all, the inductive limit of & sequence of mutually isomorphic spaces
may be non-isomorphic.

Considering spaces &(X,), let us point out two special cases. The
first occurs if all spaces X, are subsets of a fixed space with a fixed norm.
Then the limit properties reduce to inclusion properties of subspaces
and the treatment introduced in this paper does not give anything new.
The second case concerns considerations of a fixed space X with a se-
quence of morms | |, defined in X; investigation of limit properties
of the sequence <(X,| |,> is generally reduced to investigations of
convergence and other properties of subadditive functionals defined in X
and is a continuation of a number of papers concerning these problems,
especially of the results of Mazur and Orlicz [10] obtained in 1933.
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J.J. Schéffer [16] considers the class 97(L) of all linear subsets of
a linear topological locally convex space I, provided with some homo-
geneous norms finer than the topology induced by L. 9(L) is & condition-
ally complete lattice with respect to the ordering:

Yy, | > €< To > f Y CY,and ). = |#]ls for me¥,.

-5}

One may verify that if ¥, > ¥, > ..., then )\ ¥, coincides with the
7

=1 00
space ©p(Y,) defined below, and if Y, < Y, < ... then \/ ¥, coincides
with S(X,,). =l

The most interesting are monotone sequences of complete spaces,
i. e. increasing sequences X, C X,C ... with successively coarser norms
and decreasing sequences X; D X, D ... with successively finer norms.
Excluding the trivial case where almost all norms are equivalent, it is

o0

proved that if {X,} is an increasing sequence of F-spaces, then (J X, is

n=1

o
always non-complete, and if {X,} is a decreasing sequence, then ()X,

n=1
cannot be a B*-space, but (after a suitable modification of norms) may
be @ By-space. Thus, neither the union of an increasing sequence nor
the intersection of & decreasing sequence of B-spaces can be z B-space.

This fact is the starting point of the second problem considered
in this paper, being closely connected with the previous one. Suppose
we are given a family {X,} of B-spaces with p taking values from a certain
interval (a, b). Let X, C X, for p’ > p. Moreover, we assume the norm
| |- in the space X, to be finer than the norm [ |, in the space X,. The
problem at hand is the following. How to introduce & natural definition -
of continuous dependence of the family (X, | |lp> on the parameter p in
such & way that families which may be intuitively assigned to be
dependent on p continuously (e.g. spaces L, with p >1) remain con-
tinuous in the sense of this definition and families intuitively disconti-
nuous in p remain discontinuous? Finally, what are the properties of
families depending on the parameter continuously?

A definition of continunous dependence on s parameter is given in
section 9.

Some results presented in this paper are known in another aspect
or in » more special case; they have been established by the examination
of various problems and it seems impossible to give a full list of all posi-
tions where such contributions may be found. This paper contains
2 systematic treatment of these questions.

A number of further questions arise in a natural way; an investiga-
tion of them seems to be of importance.
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Firstly, & precise classification of criteria which would allow wus to
deduce the convergence of the sequence of norms

1Tl = sup{[| U (@)]u: |2, <1}

of a fived linear operation U from X to Y, the convergence of the two
sequences of norms

I lalo for oeX  and [yl |yl for ye ¥
being assumed. This problem is solved in some special cases (e. g. it is
easy to give some sufficien conditions); on the other hand, many que-
stions in various branches of functional analysis may be reduced to this
general one.

Secondly, investigations of limit properties of bases and unconditional
bases, of the function 6(e) defining uniform convexity, of many quantities
connected with convergence of series, etc. Here the situation is similar
to that in the former case.

Thirdly, a further study of families depending on & parameter
continuonsly or semicontinuously, interpolation of properties which are
valid in & dense set of values of the parameter and so on; an investi-
gation of more special classes defined by means of some general schemes.

Finally, a classification of various pathological situations. The
analysis of possible situations allows us to conclude that in many cases
the only counter-examples of some theorems are ineffective examples
defined under the axiom of choice. E. g. the starting point of many such
definitions is the existence of discontinuous distributive functionals in
an arbitrary infinite-dimensional space. On the other hand, it is obvious
that such cases are unimportant from the point of view of applications
and it is suitable to seel after assumptions which will eliminate the
pathologic situations. Theorems of this type will be valid in every case
which might oceur in practice, being non-valid in general. Theorem 6.2
is & theorem of this type.

The starting point of such elimination is the notion of conformable
norms, i. e. norms for which there exists a complete norm finee than all
those norms (2). Hypothesis (H) introduced in section 3 excludes cases
of non-conformable norms and linear subsets which do not satisfy the
condition of Baire; consequently, it excludes some pathological situations.
Obviously, this does not exhaust the problem. The purpose of this paper
is to give some basis for further investigations.

(*) Besides this notion, the notion of quasi-normal norms is very useful; however,
although almost all norms appearing in practice satisfy the condition of quasi-norm-
ality, there exist effective counter-examples (see [1], p. 120).
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2. Terminology and notation

The term norm will mean a homogeneous or non-homogeneous norm;
a homogeneous norm will be called a B-norm.

B-space will mean & Banach space, By-space — a locally convex
metrisable complete space (see [1]) and F-space will mean a complete
linear metric space with an invariant metric determined by a norm.
Similarly, & space X will be called & B*-space, 2 Bi-space or an F*-space
if its completion is a B-space, a B,-space or an F-space, respectively.

Bi-space will mean 3 Byspace in which there exists a homogeneous
norm continuous with respect to the topology of the space (this condition
is equivalent to the existence of a sequence of norms determining the
topology of the space; these spaces were considered by Bessaga and
Pelezynski [47]).

The spaces Ly, 1,, ¢, will have their traditional meaning (a5 in [2]
or [7]).

<X, | ]> will denote 2 linear space X provided with the norm | I-
Compl <X, || |> will denote the Canior completion of <X, ] |>. X will be
treated as a subset of Compl<X, ] ]>.

Conj <X, { |[> will denote the set of 2l linear functionals on (X, | |5,
i e. distributive functionals on X continuous with respect to || |.

Given two spaces <Xy, ][> and (X, |{s> |[1&] ). Will mean that
the conditions #,eX;~ X, (2 =0,1,2,...), |o,—%),—0 imply
[#2~o]s — 0; in this case | |, will be called finer than | |,, and | o will
be called coarser than | ||,. A sequence | |, will be called uniformly coarser
than | | if for every & > 0 there exists 6 > 0 such that ]z| < & implies
Jaln < e form=1,2,...

[ 11 ~1 {2 will mean the equivalence of norms | |, and | |, on X~ X,,
i e. | |15 | |2 together with | ], 31 |,. If neither | |, 2] |, nor | u5| .
holds, I} {; and ||, will be called incomparable.

The triple notation <X, | |, | [»> will stand for the case where | |,

and |||, are defined on X and ||, | ].- Such a two-norm space
<X, 11,1 2> will be called quasi-normal if for every ¢ > 0 there exists
6 > 0 such that the conditions

lo,—z]. 0 and

fodi <6 formw=1,2,...

imply [#]; <. In this case the norm | ||, will be also called quasi-normal
with respect to | |,. If | |, and | |, are homogeneous, this condition may
be replaced by the following:

fo,—a]. > 0 implies [a];, < Klim ],
K being & constant (ef. [1]). <X, {1, ]| |»p Will be called normal if

l#y—al;— 0 implies |z}, <lms,],.
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<X, 1y 11> will be called y-complete if the conditions |z, — .~ 0
as p,q— oo and boundedness of (x,) with respect to | [, imply the
existence of an element z,¢X such that |,— %], — 0.

A norm || || in a linear space X will be called complete if <X, | |> is
complete. A norm | || in X will be called & norm of the first kind if there
exists & complete norm in X finer than | |. In particular, any complete
norm is of the first kind. A norm will be called.of the second kind if it is
not of the first kind. A norm of the first kind on X may be of the second
kind on & linear subset of X.

Norms || [, in a linear space X will be called conformable if there
exists a complete norm || || in X such that | |, || for all «. In particular,
two norms | |, and | |, ave conformable if and only if the norm [af,
= |#|,+ ||, is of the first kind.

Let || |3 |1 The norms | |, and | ||, are called compatible if con-
ditions [l — |, —~ 0 as p, g — oo and |@,— ], — 0 imply [a,—af,—0
as p — oo,

In the sequel we shall consider the following hypothesis:

(H) all the norms in question and those which can be constructed
effectively by the notions considered are conformable whenever they are defined
on the same linear space, and all linear sets which may be constructed effec-
tively satisfy the condition of Baire.

Finally, @(u) will denote the function ¢(v) = u/(1+u) for « > 0.

3. Definitions of convergences

In this section the limits &(X,), &(X,), &*(X,), Sr(X.), Sr(X,)
and SEL(X,) will be defined.

3.1. Definition. 4 sequence (X,,| |.> of F*-spaces will be termed
S-convergent to an F*-space (X, | o> if the following conditions are
satisfied:

(a,) Xy and almost all X,, are contained in a linear space X (considered
without topology), and the addition and the multiplication by scalars are
consistent. Thus, if ©,yeX; ~ X;, then

oty =a+y =a+y,
x; X; Ly

(22) {X,} converges to X, in the set-theoretical sense, i. e.

oo oo (=9 oc
Xi=U NX,=N U X,
M=1 n=m M=l n=m
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(a;) if ®eX,, then (%)

WD

Conditions (a,)-(a;) being satisfied, we shall write

Xﬂ =6 (Xa).

N300

Xy, H H0> =8 <Xu: “ w‘kn‘} or
=00

The space ©(X,) is defined uniquely. Obviously, the convergence &
is a convergence 2% of Fréchet (cf. [9], p. 83).

3.2. Definition. 4 sequence (X,,| |.> of F-spaces will be termed
S-convergent to an F-space (X, | |o>, written

Fos [ o> = e Xy [ {a> 0o X, =§(-Xn)y

if there ewists a linear dense subset ¥ of (X,,| o> such that (X,|[o>
=6 <Xn7 ” "n>‘
=00

Thus, & sequence is @-eonvergent it and only if it is S-convergent.
The space @(Xn) is defined uniquely up to linear isometry. The con-
vergence 'S is a convergence .2 of Fréchet in the domain of complete
spaces, but it is not 2%, as Example 4.4 shows.

3.3. Definition. 4 sequence <(X,,| ||l.> of F-spaces will be termed
@*-comergent to an F-space (X, || o> if, for every sequence n, << my << ...
of indices, there exists a subsequence my << ng, < ... such that (Xg, | [o>

=l—§o<xnkl’ ” "nkl>'

The convergence G* is a convergence .2* of Fréchet and is more
general than the convergence E

3.4. Definition. A sequence (X,,| l.> of F*-spaces will be termed

- Sg-convergent to a space (X, | o> if condition (a,) and the following con-

ditions are satisfied:
(21) {X,} converges to a linear subset ¥, of X in the set-theoretical
sense and
X, = {#:2eX,, supfe], < oo},
n

(a3) if weX,, then o, = Um |z|,; if ©e¥ \X,, then |z], - co.

The convergence Sz is a convergence L and is more general than
the convergence .

(*) By (a,), the norms iz}, are defined for almost all n.
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The convergences @; and @ﬁ are defined for complete spaces analo-
gously. The following scheme establishes the relations between the
convergences defined above:

Cc&c
6CGy 6 ca.C S%.
R

The left-hand convergences are defined for sequences of F™*-spaces,
the right-hand ones — for sequences of F-gpaces; &, C &, means that
any ©;-convergent sequence is S,-convergent and the limit spaces are
identical.

3.5. Given a divected set (X,,| [l,> of F*-spaces or of F-spaces,
respectively, we may define the Moore-Smith limits
Cn(X), Sh(X,)

T T T T T

8(X), &), ©"X), Gg(X.),
in a way analogous to the preceding. In particular, set theoretical con-
vergence means that every element belonging to a cofinal subset X,
belongs to all spaces X, with 7 > 1,.

4. Examples and elementary properties

41 Let wus consider the spaces L, A<p <o) with |s],

= f [2(2)[Pat)'?. In this case 9 may denote the class of all measurable

functlons defined in (0,1, considered up to sets of measure 0.
If a sequence p, possesses at least two accumulation points, then
{Lp,} is not convergent with respect to any of the above definitions.
If p, N p, then (L ,) 1S not complete and 6( ) = Lip.

If p, 19 < oo, then S(L n,) does not exist, but GR(L o) = L. How-
ever, this case may be treated differently. Let us write

i * C -k * m7 o-n k4

lolf: = 2,2 plaly),  tal* = 22 ellodn), e =g

Then 6(1}1,“, I I5> is the class of all measurable functions such that
1

[z @ < oo for every » < p,
0
Finally, <L, | |o> = 6R<Lp, I 1>

4.2. Now, we shall eonmdel the spaces of continuous functions
defined on various intervals. Since the definitions introduced above
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require the existence of common elements of the spaces considered, we
cannot consider the spaces of functions defined on different sets; the
functions considered should be extended on to & suitable common set.
Accordingly, C(a, b) will denote the space of all continuous funetions (1)
defined in (—oo, co) and such that

2(t) =m(a) for t <a and () = a(d) for ¢ = b,

Let Xu = 0(0/,” n)

If a,a, byxb and a # Db, then 3(X,) = C(a,b).

If a,~a and b, b, then &S(X,) consists of all continuous functions
#z(t) constant in the mtelvals (—o0,a+40) and (b—9J, c0), § being
a positive number depending on #; S(X,) is equal to C(a,b).

If a,7a, byxb and a =0, then &(X,) consists only of constant
functions, i.e. ©(X,) is equivalent to E'.

4.3. Let E™, 17" and IZ be the spaces of sequences

1Ty 0,0, ...}

provided with the norm [a] = sup (%))

@ = {ty, tay ...

provided with the norms

m "

ol = (Xt Jait' = X, ot = maxia,
k=1 e
respectively. Then
CEY =L, S =hL &)=c

M0 ni—00

No space S(E™), S("), S(IZ) is complete.

This example shows that the limits of sequences of isomorphic spaces
may be non-isomorphic. However, if the relations X,C X,C...,
o~ Sy 1> = Xoy 175 S, | > = <X, | |5 hold and
if the identical isomorphisms z — @ from <X,, | |.> onto <X, || |.> are
equicontinuous, then the limit spaces are isomorphic. The above inclu-
sions ‘are essential; example 4.2 shows that the limit of & sequence of
mutnally isometric infinite-dimensional B-spaces may be one-dimen-
sional.

44. Let X,, — I, and Xy, = B* (cf. 4.3). Then & (X,) does not

exist (since S(X,) does not exist), but S(X,) = I,.

4.5. An F*-space is the &*limit of a sequence of finite-dimensional
spaces if and only if its Hamel basis is countable. An F-space is the
©-limit of & sequence of finite-dimensional spaces if and only if it is separ-
able. Consequently, separable F-spaces are determined by sequences of
finite-dimensional spaces, and the totality of all separable F-spaces
(considered up to linear isometry) is of power 2%,
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4.6. Let a be a fixed limit ordinal number and let Cs (B < a) be the
space of all continuous real sequences {a},s}Ku such that @ =, for

£ > p, provided with the norm |@| = sup|v,]. Then & (Cp) = C,.
B—a

4.7. It (X, ][> are B*-spaces, so is &(X,, | [n>- If <X, | > are
inner-product spaces, so is &<X,,| |.>, because inner-product spaces
are characterized by the identity |o+y[*+|a—y|* = 2jz|24 2|y

4.8. If 8(X,) = X,, then (X, ~ X,) = X,, but not conversely.

49. Let K,={o:|a|, <1, 2eX,}, H,={s: |z, <1, zeX,},
n=0,1,... If X;=6(X,), then

K, C Limes K, C Limes H, C H,.

4.10. Let (X, | o> = &<X,, | > and let us consider the following
condition of uniform convergence: for every ¢ > 0 and r > 0 there exists
an N such that, for every n > N and xeX,, the inequality |af, < »
implies ||a],—|a],| < .

If this condition holds and if X, are B*-spaces, then ||, ~ | lagr
for almost all #. Indeed, if | |, and | |, are homogeneous and if there
exists an 5 such that 0 <7 <1 and such that |of, <1 implies
ol =l < 7, then (1—n)lal, < Jo]s < (1+m)]a],.

5. Auxiliary general lemmas
concerning various norms in linear spaces

.Some statements established in this section are well-known; they
are collected for the sake of completeness and for continuity of further
considerations.

5.1. Let || | be a pseudonorm in X and let T, be a linear subset of X
such that

we¥y, yeX,, @ £y imply |o—y| #0.

Then there ewists a linear set X, containing exactly one element of any coset
of X||| and such that ¥,C X,C X.

5.2. Lot Xy C Xy, || |1 & oy let Ty be Linear and closed in {Zyy | [2-
Then Y, ~ X, is dlosed in (X, | |.>.

5.3._ Let XD be any infinite-dimensional F-space and lat & be
@ norfb-twwml linear functional on (X, | ||>. There exists a sequence of norms
]] ln incomparable with | | and such that ||, —~ || for alt weX. If <X, | |>
18 complete, such a sequence may be chosen so that KX, || > are also com-
plete.

Proof. Let &(z,) =1 and let {#a1<acs, be @ Hamel basis for
X, = {a: @eX, £ (@) = 0}. Then {®alocaca, is & Hamel basis for X with
biorthogonal distributive functionals {€afocaca,. There exists an index
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7y < w such that £, is not continuous, since only a finite number of
functionals £, can be continuous (this follows by considering elements
o0 N ©
2 O = D by, With 3 |a,®,]| < co). We may assume 2, — 1. The
fi=1 n=1 n=1

transformations

Un(@) = Ua( Y fa(m>ma)=|so<w)+%£1(w>] @0+

0<n<ao

D Elo)a,

lga<u°

are distributive and one-to-one, and the norms |af, = [U,(x)| are well
N : . 1 . - .

defined. Since the functional &, - %1 1s continuous with respect to | |,

and not continuous with respect to | | and since & is continuous on
<X, ] 1> and not on <X,]|,), the norms | | and || |, are incomparable
Tor each n. Next, for every zeX,

. , 1 .
Izl —lalla| <[ —& (@) ] 0,

whence [#f, — |l#|. Finally, if || is complete, so are the norms | |,,
n=1,2,...

5.4. Let <X,||> be any infinite-dimensional F*-space. There emists
a non-equivalent finer norm ||, in X.

Proof. £ being a distributive non-continuous functional on (X, | |,
the norm |uf, = |« + |£(x)| is the desired one.

If (X,]|> is complete, <X, |,> is not, by Banach’s inversion
theorem. This shows that a coarser norm may determine a smaller Cantor
completion.

5.5. Let <X,| |> be complete, let | |, be non-equivalent and coarser
than | | and let (X4, | ||,> = Compl <X, | |,>. Then X is of the first Baire
category in (X, | | If <X, |> is separable, X is a Borel set in
Xy | 1>

The first part follows by a theorem of Banach ([2], p.38), the
second — by a theorem of Souslin (cf. [9], p. 396).

5.6. In any infinite-dimensional B*-space <X, | |> there exists a non-
equivalent quasi-normal coarser B-norm.

Proof. If <X, | [> is complete and not reflexive, this follows by
Theorem 3.3 of [1]. The case of a reflexive space is similar; non-complete
spaces can be treated as dense subsets of complete spaces.

5.7. Let <X,| | and (X,| > be complete and let there exists
a morm | |5 such that | ;3]s and | s3] 2. Then | s~ ]2

Proof. By Banach’s inversion theorem, we have to prove that the
norm |o| = |z||,+]||, is complete. Let |#,—ax,] — 0 as p, g — co. Then
lltp— 2]y = 0, ||@y— %])s — O whence there exist elements #’, 2" such that
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[#,—2'], =0 and [l@,—&"[,~ 0 as p —oo. Since |z,—x'|,— 0 and
|#5—a"]s — 0, we have &' =a" = @, whence |z,—a| — 0.

5.8, Let <Xy, || |> and <X,, | |.> be complete, and let I" be a total set
of linear functionals continuous with respect to either norm. Then, || |, ~| |,.

5.9. Let us dividé all the complete norms in a linear space X into
classes I, so that two norms helong to the same class if and only if they
are equivalent. Let 9N, be the class of all norms coarser than a norm of ON,.
Then fwo norms of the first kind belong to the same class M, if and only if
they are conformable.

This follows by 5.7, as M, ~ D = 0 for o #4.

5.10. Let | ||, be a coarser and quasi-normal norm in (X, | |.>. Then
[ . and | |4 are compatible.

Proof (*). Let |2,—w[, < 6 for p, ¢ > N. Let g oo with fixed p;
then |[(@,—2,)— (,— )], 0 whence |@,~a|, <& =¢(5) for p > N.

5.11. Let || |, be a finer norm in an F-space <X, | |o> and let | |, and
I 12 be compatible. Then | |y ~| |2-

5.12. Let || ||, be a coarser norm in an F*-space <X, | |15, and let | Il
and | |, be compatible. Then Compl<X, | |,> = <Xi, | |,> may be treated
as a subset of Compl(X, | s = (X,,| ||,) in the following sense: there
exists a linear set ¥ such that

10 XC YCX,,

20 for every ye Y\ X there exists a sequence z, of elements of X
satisfying the Cauchy condition with respect to either norm [ 1; and || .
and belonging to the coset y,

3° for every zeX,\X there exists exactly one element ye¥\ X
such that the Cauchy sequences corresponding to z (with respect to
<&y, | [1>) correspond to y (with respect to (X,, I 12>)-

5.13. Let || |, and | |, be two compatible norms of the first kind in X.
Then they are conformable.

5.14. There ewist effective conformable morms Tl a which are
not compatible.

Proof. Let (X,[ > be a B-space, let ||, be any coarser non-
equivalent norm in it, let

£cConj X, || |>\Conj<X, | |

(cf. [12], p. 138), and let |z, = [#] s+ |&(2)]. A sequence ,eX such that
l#als — 0 and &(z,) = 1 contradicts compatibility.

(*) In this case |||, may be replaced by a convergence .2 of Fréchet. Let us
notice that almost all proofs of completeness of concrete linear spaces apply the above
general scheme. Propositions 5.10 and 5.11 are close to a theorem established by
W. Orliez in section 8.1 of [14], p. 1, and to Theorems 2.1 and 2.2 of Schiffer's [16].
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5.15. If Y is a linear set dense in <X, | [\> and of (X, | |1, |2 48
quasi-normal, so is (X, | {1, [ [2>- . . . .

More precisely: let £(4) be a continuous and strictly increasing fune-
tion defined for 8 > 0 and let £(d) - 0 as § — 0. Next, let ¥ be dense
in X with respect to || |;, and let ¥,¢¥ (n =0,1,2,...), [#.—¥o[.— 0,
Lim |y, < 8 imply [yo]2 < e(9). Then @,eX (n=0,1,2,..)), 20— 0] 2
50, lim||a,], < 6 imply |a]. < &(8).

P;c:of. Let us assume |@,— %), —~ 0 and [2,[, <6 forn =1,2,...
Choose & > 0 arbitrarily and then a &' such that 0 < &' < & and £(6+4")
< &(8)+ & —¢'. There exist y,eY (n=0,1,2,...) such that 90— ol 1
< & and |y,— (@-+¥o— o)1 < 1/n. Then

1 ’
gy < m [l et | < 840

Hence ||yo]; < &(6+9") < &(8)+¢&'—0" and ooy < £(8)+&'. Sinee &'
iy arbitrary, we have [ag], < &(0). .

5.16. Let || |, and | ||, be norms in X and let the functional (z) = ll] 5
be continuous on <X, | |, 4. . let |@,—aly — 0 imply |@,]. — |of. Then
M1 s

6. B-spaces as limit spaces

We shall consider Bi-spaces provided with a monotone total
sequence of homogeneous pseudonorms [af, < |af, <... and the norm

ol = 32 (lal.).

6.1. Bvery By-space <X, | |> is the S-limit OJ: a sequence (X, | |n> of
spaces isomorphic to B*-spaces and such that | [x 3 1

Proof. By 5.1. and by easy induction we can const.ruet a sequence
X,CX,C... of linear subsets of X such that X, contains exactly one
element of any coset of X/|[,. Obviously

ol = i’?’“«p(llavl!k)

is & norm in X, equivalent to the norm | |, and lim |z = |} for zeX.
Since Dxn is dense in (X, | [, we have <X, [[> =S(Xu, ] >
n=1 i
6.2. Lot us assume hypothesis (H). A Byspace <X, [i> is @
Bf-space if and only if it is the S-limit of a sequence (X | > of
F*-spaces isomorphic to B*-spaces.

17
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Proof. Necessity. Let |z, <[], <... be a sequence of B-norms
determining the topology of (X, | |>. First we shall prove the theorem
under an additional hypothesis — we shall assume that each norm | |,
is quasi-normal with respect to | [, (this proof is due to A. Pelezyriski).

Let (X,., | > = Compl<X, | |.>. By 5.10 and 5.12, we may assume
. X;2X,D... Thus, we have to prove that () X,, = X. Inclusion X C N X,

n=1
being obvious, let us consider any element #y¢(.X,,. For each » there
exists an element #,¢X such that o, — .. < 277" Hence |zy—a,),
< wg—Bpfn <277 for m <n and, consequently, [a,—|, < 27"
+27"1 < 27" Thus, {#,} satisfies the Cauchy condition with respect
to [ |, whence it is convergent to & yeX, <X,||> being complete.
Obviously, %, = y, whence zyeX.

Considering norms | |7 in X,, defined above we conclude that ||}
— la], whence <X, | [> = S, | [a>-

Now, we shall prove the theorem without the assumption of quasi-
normality. We shall define spaces (X, | [»> by induction. Let (X, ||
= Compl<{X, | |,> and let us suppose that <X,, | |,> has just been de-
fined. Let Z, denote the set of all elements # of X,\ X for which there
exist sequences {y,} of elements of X satisfying the Cauchy condition
with respect to the norms | ||, and | |, convergent to # with respect
to the norm | |, in X,. The norm | ||,,, can be extended onto ¥, =
=XuvZ, by continnity; let <(Xoq,| s> = Compl( ¥y, | fnsrd-
Obviously, <Xuy1,] |asa> is @ completion of (X, | [nyry and X, ~ X,
= Y,. The set X, ,\ Y, consists of elements z such that a sequence
zneX converges to z with respect to || |,,, and converges to another
element of X,, with respect to | |,,. Since ||#], < |#],.; for <X, the limit
ﬂ”zm"n exists for every sequence {z,,} satisfying the Cauchy condition

with respect to | |,., and we can define |2, for z¢X, ,\X. Obviously,
I I is & homogeneous pseudonorm in X,,,, and is & norm if and only
i X2 Xpyyy, ie if X, =Y,. We define |z on X,,, similarly.
oo o (=] o0
We have to prove that X = U1 hﬂXk =M UZX;. The inclusions
n=1 k=n =1 k=n
XC U NXxC M UX, are evident. Thus let us consider any element x,
belonging to infinitely many spaces iy Xgyy--. Where by <ky < ...
There exist #,eX such that [g,—a,],, <27, n =1,2,... Since {Zm}
satisties the Cauchy condition with respect to each morm | |[,, there
exists yoeX such that |, — yol, — 0 for n = 1, 2, ... The next argument
is analogous to that in the preceding case.

. Suff.icienc*y. Let <X,| > =S(Xn,]| s>, where (X,,| |.> are
1s.or‘norph10 tf’ B' -spaces. By axiom (H), all sets X ~ X, satisfy the con-
dition of Baire in (X;| |> whence, by the theorem on the category of
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subgroups ([2], p. 22), there exists », such that X = X, ~ X, i.e. XC X,,O .
Hence | ||, is defined on X and, by axiom (H) again, we have | [&] [, ,
which means that X is a Bg-space.

The postulate (H) can be replaced by an additional hypothesis in the
theorem, e. g. the above proof is also valid for the following statement:

6.3. 4 Byspace <X, | |> is @ Bf-space if and only if there ewist
F*spaces (X, || |»> such that X C X, | | & | | and such that every space
(X, | |n> s isomorphic to a B*-space.

A comparison of this theorem with the former one shows the impor-
tance of hypothesis (H) or of a similar axiom in such eases. The next
statement shows that (H) is essential in 6.2.

6.4. Any Bj-space is the S-limit of a sequence of F*-spaces isomorphic
to B*-spaces.

Proof. Let || |1, | 25 ... be & sequence of psendonorms determining
the topology on X and let | |* be any homogeneous norm in X; such
2 norm always exists, it may be constructed for example by an embedding
of X into a Hilbert space with a suitable power of Hamel basis. Writing

ol Sﬂl’g—k | ol ,1'V§*
fals = },._=,1~' o (ol + " fl]
we obtain ||z] = Lm o], for zeX.

6.5. Neither S-limit nor S-limit of a sequence of locally convex
F*-spaces need be locally conver.

Bxample. The space X of all real sequences & = {¢;,1,, ...} such
that o] = 3 [t,/"* < oo, X, — the subspace consisting of the sequences

E=1

such that ¢, =0 for m >n, and X, = UXH.

n=1

7. Decreasing sequences (X, 2 Xpi1, {ila31ks1)

In typical cases finer norms correspond to smaller spaeces, although
] 131 |, does not imply Compl<X, | {,> D Compl{X,]{,>, in general
(compare 5.4, 5.10, 5.12). Therefore, when we consider decreasing
sequences
X, DX,0X;D...,

we shall assume thé.t the relations between the norms are converse:
(PR PR P

Then G(X,) = (1) X,; moreover, | {5 | [, is often valid for n =1, 2, ...

n=1
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The following question, related to the preceding, arises naturally.
Given a linear space X and a sequence of norms in X such that |af,
<Jaly < ... for all zeX, let (X,,| [y = Compl<X, | |,>. What are
the properties of & (X, | [.>?

N—>00

70, Let {X,, | |n> (0 =1,2,...) be F-spaces such that
(i) XnDXM-M ” Hw'g” ”M-l for ’l’b=1,2,...,

i) Xo= NZXn, 2], = lim]az], < oo for zeX,,
N=1 N—00

(i) [ losllafor n=1,2,..
and satisfying at least one of the following conditions:

(wy) | |» are homogeneous,

(ug) <Xo, | o> is complete,

(ug) [l < Jallo for @ eXy,

(u,) there exisits a dense subset Y of (X, | |lo> such that, for every
weY and ¢ > 0, there exists a sphere K, = {yeX,: o —y|, < 6,) and an
indice N with the following property (3): if z¢K, and n > N, then

[llelle— el | < &

Then the norm
fol* = X' 2l

s equivalent to the norm | |, on X, (8).

Proof. First, we shall prove that the space (X, | |*> is complete.
Let @, X, and ||#,—,|* = 0 as n, m — oco. Then #,¢X, forn =1,2, ...
and [lz,— @], — 0 a8 n, m — oo. Consequently, by the completeness of
(X1, | |, there exists & y,¢ X, such that |@,—y,; > 0 as n —+ oo. Next,
<X;, | |2> being complete, there exists a y,eX, such that |&,—ys).—> 0
as 7 — oo. Since X; D X, and | |, 3] {2, . belongs to X, and [z,—y|.
— 0, whence y; =,. Arguing similarly we prove that y,eX; and
Hm|w,— ) =0 for k=1,2,... Hence y,¢X, and |z,—vy,[* =0 as
N—->00

# — oo. By (iii), the norm | |* is coarser than | [|,-
Now, let us consider conditions (u,)-(u,) separately.

(*) In other words: there exists a dense collection of spheres in (X, || [l;> such
that the convergence [u|ln~> |lzll, is uniform in each sphere separately.

(*) This theorem establishes that in typical cases the intersection of a decreasing
sequence of B-spaces is a Bj-space, and it is not a B*-.space excepting trivial cases
(cf. Mazur and Orliez [11], p. 189). It is close to a theorem on decreasing fields of
summability of & sequence of matrix methods (Zeller [18], p. 52).. Some results of
this type have been proved by Gorin and Mitiagin [8].

icm

Linear metric spaces 261

If (u,) holds, then the functional
Uo(@) = |z, = lim[af, = lim T, (x)
N—00 N—o0

is the limit of & sequence of convex continuous functionals and is con-
tinuous on (X, | |*>, by @& theorem of Mazur and Orlicz [10], p. 157,
th. 6.1; see also [15]. This meens that | [, ~ || |* (cf. 5.16).

If <X,, | o> is complete, | |, ~ | |* follows by Banach’s inversion
theorem.

Next, we shall prove that (u,) implies normality of (X, | o, | |*>-
Let #,eX, for m =0,1,2,..., let Je,—x]* =0 and |z,j, <1 for
m=1,2,... Then |z,], <|o.]o <1 for m,n =1,2,..., whence [z,
<1 for n=1,2,... and |@], = lim|w,], <1. Thus, | [,~]|* by

N—>00

5.10 and 5.11.

Finally, condition (u,) implies normality for & dense set of limits,
whence, by 3.15, ]| |, ~ | |* as in the preceding ease.

7.2. If conditions (i), (i), (iii), (u,) hold, then | |, ~ ] [o for almost
all .

In other words, these conditions can be satisfied only if X, = X, .,
for » > N or if X, are decreasing subspaces of 2 fixed space, admitting
gsome change of norms to equivalent ones.

This follows from 7.1. (ef. [11], p. 194).

7.3. Let <X,, | |.> be B-spaces, X, O X, ,, and ||, <|@|n., for
weX,., and forn=1,2,...,and let (| X, be dense in each space (X, | [ln>-

n=1
Then either X, = X,.1 and | |, ~ | |ne1 for almost all n or there ewists
o0

an element wye () X, such that im |z, = oo.

=1 N—00
Proof. Let |z, = lim|z], < oo for 2ll e X, = (N X,. Then (X, | |o>
= &¢X,, | |.> and, by 7.2, | |a~]lus 2nd X, =X, for a >N,
since the spaces under consideration are complete and contzin 2 common
dense subset.
7.4. Under the hypotheses of 7.1 we have

<Y07 " “u> = 6<Ym H “n>’

Y being any linear subset of X, and Y, being its closure in (X, | >,
n=0,1,2,... In particular, <Xo, | |o> = ©LZy, | |n> where Z, is the
closure of Xy in {(Xp, || |a>-

Proof. Obviously, ¥,C¥,C Y, ; and ¥,C(Y,. To prove ¥,
=Y, let us consider any element z¢(" Y, . For every m there exists an
element #,,¢¥ such that |z,—={, < 1/mfork =1,2,..., m. Consequen-
tly, |@n—a|* - 0 as m — co whence ||z, — =], — 0 by 7.1, and se¥,.
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7.5. The completeness of the spaces (X, | [.> is essential in 5.1,
even if (X, || [o> is complete.
Example. L, | o> = & Loy || |-
D00

7.6. The following generalization of Theorem 7.1 to the case of
groups @, provided with metrics on(%,y) (non necessarily invariant)
may be proved. If the groups (G, 0n) are complete, Gy, D Gy and 0,3 0ny1,

and if the group Gy = ﬂGn i complete and separable with respect to the
n=1

metrics
ool@, y) = lim g, (2, ¥)
N—>0Q

or if (G, g0y s separable and (@, ) S oupa(w,y) for @, yeG,y, then
the metrics g, and

(=]

e, y) = D 27p(0al@, y))
n=1

are equivalent.

The proof is analogous to that in 7.1; the assumption of separability
enables us to apply Banach’s theorem on the inversion of one-to-one
homomorphisms (cf. [3] and [9], p. 399).

73. Let X, DX, for n =1,2,..., let ¥ be a set dense in <X, | o>

Tei o) = lim|a|,, for @Y and let | |, be wniformly coarser than | |o. Then
N—p00

lele = lim|ja), holds for every @eX,.

78. Let (KXo, | o> = <Xy | |n>r Xo= NZX, and let (Xo,| o> be
complete. Then condition (u,) is satisfied.
Proof. Writing

By, = (peXy: ||olo—|olm| < ¢} and =N B,

kz=m
we apply the Baire category theorem.

79. Let (X, | o> = <X, || 025 Xo = N Znsy [ a3 o, 168 <Ko | o>
be complete and let | ||, be homogeneous. Then there exists o constant K such
that )

lalln < o

Proof. This is a consequence of a theorem of Mazur and Orlicz |

([10], p. 157) as well as of 7.8.

7.30. The assumption of completeness of (X, | [o> in
of the uniformity of relation | |, 3| [|o in 7.7 are essential.

Example. Let X be the class of null-convergent sequences & = {@,}
and let X, the subset of all sequences with almost all z,, equal to 0, and let

oo = sup @,

7.9 and that

”m“‘n = ma-X(IWHM | @) -

icm

R
[~3
o

Linear metric spaces

Then || [}~ flo and o, < |2, < njs], (n =1,2,...). For every zeX,
the relation lim|z{, = |o], is fulfilled, but lim]], = oo for some z in X.

7.11. It may happen that any two norms | [, || |, are uncomparable
(n #m, n #0, m # 0) although

X =06(X,), X, 0X,, 20X, and f[[.8[oforan=1,2,...
Example. X = X, = (<0, 1), |z, = max|z(?)],
<<l
nj(n+1) n
|, = (t)|dt -+ ma 0 .
Il = [ el X{lw ¢ P 1>}

7.12. The following example shows that S(X,) = Xy, | o2 le,
I s~ s> Xo D Xpyy D X, do not imply | |n ~ | [l for any .

) k3 =)
Example. X =1, [z = X lol, lola = 3 1tl+( X 10l
=1 k=1 k=n-+1

713. Let X, DX,D
weX, . Then the space

. be P-spaces such that |af, <|2]... for

Cr(X,) = {1’ Te Flem sup |z, < oo}

is complete with respect to the norm ||, = sup|z],.
n

T If | |. (n = 0,1,2,...) are norms defined in a linear space X
and @, <@l ond |af, = lim}xl,, then the sequence of completions

<Xn7 ” Hn> = OOmIﬂ <X7 “ Hn>
is not S-convergent to (X, | o> = Compl<(X, | o> even i X, D X,
D X,, unless the norm | |, is equivalent to the norm | ||* defined in 7.1.
However, by 7.7, the convergence of norms in X implies the convergence of
extended norms in the completion of the limit space (X, | {o>-

8. Increasing sequences (Xy C Xp1, | lln & [l lns1)

In this section we shall consider sequences {X,} with X,C X,

whence & (X,) = UX“ In typical cases the condition [ |, & | [as: 1S

N—+00 N=
also satisfied, and often we have | [, & o for » =1,2,... However,
just as in preceding section, in some cases We may assume X C X, and
Tlasllo foxr n=1,2,...
The following theorem is of Jmportance in further considerations (7).

(") This theorem was formulated in various special cases. E. g. it is closely
connected with a theorem stating that the union of the sequence of fields of summa-
bility of a sequence of methods cannot be the field of summability of a method (cf.
{18], p. 30 and 51).
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8.1. Let <Xy | Ja> (n =0,1,2,..
conditions:

(i) X, C Xy ond | [ln& o for n =1,2,...,

)Xoy} o> = © s | >

Then there exists N such that X, = X, and | [, ~| o for n> N.
Thus, if X # Xpy1 for almost all n, then S (X,,) is necessarily non-complete.

Proof. Given fixed # (n > 1), let us consider the identical operation
U(z) = @ as an operation from (X, | |.> into <X, | |o>. U is linear, so
either X, = X, or X, is of the first category in (X, || |,>, by & theorem
of Banach ([2], p.38).

Now we shall show that the asumption X, 3 X, (n, <n, <..))

.) be F-spaces satisfying the following

leads to 2 contradiction. Indeed, since
oo o0 (=] oc
= ﬂ U X, = U ﬂ Xﬁy
m=1 n=m m=1 n=m

every element of X, belongs to almost all X,, whence X, C UXHL Con-
k=

sequently, if X, were of the first category, X, would also be such in
gpite of the completeness of X,.
It X, = X,, then | |, ~|]o by Benach’s inversion theorem.
8.2. The preceding theorem may be generalized as follows:
Let <Gy, 0, (0 =0,1,...) be a sequence of complete separable metric
groups such that
G, DG, and gy3 0, for mn=1,2,...

and (Gq, 00> = S Gy, 02> Then G, = Gy and g, ~ g, for n> N, unless @,
T—>00

are open-and-closed in (G, go» for n =1,2,...

The proof is analogous to thet of 8.1. It is based on the following
theorem of Souslin (cf. [9], p. 396): if D is a one-to-one continuous map
from a complete separable metric space X into any metric space Y, then @
transforms X onto a Borel set in Y ; moreover, it is based on the thedrem
.on the category of subgroups and on Banach’s theorem on the inversion
of homomorphism in separable metric groups (see [2], p. 22, and [3]).

83. Let <(X,,|l.> (n=0,1,...) be F*-spaces such that X, C X,
and | o o for n =1,2,... and <X, | |o> = S ( Xy, | . Neat, let Z

N OO
be a subset of X, dense in infinitely many spaces (Xn,,| |u>- Then Z is
dense in (Xq, | o
In particular, if (X, H lny> are separable, so is <Xy, || [lo>-
84, Let <X,,|| > (n=0,1,2,...) be F*-spaces such that

XCX,=U N X =

n=1 k=n

A U X

n=1 k=n
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and || & o for n=1,2,... and such that |||, is finer than | [4im
uniformly with respect to m, i.e.

21 Il

no >0 6>0 m  TeXpnXpog

lolh <8 2 f@lam <e.

In particular, this last condition is satisfied if |,
seX,n Xy, n=1,2,...

Next, let Y be a subset of X, dense in infinitely many spaces (Xn, || |n,>
and such that

2 ||olpy for

lylo =lim|yl, for all yeX.

Then ||a|, = im||az], for all zeX,.
N—>20

Proof. Let ze¢X,; then weX,, for a certain %. Choose an arbitrary
& >0 and then 2 ¢ > 0 so that ze X, ~ X, m > ny, J2] < § imply |2]m
< ¢f3 and ||2]), < &/3. Choose ye¥ so that |y—u],, < é; then y—zeX,,
for m > my, |y—a]. <3 for m =max(mg,n;) and [y—u), < &/3.
Finally, choose N so that ¥ >, and [{yje—lylnl < e/3 for m > N.
Then

lalo <lz—ylotlole  and  —oln <lo—yln—]yln,

whence alo—[el < Jo—ylo-+]o—ylnt W—Jylml <& for m>N.
Similarly o], —|ol, < &; consequently, |z, — |al, as m — co.

A theorem anglogous to 7.9 is mnot valid in the case || [|.& | o»
namely:

8.5. There exists a Banach space <X, || |o> and a sequence | |, of B-norms
in X such that | [n~]lo for n=1,2,..., lo]. <[z, for zeX and
n=1,2,.., lim|z], = |al, for 2eX and such that the condition

lelo < K|, for all zeX and n=1,2,...

is satisfied for no constant K (independent of & and n).
Example. X = 00,1, {z], = max|z(t)],
<01y

@ = fmin{lwi—wl: 1<i<j <k},

where wy, w,, ... is @ sequence of 2ll rational numbers of (0,15,
wp+ag

— z(t)|dt.
n+l L<§ ay i la ()

laln = lallo+——

1
n41
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9. Monotone one-parameter classes of Banach spaces

This section is devoted to the study of the following question: given
a family {X,} of B-spaces depending on a parameter P, let us egtablish
a natural definition of continuity of this family with respect to p. The
usual Heine criterion p, —p implies the convergence of Xy, to Xy in a suit-
able sense is not appriopriate, since theé definition of convergence should
be different for p, p and for p,Np.

Such a definition of continuity should be based on the statements
of the preceding sections, especially on 7.1 and 8.1; a requirement of too
restrietive conditions would reduce us to the trivial case of isomorphic
spaces. That being excluded, neither the union of an increasing sequence
nor the intersection of a decreasing sequence of B-spaces is a B-space.
In the first case there is a non-complete space, in the second — a B,-space
non-isomorphie to a B*-space.

Such considerations and an examination of a number of natural
examples enable us to state that the following definition of continuity
is the most appropriate (8).

Let {X,},cpes be a decreasing family of Banach spaces. Through
this section we shall assume the following conditions:

(i) X,CX, for
(i) &l for

We shall say that the family {X,} depends on p continuously at
a point py (a < py < B) if the following conditions are satisfied:

(er) [ @ypre > |%lp, (as &% 0) for ze UXpoH,
(€)  [#lpy-e > |2, (as & 0) for wemXpo—u
(cy) UXIMB is dense in (X, | Hpo),
(ed)
(

P >p,

P >p.

Cq) Xpo coineides with {w: @e () Xy . 1im\[m||po_e < oo},
&0 &0

¢;) Xpo is dense in ﬂX,,D_E with respect to the morm
>0

lal* = 2 27 ([@]g—e,)

where a < py—e <Py < B and e, 0.

) (*) This definition is formulated only for monotone classes; the case of an
increasing family reduces to the case in question by the substitution of parameter
—p for p. On may introduce some generalizations, but the general definition cannot
be formulated in such a simple and convincing manmer.
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If conditions (c,), (c,) and (c;) are satisfied, {X,} will be called
semicontinuous from below at py; if (c;), (es), (¢s) and (c;) are satisfied,
{X,} will be called semicontinuous from above at p, (°).

Continuity in & closed interval {a;, ;> means continuity at every
point of the interior, semicontinuity from above 2t §, and semicontinuity
from below at «,. B.g. the family {L,} is continuous for 1 < p < co.
Qontinuity from below does not imply continuity from 2bove, and con-
versely.

That definition retains traditional properties of continuity. E.g.
it {X,) _1epe 18 B decreasing family and if {Xp} jcpeo 804 {Xphocw<a
are continuous on the intervals (—1,0) and {0, 1), separately, then
{Xp} 1<p<a 18 continuous on <—1,1>. Moreover, & semicontinuous
family is determined by the spaces <X1,, [, defined for & dense set of
values of p.

9. Let Y be a subset of ﬂXp dense in each space <X, | |p
such that

(v) lzl»

and

/

= limla|, for oll XY and a <p < f.
g0

&y for p < p’. Then {X,} depends on p

Next, let us assume o], < |
continuously whenever (c,) holds.

Proof. Theorems 7.7 and 8.4 state that convergence of norms in
2 dense subset implies convergence everywhere; this yields conditions
{¢,) and (c,). Conditions (c,) end (cs) are evident.

The family {H5} (cf. [13]) shows that the hypotheses of 9.1 do not
imply (e4)-

9.2. The continuity of {X,} does noi imply the emistence of a common
dense subset of all spaces <Xy, | |p>-

Exanple. Let Z, (1 <p<2) be the space of all measurable
functions in (—oo, co) vanishing outside the interval (0,1/p) and such
thet

oo
1
leh = ( [ lw@Pa)” < co.
—00
Obviously, conditions (i)-(ii) and (eq)-(c5) are satisfied although
each space Z, is nowhere dense in (Z, | [> for p’ <p. The existence of
& common dense subset is very usefnl in many ecases. One may also

require a more restrictive condition: for every ze () X, there exists
a<p<p

a sequence @, ¢Y such that |#,— 2|, — 0 for all p (a < p < f). This con-

(°) The terms left-continuous and right-continuous are not convenient, for they
are not invariant with respeet to the replacing of p by —p.
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dition is satisfied, for example, for the set of step-functions in the spaces L,
(1 <p < co), ngmely the Haar orthogonal expansion of any function
of L, is convergent to the function in the metric | [,. Similarly, this
condition is satisfied by each of the classes {S,}, (W}, {B,} (1 <p < o)
of almost periodie functions in the sense of Stiepanoff, Weyl and Besico-
viteh respectively (the Féjer-Bochner trigonometrical polynomigls of
an almost periodic function are convergent in any metric | |5, |7, ] |Z
for which the function can be approximated by trigonometric polyno-
mials).

9.3. Let <X, 1] o> be @ mormal y-complete (cf. [1]) two-norm
space (with both morms homogeneous). There exists a continuous family of
B-spaces (X, | |,>, 0 <p <1, such that (X, | [o> = Compl<X,| |Io>
and X, = X.

Proof. Let (Xy,| [op = Compl<X, | o> end let <X,, [ |,> be the
space X, with

Jol, = tat ol ool vex| for 0<p<1,
X with |af, = [|o], for p = 1.

Then | |, are mutually equivalent for 0 <p <1 and ||, ||,
as pAl (see [17]). Let <Z,||.> = 6<Xp, | lp>. One may easily verify

that <Z,| |1, ] o) is normeal 2nd, for every 2eZ, there exists a sequence
#,eX such that |[@,—2],— 0 and |a,],— Hzl]1 Hence Z = X, which
establishes the continuity of {X,} at p =1.

9.4. Let {X,} be semicontinuous from below in (a,p). If for every
pela, B) there ewist ' such that p > p’ > a and X, is dense in Xy, | [
then every space X,. is dense in {(Xg,| o> for any ¢ < q".

Proof. If it were not so, there would exist numbers ¢’ 2nd ¢'' such
that a < ¢’ < ¢’ < f and X, is not dense in (X, || [,>. Obviously, if
e <P <Py <Ps<fyif Xy, 15 dense in (X, | [, and if X, is dense
In (X, [ [|p), then Xy, is dense in Xy | nzz]>7 for | 5, 31 loy-

Thus we may assume ¢’ to be fixed and ¢’ to be the g. 1. b. of numbers
¢ such that X, is dense in <X,, || >, which contradicts assumption (cs)-

9.5. Let ppxpy. If Xy is dense in each space <Xy, | |5, then it is
dense in () Xy, with vespect to norm | |* defined above.

9.6. Let {X,} satisfy conditions (c,), (c,) and
(W)

lolp <oz for p<p.

‘We shall consider the following spaces: the space X of all elements
of (N X,_, such that sup|z|,_, < co and the closure X, of | X, in
>0 >0 >0
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{Xps | lp>. X3 is & Banach space with the norm

lolp = supje],_. = limaf, ;

X, and X, are closed subspaces of <X;,| |,>. Moreover,
(X~ =X (Xp) = X5

So either class determines the other uniquely.
In [13] two typieal examples of such spaces are considered:

H, = (Hp)*, Hy = (H," AC, = (0V,), Vp = (40,)".

If there exists a countable set dense in each space <(X,,| |,> and
if (w) holds, then (¢,) and (e,) are satisfied except for & countable set
of values of p. However, it may happen that (c,) is not satisfied by any p,
as examples {Hy} and {40,} show.

9.7. Let X be a linear set, | |, (a < p < B) a family of norms defined
in X and satisfying (c1), (co) and (w), and let || |, be quasi-normal with
respect to | |l for p < p’. Then the family

Xf = (@) Compl<T, | [5-5, Suplaf,, < oo}

and

and

is semicontinuous from above and the family {X;} of closures of the spaces
{@: a:er(JompI X, | loed}
82>

is semicontinuous from below.
9.8. If families {X{,cpep, 7 =1,2,...
wously, so does the family

, depend on p contin-

(EPXEPX )

consisting of all sequences © = (%, ®s, ..

D) with #,¢XY and |,
= sup|, | < co. |

9.9. Given a family {X,},.,., depending on p continuously and
& linear set ¥ C (M) X,,, it may happen that the family {¥,} of closures

a<B<f
of Y in the spaces <X,
uous from below.

Example. The set Y of all continuous functions in <0, 1> and the
spaces IP, 1 < p < oo, the family {¥,} is not continuous at p = oco.

s I l> does not satisty (c,) and is only semicontin-

References

[1] A.. Alexiewicz and Z. Semadeni, Some properties of two-norm spaces
and a characterization of reflewivity of Banach spaces, Studia Math. 19 (1960),
p. 115-132.

[2] 8. . Banach, Théorie des opérations linéaires, Warszawa 1932.


GUEST


270 7. Semadeni

i y i ch. 3 (1931), p. 101-113.
31 — Uber metrische Gruppen, Studia Math. 3 ( -
[[4]] O. Bessaga and A. Pelczyfiski, 4 class of By-spaces, Bull. Acad. Pol. 8ci.
5 (1957), p.875-377.
? 0[5)] % Borsuk, On some melrisations of the hyperspace of compact sets, Fund.
Math. 41 (1955), p. 168-202. B
61 J(. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF),
Ann. Inst. Fourier Grenoble 1 (1949), p. 61-10L.
" [7] N. Duntord and J.T. Schwartz, Linear operalors I, New York 1959.
[8] BE. A. Topyx un B. C. Murarun, O cucmesa HOpM 6 CHEMHO-HODMUDO-
sanHoM npocmpancmee, YCI. MAT. HAYR 13 (1958), 5 (83), p. 179-184.
[9] C. Kuratowski, Topologie I, Warszawa 1948. . )
[10] 8. Mazur and W. Orlicz, Uber Folgen linearer Operationen, Studia Math.
4 (1933), p. 152-157. .
[11] — Sur les espaces méiriques linéaires I, 1b1dem 10 (1948), p. 184.-208.
[12] — Sur les espaces méiriques linéaires I1I, ibidem 13 (1953), p. 137—179:
[18] J. Musielak and Z. Semadeni, Some classes of Bunach spaces depending
on a parameter, ibidem 20 (1961), p. 271-284. . § i
[f4] W. Orlicz, Linear operations in Saks spaces (II), ibidem 15 (1955), p. .1-2:).
[15] W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals
on bases, ibidem 16 (1958), p. 152-157. : i
[16] J.J. Schaffer, Function spaces with translations, Math. Annalen 137 (1959),
p. 209-262. . .
[17] Z. Semadeni, Extension of linear functionals in two norm spaces, Bull. Acad.
Pol. Sei. 8 (1960), p. 427-432. . )
[18] K. Zellexr, Theorie der Limitierungsverfulren, Berlin 1958.

Regu par la Rédaction le 9. 7. 1960

icm®

STUDIA MATHEMATICA, T. XX. (1961)

Some classes of Banach spaces depending on a parameter

by

J. MUSIELAK and Z. SEMADENTI (Poznat)

In this paper we shall consider the following classes of Banach
spaces: ‘

H, —functions satisfying Holder condition with an exponent P,

('V, —continnous funetions with finite p-th variation,

40, —absolutely continuous functions of order p,

8, and B, —almost periodic functions in the sense of Stepanoff and
Besicovitch, respectively,

M, —strongly p-summable sequences.

These classes may be treated as families of Banach spaces X, depend-
ing on & parameter p. In each of these classes there are known inclusions
between spaces X,, X, and inequalities between norms || |, | ||,- for
p <p'. We shall consider the following problem: given a sequence p,
convergent to p,, establish connections between the corresponding spaces
Xp, and X, . This problem is closely related to the problem of the continu-
ity (suitably defined) of the spaces X, with respect to the parameter p.

These problems are considered from a general point of view in
paper [8], where, in the following definition, the limit & (X,) of a

N—>00
sequence X, of linear metric spaces is introduced. (X, | [l,> is termed
S-limit of <X, | [n> (written (X, || o> =m6 {X,, | l»>) if the following
> 00

conditions are satisfied:

10 X, and almost all X, are subspaces of a linear space,

20 X, converges to X, in the sense of the theory of sets (i.e.

o0 00 =] o

‘XD = ﬂ UXn U ﬂ Xy

k=1 n=Fk k=1 n=k

30 [z, = lim |, for all weX,.
N—00

Next, we write <X, || o) = <] (X, lwy it © (X,) is dense in
N—00 N0

{Eoy [ o>-
Let {X,}ecp.; be a family of Banach spaces (X,,| |,> such that
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