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Some classes of Banach spaces depending on a parameter

by

J. MUSIELAK and Z. SEMADENTI (Poznat)

In this paper we shall consider the following classes of Banach
spaces: ‘

H, —functions satisfying Holder condition with an exponent P,

('V, —continnous funetions with finite p-th variation,

40, —absolutely continuous functions of order p,

8, and B, —almost periodic functions in the sense of Stepanoff and
Besicovitch, respectively,

M, —strongly p-summable sequences.

These classes may be treated as families of Banach spaces X, depend-
ing on & parameter p. In each of these classes there are known inclusions
between spaces X,, X, and inequalities between norms || |, | ||,- for
p <p'. We shall consider the following problem: given a sequence p,
convergent to p,, establish connections between the corresponding spaces
Xp, and X, . This problem is closely related to the problem of the continu-
ity (suitably defined) of the spaces X, with respect to the parameter p.

These problems are considered from a general point of view in
paper [8], where, in the following definition, the limit & (X,) of a

N—>00
sequence X, of linear metric spaces is introduced. (X, | [l,> is termed
S-limit of <X, | [n> (written (X, || o> =m6 {X,, | l»>) if the following
> 00

conditions are satisfied:

10 X, and almost all X, are subspaces of a linear space,

20 X, converges to X, in the sense of the theory of sets (i.e.

o0 00 =] o

‘XD = ﬂ UXn U ﬂ Xy

k=1 n=Fk k=1 n=k

30 [z, = lim |, for all weX,.
N—00

Next, we write <X, || o) = <] (X, lwy it © (X,) is dense in
N—00 N0

{Eoy [ o>-
Let {X,}ecp.; be a family of Banach spaces (X,,| |,> such that
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X,C X, and |a], > ||, for p > p’. We say that this family is con-
tinuous with respect to p, if the following conditions are satisfied (*):

10 1f wel ) X, and if p,up, then [af, = hm”“"upn’

>0

2 if we () X,p_, and if p,p, then |z, = hmum“pn,

>

30 | JX,,, is dense in <Xy, | |,>,
>0
4 X, is dense in () X,_, with respect to the F-norm

e>0
Z 27" (||| ,,) Pn

where @(u) = %(1+u)"* and p, is a fixed sequence such that o < p,
<p:<..and p,—>p,

50 {@: e () Xp_y sUD|2]p. < o0} =
>0 >0

X, for all p (& <p < f).

Moreover, we consider two definitions of semicontinuity. If con-
ditions 10, 20, 40, 5o are satisfied, then the family (X,,| ||,> is said to be
semicontinuous from above; if 10, 20, 30 are satistied, <X, | |,> is said
to be semicontinuous from below.

Conditions 10 and 3° mean that (X, [,> = _c? (ZKpior | lpsede A
&0+
the same time, the space {()Xp_.,| [s> is 2 Byspace and conditions
>0

20 and 4° mean that

<moXp-e’ ! HD = ne <Xaan? H “?1> where “‘0“3» = ;Z 2"“90(“90”%)7

Xy, ll ”p> = Co'(’) (X, ” “D—s>1 <QX17—H H “;> =6 Xy, ” H?L>'
e + E> N—00

Auxiliaries. The following well-known lemmas are very useful in
further considerations.

0.1. Given sets X and T, let us suppose that to every pe(a, B) there
corresponds a family {f, (@) }IET of functions defined in X, such that

1) fp,r(w) <fp',1(m)
for all xeX, veT, p < p' and such that
) Pn—>D

‘i')’ﬂ@ues fzaﬂ,r(w) - fl’,‘z (a;)

(%) If the inclusions for X and the inequalities for || ||y are opposite, the de-

finition is analogous.
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for all 3eX and veT. Then, for any fized xcX, the function
3) (D) = Sup{f,.(2):7<T}

s non-decreasing and left-side continuous with respect to p.
More generally, R being a o-ideal of subsets of T with T ¢R, the function

¢5(p) = sUpg fp .(2)
T

is also non-decreasing and lefi-side continuous in (a, f).

In this case (1) and (2) are assumed to be satisfied for R-almost
every 7eT and supyg(r) denotes the R-essential supremum, i.e. the

T
least upper bound of numbers o such that the set {reT:g(z) > a} be-
longs to NR.

Proof. The monotony of gg(p) being trivial, let us suppose that
Pusp and a <p < f. Obviously, the limit 4 = limgy(p,) exists and

00
A < py(p). Since A = supq:m(pﬂ), for each » there exists R, eR such that
Spual®) <

—> fp(#) for 7e T\ Ry, hence f, .(z) <4 for reT\UR Since UR eR
we have gg(p) < 4. n=0

0.2. Let us suppose that T is a compact topological space and Jo (@)
are continuous on T for any fized pe(a, f) and zeX. Then, assuming (1)
and (2), the function @(p) defined by (3) is continuous.

Proof. We have to prove that p, p, implies @(p,) - ¢(p,) for any
fixed zeX. Since fp (7)™ Juoe(@) and fp .(#) are continuous on 7'
(n=0,1,2,..)), by the theorem of Dini f, .(#) converge uniformly on
T; hence supf271 )} tends to supfp“,(m

A for rET\R Next, there exists ROECR such that fpn,

0.3. Let X be a linear class of bounded functions x(t) defined on an
arbitrary set T, containing constant functions and such that if <X and
p >0, then |z\PeX. Next, let M(x) be a functional over X, satisfying the
following conditions:

m(m+y) <

0 < w(f)

@) +M(y), Miz) = M(@) for 43>0,
<y M(y),

9_3_2(1) =1, where 1 denotes the constant function = (f) =

implies €N (z) <

Then, for any fived zeX, the functions
M)

are continuous for p > 0.

and  u(p) = |p.(p)I*

Pu(p) =

Studia Mathematica XX L . L et 18


GUEST


274 J. Musielak and Z. Semadeni

Proof. It suffices to show that ¢,(p) is continuous whenever
|2()] <1 and p runs any interval (a, f) with §> a>0. Let us choose
e> 0 and then & > 0 so that a <p < § and |p—g| < & imply |u*—uf|
< e for all 0 <wu <1 Then Hm(t)lp—\m‘(t)m < ¢ for all teT, whence
0 < M(Ja?) —M(jal?) < M(JafP~ [al") <M (e) = e for a<p<q<p+s
<.

1. Spaces of functions satisfying Hélder conditions.

1.0. Let H, be the class of all real functions «(¢) defined in <0,1>
vanishing at ¢ = 0 and satisfying the Holder condition with the exponent p,
i. e. the condition

lw+h)—a)| <ERP  for all  1,i4+hed0,1),

K being a constant depending on #, and 0 <p < 1.

Next, let HS be the subclass of H, consisting of all functions (t)
satisfying the condition #(i-+h)—a(f) = o(h"), i. e. such that
sup |@(t+h)—a(t)].

0i<C1—R

lim A Pw(z,h) =0 where wy(z,h)=

0y

The following inclusions are well-known:

H,CHy,CH, for p<p.

H, is a flon-separable Banach space with respect to the norm

Jaly = sup |o(i+h)—a®)|h? = sup b (2, h),

sap
0<hgl

0<h<l 0<i<<l—-h
and HY is closed in <Hp, | 5>
1.1. The space H, (i.e. the space of functions satisfying the usual
Lipschitz condition, vanishing at 0) 4s dsometric with the space Ly, of oll
essentiolly bounded measurable functions in (0, 1>. Indeed, every #zeH,
is absolutely continuous, whence

Jo@E M sl _ sup |z’ (1)) -

i
' H __
z(t) = Bfm (vydr and |a|f = s&p = o

Thus
14

(4) Uy) = [y(x)dr

0
establishes a one-to-one linear and norm-preserving map of L, onto H;.-
Tt is easily seen that U transforms the step functions onto the polygonal
functions. Hence no function # = U(y) with y non-equivalent to any
Riemann-integrable function cannot be approximated by polygonal
functions (in the norm | |).
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. Now, given two functions x, yeH, and a point 4y, if »(t) is differen-
tiable at 7, and if y(¢) has an angle point at #,, i. e. if

Vel —y ) — tim BT =Y) ) —y(e—)
B0y hs0y

=2b %0,

th(.an le—y|F = b]. In particular, a polygonal function with an angle
poglﬁ at a non-rational value of ¢ cannot be approximated (in the norm
I i) by polygonal functions possessing angle points at rational values
of { only.

L.2. The set of all polygonal funciions vanishing at 0 is dense in every
H
space <H,, | |z> where p < 1.

Proof. The map (4) generates in the space L, the norms

Wz =17y = sup 17"

0<h<1

sup |Uy(t+h)— Ty(1)

(I 20

= sup h? sup
0<hl 0<i<I~R

t+h
|[ y0ax!, where 0<p<1.
. .

We have to prove that the step functions are dense in <L, 1>
for 0 < p < 1. The inequality '

i+h
(5) sup AP sup | dr| < n-? = SPyI¥
Sup, N tf y(x) r!\oiuhgdt e“sitsgply(t)l &yl

holdsl for every yeL, and 0 < § < 1. Let us consider the characteristic
function y(¢) of a measurable subset of <0,1). Choose ¢ with 0 <& < 1
and an integer n > 2/5 where 6 = £'/0~%), Write A, = (k—1)/n, k/n) and

1
0 = 3 fy(‘r)dr for  tedyand k=1,2,..., 0.
d ) ‘,
Then [z—y|¥ = esssup |2(f) —y(#)] < 1. Since
o<<i<l

[ —ymide = o,
Ax

we have

t+h Fy 253
If @—y@ar] =] + [ <2 jeylf <> <
i o ko P P ’

where k, = E(nt)+1, ky, = E[n(t+h)]. Then

i+h
(6) sup h~* sup |f [z(r)—y(r)]dri < &2,
d<h<1 0<I<I-R 7}

Finally, by (5) and (6), [s—y]J < 8?7 ==
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Since linear combinations of characteristic functions are denge in
(Do | 17> and [y]7 > |lyly, the step-functions are dense in (I, 15>
for every 0 <p < 1.:

1.3. The set H, is dense in <Hy, | 5> for every 0 < p < 1.
Proof. Given z<H), let us write

t+1/m 1n

%, (1) =nf m(r)dz—nf x(t)dr,
3 0

where #(f) = #(1) for ¢ > 1. Obviously, #,¢H, and

1yn

() —a(t) = n [ [8(t-+7)—a(t)—o()]dr,
0

im

p(®,—o, h) =n sup f [@(i+h-+1)—a(t+h)—x(t+ 1)+ 2 (@)]dz]|.

[EE< B/} 0

Given & >0, let us choose an h, > 0 such that |@(t+h)—au(#)h?
<¢ef2 for 0 <h <h, and ¢t > 0. Then

h—pw (wu'—m7 h)
1n
h — —
<N sup l_ at+ l+;)1) 20+ }"f“ m(H_h)p @ft) Hdr<s
0<i<1-h » v 5

for n =1, 2, ... Now, let us consider the case hy- < h < 1. Then

W (2, — @, h)

ijn

' S(ELhdT)—w(i+ ) m(t+r)—x(t)|] 2
< x
nOs?‘ish ﬁf [ 7 { - i |l de
2|ally
= nPR?

for # sufficiently large. Hence |z, —a]Z — 0 for 0 < p < 1.

14. The set UH,,, is donse in (3| 3

&>

1.5. The spaces <Hy, | 5> and <H,,||Z> are separable for 0 < p’
<p<L

More precisely, the set of all rational polygonal functions(2) is dense
in every space (Hy, | |3> and in every space CHp, | B> for 0 < p' < p< 1L

Proof. By 1.2 and 1.3 the polygonal functions are dense in the

(*) By rational polygonal fumetions we understand polygonal functions with
both coordinates of angle-points rational.
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space <Hj, | |2> for every 0 < p < 1. Thus, we have to prove that any
polygonal function may be approximated (in the norm | |,, p <1) by
rational polygonal functioms; this follows trivially by the following
lemma.

Let y(t) be a continuous function defined in <0, 1>, being linear
in either interval <a,b) and <b,c), where 0 <a<b<¢ < 1; next,
let a <w < b and let

@ y(3) for 0 <t <w and for ¢ <t <1,
I linear in <w, ¢).
Then limfz—y|F = 0.
w—b
Indeed, we have

0 for 0 <t <w and for e <<t <1,

20 = 20—y ={ 4 = y(w)—~y(O) -~ [y(o)—y ()] for t =,

linear in {w, by and in <b,¢).
Obviously,

[y () —y(a)l
b—a

= B(b—w).

4] < Q(b—-w)ma,x( !y(c)—y(b);)

c—b
Next, we have p(z, k) < |4] < B(b—w), whence

sup hPy(w, k) < B(b—w)?;

b—w<hgl
finally
sup B Pyp(w, k) < sup o FRP < o F(b—w)?
O<hb-w C<h<hb—w
h—
< max (ﬂ—, —JJ—AL) (b—w)"? < max (B, B ad ) (b—w) 2.
b—w’  e—b ¢c—b

Thus, |#|F = |z—y|Z < B(b—w)'~? for sufficiently small b—w.

Now, let 0 < p’<p <1. Then H,C H, and every subset of H,
dense in (HY, | |E> is dense in (H,, | |2, too.

1.6. Let 0<{p <1 and let we|JH,,,. Then

>0

laly = 1im ja]5..
el

In particular, for p =0,

®)  lim e = Jla|¢’ = sup{le@+h)—a(t)]: 0 <t <i+h <1}
>0
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At the same time,
&) loln
Proof. First, we give the proof for p > 0. Writing
|t h)—a@)|h™? for 0 <h <1 and 0<<t <1—h,
0 for h =0 and all £<¢0, 1)

and 7 ={(t,2): 0<h <1, 0t <<1—h} we observe that f, i (@)
are continuous on T for fixed ¢ and weH,, ¢ > q. It suffices to prove
this at the points (¢, 0) for 0 < < 1. Since

@+ h)—x(t

a(t)] g
Faum (@) = —————— FI< el nE (0 <h <),

hm lel, for weH,, 0<p=<1

fa,om (@) =

so, for any wel ) H,,,, there exists a &> 0 (dependent on x) such that
>0

pis (@) are continuous on T for 0 << 6 < 6.
to obtain (7). Similarly, (9) follows from 0.1.
Now, we proceed to the case p = 0. Let » # 0 be & fixed element
of | JH,; then there exists a p, such that weHj, .
P>0
Now, choose § > 0 so that
o (t+h)— 2 ()| AP < o]

6 and for all . Then

Thus, 0.2 may be applied

for all 0 < A <

o+ —a@R? < Half for 0<h <, 0<p <p, and for allz.
Consequently, for 0 < p < p,,
la| = sup sup |o@E+n)—a @B
h=6 0<i1l-h
< sup  w(t+h)—a(6)]67? = a6

0i<ty-hgl
where p, and § depend only on . Thus we have proved

(10) lls" < llola) < lal'o
which implies (8).

1.7. Let C, be the space of all continuous functions in <0, 1) vanish-
ing at 0. ¢, may be identified with the space Hj which is defined analo-
gously to HY, as well as H, may be identified with the space of bounded
functions in <0, 1), vanishing at 0. The norm |o]|¥ = max {|& (1) — (%)
0 <t <1, <1} is defined in C, and equivalent to the usual norm ||
= max {|z(f)]: 0 <t < 1}; indeed, || < o] < 2|s|. Thus

Oy, | IE> = Eﬂ@%, 15> = EO CHop, | 15>
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Moreover, by the preceding eonsidei‘a,tions,

Hgﬂ “ ilgl> = i<H;+a! ” ﬂg+s> = —.8—0<H1,+3, ” H;:Iis} for 0<p <.

Finally, we conclude that the spaces (HS,| |¥> form a family of
separable Banach spaces, semicontinuous from below with respect to p.
Af the same time, the spaces (H,, | |Z) are semicontinuous from above,
neither family being continuous (2).

2. Spaces of functions of finite p-th variation.
2.0. We shall consider the classes CV, and AC,, defined for p > 1

as follows (*). Given a fixed closed interval <a,b) and a partition z:
a =1 <t <..<t,=0>b we write

Syt a) = (3@t — ()P

for any function x(t) defined in {a, b>. The value

V(@) = sup8,(w, 2)

is called the p-th variation of =(t) in <&, b)>. Let
Vo = {&: V(1) < o0, z(a) = 0}

and let OV, be the class of all continuous functions belonging to V.
AC, will denote the class of all functions «(t) vanishing at & and p-abso-
lutely eontinuous, i. e. satisfying the following condition: for every > 0
a number § > 0 may be chosen so that, for every finite system of non-
overlapping subintervals (o;, 8;) of the interval <a,b), the inequality
D(Bi— )’ << & implies 3 iw () — (@) < &

All the spaces V,, CV, and AC, are Banach spaces with respect
to the norm [z} = Vy(2) (p = 1). Moreover, the following inclusions and
inequalities hold for all » and 1 <p < p”:

AC, CCV,C AC,, V() < Vyl@).

The set of all rational polygonal functions is dense in (AC,, | |V>
(indeed, the map (4) transforms isometrically the space I, onto AC,,
and rational step functions are dense in L,); hence, (AC,, | 5> is separ-
able for all p > 1. Since the set AC, is dense in (AC,, | 2> (see [5] and
[61), all the spaces <AC,,| |5> have a common separable dense subset.

() Recently, Ciesielski [2] proved that every function st% may be developed
in a series with respect to the Schauder polygonal functions (consisting of the known
basis in (€0, 1), convergent with respect to the norm || ||. So he gave a new proof
of 1.2, 1.3 and 1.5.

() For the definitions and basic properties, see [9], [5] and [6].


GUEST


280 J. Musielak and Z. Semadeni

21, Let my: 0 =1ty < U <...< %, =Db be a partition of <a, by,
and let #(t) be a function defined in <a, by, monolone in each interval
(g s> and continuous at each point ;. Then

(1) V(@) = sup8y(m, @) for p=1.

nCmg
Proof. It suffices to prove that, for any partition n': a = vy < v,
< ...<¥, =10 of the interval <a,b), there exists a subpartition x:
@ =y < Upy < oo < Uy, = b 0f 7, such that

(12) 8y(7'y 8) < Spm,y 0).
Let j be the least index such that v; does not belong to #, (j >1).

We distinguish two cases.
10 Let [@(v;)—o(v;_1)1[# (V1) —@(v;)] = 0. Then

12 (v542) — 2 (9)|” + 2 (9) — @ (0; 1)1 < |@(v540) — 2(v;1) [P

and 8(zn', z) < 8(m,x) Where my: 6 =0y < vy < ovo <V < Vypy < ...
< Uy =b.

20 Leb [@(v;)—@(v;_1)]1[®(v;.1)—2(v;)] < 0. Then there exists an
index 4, such that v;_; < ;) <054,

@ (us,) — 2 (v;_1)| = 1w (v;) — 2 (v;_,)]
» and [ (0y42) — 8 (u)] = [2(v;5.1)— B (v;)].

Obviously, S(a', #) < 8(,, ), where

Tt @ =y < Uy < voh <Oy < Uy < Wy <o <0y, = b
Thus, after a finite number of such steps we obtain a subpartition =
of =, satisfying (12).

The formula (11) is valid in two important cases: for polygonal
functions and for step functions. In the second case we assume «;
(t=1,2,...,m) to be the middle points of the intervals in which z(t)
is constant. So, given two arbitrary partitions =, and z, with the same
number of points, the space <X, || |7 > of polygonal functions with angle

points at points of s, is isometric with the space (X,, || |5 of step func-
tions with middle points at points of m,.

2.2. Given a fived polygonal function x(t), the funetion @(p) = V;,(w)
s continuous for p >1, 4.e.

(18) lolz = lim 2], = lim a];_,.
60+ 04
Moreover,

(14)  lim ol = Jofi’ = sup{lo(t-+h) ~a(0): 0 <t< t+h <1,
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Proof. Denoting by T the set of all subpartitions of the partition =,
of angle points of @(?), = = 7, fj, () = Sp(, #) and applying 0.1 and
0.2 we obtain (13).

Since
1 m 1p 1 m -
= Dot —at)P) " < (= 3oty —atte ) <p<p
(m;]m( )—al 1)') (mg"ﬂ(t) #(t;)} ) for 1<p<yp
and since ljzllf = sup Sp(z, 2), 50 Sp(w, ¥) 7 sup ja (8;)— o(f;_,)| and, by 0.1,
2Ty i
sup 8, (m, 7) = Sup sup|a (1) — 2(ti1)| = o'
g acay i

2.3. Since the convergence of a monotone sequence of norms in
a dense set implies convergence everywhere (ef. [8], Th. 9.1), the pre-
ceding considerations yield

ACy, | 1p> = @0;@1073—“ o> = ”6;+<0Vp-n lls—ey for 1<p<<oo,
<Gy, ]l H)og> = é <A0m ‘1 ”zr;> = @ <0Vm " E]g>-
Do D00

Similarly as in the case of spaces <Hp,| [|Z> and <H,, | |¥>, the
family (AC,, | |7> depends on p semicontinuously from below and the
family <CV,, | |y> — semicontinuously from above (5).

2.4. According to Riesz [7], we may consider another definition
of the p-th variation of a function #(#) defined in (a, b):

m

&, (@) = sup ( 2 o (k) — @ (t;_1)° )"1’,

S\t

3
la

F. Riesz proved that in order that &,(») < co for a function #(f)
and for p > 1, it is necessary and sufficient that %(f) be the indefinite
integral of a function belonging to IL,, and

b
Oy(2) = ( [ o' @)@y

(cf. [4], p. 224, and [10]). Thus the space
IL, = {#: ®,(r) < oo, #(a) = 0}

(*) Let us note that families CVyp and 4(p, as well as families Hp and Hg , resemble
topologically the lexigraphical produet of an interval (i. e. of an ordered set of type 4)
and of a two-point set, provided with the order topology, i. e. the so called topological
(non-metrisable) space obtained by “spliting of the points of an interval into halves™.
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is identical with t

{m:w(t) = fz(u)du,zeLp},
a
both spaces being provided with the norm |#||7 = &, (). Obviously, the
family <ILp, Il 12> depends on p contmuously Moreover, <ILy,| %
= (A0y, | |7y and (L (if @ =0, b«l).
Thus, let us assume, for mmphclty, that <a by == <0, 1)>. Connections
between families considered so far may be presented by the following
scheme:

Co

0 H, ACp,CVp

H:/ IL,

2.5. In many considerations (e.g. in the theory of Fourier series)
functions satisfying the Holder condition and being of finite p-th varia-
tion, simultaneously, are very useful. Spaces of such functions OV, ~H,,
A0,~Hj ete. provided with the norms [af} 2 _I|m[|2,+|[m|] are Banaeh
spaces, moreover, the space (AC,~Hy,| []pf> is separable, rational
polygonal functions being dense in it. These spaces may be treated as
depending on a double parameter (p,q), where p >1, 0 < ¢ < 1.

3. Spaces of almost periodic functions. Let §,, W, and B,
(1 <p <<oo) denote the normed spaces of almost periodic functions in the
sense of Stepanoff, Weyl and Besicovitsch, respectively (°). The means

~AC1

t+1 i1
M (2) = sup f a(uwydu, M"(z)=TLm sup — 2(w)du,
—oo<t<oot 00 —oo<i<oo
.
MB(2) = lim — | w(f)dt
Tsco ~

are defined for any bounded measurable function and, by 0.3, the norms
lof = (DX (la)1, ol = (D7 ()1, = (D5 ()T

depend on p continuously for any fixed bounded . Hence, the class
<Sp, | |3> depends on p semicontinuously from below (7).

(*) An exposition of these spaces is given in the monography of Besicovitch
and in the paper [1] of Bohr and Felner.

(") Professor 8. Hartman has remarked that, by some results of Bohrand Folner
[11, condition 5°-is not satisfied for the class {S }

icm
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The spaces (By,|[;> depend on p continuously, since they are
equivalent to the spaces L,(G, u), where G denotes the Bohr compacti-
fication of the additive group of real numbers and © denotes the Haar
megsure on G. At the same time, this equivalence maps the uniformly
almost periodic functions of Bohr on the continuous functions on & and
maps the functions ¢ onto the characters on G; u being regular, continuous
functions are dense in each space L,(G, u), 1 < p < co (Falner [3]) (®).
We do not consider the spaces W,, for they are not complete.

4. Spaces of strongly p-summable sequences.

4.0. Let us denote, for p > 1, by M, the class of all sequences 2 = {w,}
such that

n
1 \—7 i/p
M = N2
lals" = sup (% 2 || ) < oo

<M, | |27 is a non-separable Banach space. Further, let us denote by M,/
the closure in (M,, | [ of the set of sequences which are constant for
almost all n. Obviously, M; consists exactly of all strongly p-summable
sequences, i.e. of sequences such that

Z |z —af = 0
noo M

for a number ¢ being a generalized limit of {s,).
Finally, let us denote by M} the closure in (I, | [¥> of the set of
all bounded sequences. Ewdently the following inclusion are satisfied

M,CM,, M,CM,, M CM

for p >p' =1,

. 1 n
4.1. Applying 0.3 with M(2) = supZZmi we conclude that the
n ,{

=1
families (M35, | 77> and (M3, | |¥> are semicontinuous from below for
p =1
4.2. The class M, as well as the class MY is not continuous with respect
0 p.
Proof. We shall prove that condition 3° is not satisfied. Let

a for m =my, k=1,2,...,
P
" 0 elsewhere,

(®) We are indebted to Professors 8. Hartman and C. Ryll-Nardzewski who
have shown us this method.
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where o is @ sequence tending to infinity and 0 = my<m, <m,<...
is a sequence of integers such that mylk - oo,

my mp—1
2 1 1 Vop o L
< — >mP <1l and E o " < 3
3 My, At my—1 =

fork = 1,2, ... Then # = {,} belongs to M, and does not belong to Mo,
although weMS for every p’ with 1 <p’ < p. Indeed, let us denote
I, = My —My; then

My — g <1
(o3 = sup 24—
and '
O o N Y g PO o N
lim < lim 5 > = & =
koo Dol oo |an| et ol koo ||
for p' < p. Hence
—1 X, ey [P ol
< lim — 7 < lim A = 0.
\n-—{?o n - & ke300 1+ A
References

[1] H. Bohr and E. Folner, On some types of functional spaces, Acta Math.
76 (1945), p. 31-155.

[2] Z. Ciesielski, On isomorphisms of the spaces Ho and m, Bull. Acad. Pol.
Sci. 8 (1960), p. 217-222. )

[3] E. Folner, On the dual space of the Besicovilch almost periodic function
spaces, Danske Vid. Selsk. Mat.-Fys. Medd. 21 (1954), no. 1, 27.

.[4]1 JI. B. Kanroposuy, B.3, Byaux n A. I IIuncrep, Pynryuonass-
Kyl anasus 8 noayynopadouenunr npocmpancmsaz, Mockpa 1950.

[6] E. R. Love, A generalization of absolute continuity, J. London Math. Soec.
26 (1951), p. 1-13.

[6] J. Musielak and W. Orlicz, On generalized variations (I), Studia Math.
18 (1959), p. 11-41.

[7] F. Riesz, Unlersuchungen iiber Systeme intergrierbarer Funktionen, Math.
Annalen 69 (1910), p. 449-497.

[8] Z. Semadeni, Limit properties of ordered families of linear metric spaces,
Studia Math. 20 (1961), p. 245-270.

[91 L. C. Young, An inequality of the Hélder type, connected with Stielijes
integration, Acta Math. 67 (1936), p. 251-282.

[10] M. . BacnaBeruil, Henomopue Epumepuu KOMNAKMHOCMU 8 MEMPULECKUT
u riopmMuposannnxr npocmparcmeazr, JAH 103 (1955), p. 953-956.

Regu par lo Rédaction le 9. 7. 1960

icm

STUDIA MATHEMATICA, T. XX. (1961)

On very strong Riesz-summability of orthogonal series

by
J. MEDER (Szczecin)

1. Let {1,} be a positive, strictly increasing, numerical sequence,
with 4, = 0 and 2, — oo.
A series

(1.1) U+ Uyt Up+. .o

with n-th partial sums s, is said to be summable (R, 4,,1) to the sum s, if

n

*—Z(Ak+1—1;.-)8k~> §, a8 n—»oo.

T, ==
n Zn+1 &~
Obviously, the Riesz-method of summation is a generalization of
(0, 1)-method, which is obtained by pufting 1, = .
Series (1.1) is said to be wery strongly summable (B, 4y, 1) to the

sum 8, if
n

D e — &) (85, —8)% =

k=0

0(%pe1)y @S n — oo,

for every strictly increasing sequence of indices {v,).

In particular, if v, =% (k=10,1,2,...), we shall say that series
{1.1) is strongly summable (R, 1,,1) to the sum s.

Series (1.1) i3 said to be sirongly (very strongly) summable (C, 1),
if it is strongly (very strongly) summable (R, 4,, 1) with 2, = n.

2. Further, we shall consider the strong and the very strong Riesz-
summability of orthogonal series.

Let ON{gp,(x)} denote an orthonormal system defined in the interval
<0,1> and {e,}el? i e

2.1)

oo
2
ZO" < 00,
n=0
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