STUDIA MATHEMATICA, T. XX. (1961)

- [3] Über metrische Gruppen, Studia Math. 3 (1931), p. 101-113.
- [4] C. Bessaga and A. Pelczyński, A class of Bo-spaces, Bull. Acad. Pol. Sci. 5 (1967), p. 375-377.
- [5] K. Borsuk, On some metrisations of the hyperspace of compact sets, Fund. Math. 41 (1955), p. 168-202.
- [6] J. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier Grenoble 1 (1949), p. 61-101.
 - [7] N. Dunford and J. T. Schwartz, Linear operators I, New York 1959.
- [8] Е. А. Горун и Б. С. Митягин, О системах норм в счетно-нормированном пространстве, Усп. мат. наук 13 (1958), 5 (83), p. 179-184.
 - [9] C. Kuratowski, Topologie I, Warszawa 1948.
- [10] S. Mazur and W. Orlicz, Über Folgen linearer Operationen, Studia Math. 4 (1933), p. 152-157.
 - [11] Sur les espaces métriques linéaires I, ibidem 10 (1948), p. 184-208.
 - [12] Sur les espaces métriques linéaires II, ibidem 13 (1953), p. 137-179.
- [13] J. Musielak and Z. Semadeni, Some classes of Banach spaces depending on a parameter, ibidem 20 (1961), p. 271-284.
 - [14] W. Orlicz, Linear operations in Saks spaces (II), ibidem 15 (1955), p. 1-25.
- [15] W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on bases, ibidem 16 (1958), p. 152-157.
- [16] J. J. Schäffer, Function spaces with translations, Math. Annalen 137 (1959), p. 209-262.
- [17] Z. Semadeni, Extension of linear functionals in two norm spaces, Bull. Acad. Pol. Sci. 8 (1960), p. 427-432.
 - [18] K. Zeller, Theorie der Limitierungsverfahren, Berlin 1958.

Recu par la Rédaction le 9. 7. 1960

Some classes of Banach spaces depending on a parameter

b;

J. MUSIELAK and Z. SEMADENI (Poznań)

In this paper we shall consider the following classes of Banach spaces:

 H_p —functions satisfying Hölder condition with an exponent p, CV_p —continuous functions with finite p-th variation,

 AC_p -absolutely continuous functions of order p,

 S_p and B_p —almost periodic functions in the sense of Stepanoff and Besicovitch, respectively,

 M_p -strongly p-summable sequences.

These classes may be treated as families of Banach spaces X_p depending on a parameter p. In each of these classes there are known inclusions between spaces X_p , $X_{p'}$ and inequalities between norms $\| \ \|_p$, $\| \ \|_{p'}$ for p < p'. We shall consider the following problem: given a sequence p_n convergent to p_0 , establish connections between the corresponding spaces X_{p_n} and X_{p_0} . This problem is closely related to the problem of the continuity (suitably defined) of the spaces X_p with respect to the parameter p.

These problems are considered from a general point of view in paper [8], where, in the following definition, the limit $\mathfrak{S}(X_n)$ of a sequence X_n of linear metric spaces is introduced. $\langle X_0, \| \ \|_0 \rangle$ is termed \mathfrak{S} -limit of $\langle X_n, \| \ \|_n \rangle$ (written $\langle X_0, \| \ \|_0 \rangle = \mathfrak{S}(\langle X_n, \| \ \|_n \rangle)$) if the following conditions are satisfied:

1º X_0 and almost all X_n are subspaces of a linear space,

 $2^{\circ} X_n$ converges to X_0 in the sense of the theory of sets (i. e.

$$X_0 = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} X_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} X_n),$$

30 $||x||_0 = \lim_{n \to \infty} ||x||_n$ for all $x \in X_0$.

Next, we write $\langle X_0, \| \|_0 \rangle = \frac{\overline{\mathfrak{S}}}{n \to \infty} \langle X_n, \| \|_n \rangle$ if $\underset{n \to \infty}{\mathfrak{S}} (X_n)$ is dense in $\langle X_0, \| \|_0 \rangle$.

Let $\{X_p\}_{a< p<\beta}$ be a family of Banach spaces $\langle X_p, \| \|_p \rangle$ such that

 $X_p \subset X_{p'}$ and $\|x\|_p \geqslant \|x\|_{p'}$ for p > p'. We say that this family is continuous with respect to p, if the following conditions are satisfied (1):

1º If
$$x \in \bigcup_{\epsilon>0} X_{p+\epsilon}$$
 and if $p_n \searrow p$, then $||x||_p = \lim_{n \to \infty} ||x||_{p_n}$,

2º if
$$x \in \bigcap_{\epsilon>0}^{\epsilon>0} X_{p-\epsilon}$$
 and if $p_p \nearrow p$, then $\|x\|_p = \lim_{n \to \infty} \|x\|_{p_n}$,

$$3^{\circ} \bigcup_{s>0} X_{p+s}$$
 is dense in $\langle X_p, \| \|_p \rangle$,

4º X_p is dense in $\bigcap_{\epsilon>0} X_{p-\epsilon}$ with respect to the F-norm

$$||x||_p^* = \sum_{n=1}^{\infty} 2^{-n} \varphi(||x||_{p_n})$$

where $\varphi(u)=u(1+u)^{-1}$ and p_n is a fixed sequence such that $a< p_1< p_2<\dots$ and $p_n\to p$,

$$5^{\circ} \ \{x \colon x \in \bigcap_{\epsilon>0} X_{p-\epsilon}, \ \sup_{\epsilon>0} \|x\|_{p-\epsilon} < \infty\} = X_{p} \ \text{ for all } p \ (\alpha < p < \beta).$$

Moreover, we consider two definitions of semicontinuity. If conditions 1°, 2°, 4°, 5° are satisfied, then the family $\langle X_p, \| \parallel_p \rangle$ is said to be semicontinuous from above; if 1°, 2°, 3° are satisfied, $\langle X_p, \| \parallel_p \rangle$ is said to be semicontinuous from below.

Conditions 1° and 3° mean that $\langle X_p, \| \parallel_p \rangle = \frac{\overline{\mathfrak{S}}}{\varepsilon} \langle X_{p+\epsilon}, \| \parallel_{p+\epsilon} \rangle$. At the same time, the space $\langle \bigcap_{\epsilon>0} X_{p-\epsilon}, \| \parallel_p^* \rangle$ is a B_0 -space and conditions 2° and 4° mean that

$$\begin{split} &\langle \bigcap_{\epsilon>0} X_{p-\epsilon}, \| \parallel_p^* \rangle = \mathop{\mathfrak{S}}_{n\to\infty} \langle X_{p_n}, \| \parallel_n^0 \rangle \quad \text{ where } \quad \|x\|_n^0 = \sum_{k=1}^n \, 2^{-k} \varphi(\|x\|_{p_k}), \\ &\langle X_p, \| \parallel_p \rangle = \mathop{\mathfrak{S}}_{\epsilon\to 0_+} \langle X_p, \| \parallel_{p-\epsilon} \rangle, \quad \langle \bigcap_{\epsilon>0} X_{p-\epsilon}, \| \parallel_p^* \rangle = \mathop{\overline{\mathfrak{S}}}_{n\to\infty} \langle X_p, \| \parallel_n^0 \rangle. \end{split}$$

Auxiliaries. The following well-known lemmas are very useful in further considerations.

0.1. Given sets X and T, let us suppose that to every $p \in (a, \beta)$ there corresponds a family $\{f_{p,r}(x)\}_{r\in T}$ of functions defined in X, such that

$$(1) f_{p,\tau}(x) \leqslant f_{p',\tau}(x)$$

for all $x \in X$, $\tau \in T$, $p \leq p'$ and such that

$$(2) p_n \to p implies f_{\mathcal{D}_{n,r}}(x) \to f_{p,r}(x)$$

for all $x \in X$ and $\tau \in T$. Then, for any fixed $x \in X$, the function

(3)
$$\varphi(p) = \sup\{f_{p,\tau}(x) : \tau \in T\}$$

is non-decreasing and left-side continuous with respect to p. More generally, \Re being a σ -ideal of subsets of T with $T \notin \Re$, the function

$$\varphi_{\Re}(p) = \sup_{T} f_{p,\tau}(x)$$

is also non-decreasing and left-side continuous in (α, β) .

In this case (1) and (2) are assumed to be satisfied for \Re -almost every $\tau \epsilon T$ and $\sup_{\Re} g(\tau)$ denotes the \Re -essential supremum, i.e. the least upper bound of numbers a such that the set $\{\tau \epsilon T : g(\tau) > a\}$ belongs to \Re .

Proof. The monotony of $\varphi_{\Re}(p)$ being trivial, let us suppose that $p_n \nearrow p$ and $\alpha . Obviously, the limit <math>A = \lim_{n \to \infty} \varphi_{\Re}(p_n)$ exists and $A \leqslant \varphi_{\Re}(p)$. Since $A = \sup_n \varphi_{\Re}(p_n)$, for each n there exists $R_n \in \Re$ such that $f_{p_n,\tau}(x) \leqslant A$ for $\tau \in T \setminus R_n$. Next, there exists $R_0 \in \Re$ such that $f_{p_n,\tau}(x) \Rightarrow f_{p,\tau}(x)$ for $\tau \in T \setminus R_0$, hence $f_{p,\tau}(x) \leqslant A$ for $\tau \in T \setminus R_0$. Since $\bigcup_{n=0}^{\infty} R_n \in \Re$, we have $\varphi_{\Re}(p) \leqslant A$.

0.2. Let us suppose that T is a compact topological space and $f_{p,\tau}(x)$ are continuous on T for any fixed $p \in (\alpha, \beta)$ and $x \in X$. Then, assuming (1) and (2), the function $\varphi(p)$ defined by (3) is continuous.

Proof. We have to prove that $p_n \searrow p_0$ implies $\varphi(p_n) \to \varphi(p_0)$ for any fixed $x \in X$. Since $f_{p_n,\tau}(x) \searrow f_{p_0,\tau}(x)$ and $f_{p_n,\tau}(x)$ are continuous on T $(n=0\,,1\,,2\,,\ldots)$, by the theorem of Dini $f_{p_n,\tau}(x)$ converge uniformly on T; hence $\sup f_{p_n,\tau}(x)$ tends to $\sup f_{p_0,\tau}(x)$.

0.3. Let X be a linear class of bounded functions x(t) defined on an arbitrary set T, containing constant functions and such that if $x \in X$ and p > 0, then $|x|^p \in X$. Next, let $\overline{\mathfrak{M}}(x)$ be a functional over X, satisfying the following conditions:

$$\overline{\mathfrak{M}}(x+y)\leqslant \overline{\mathfrak{M}}(x)+\overline{\mathfrak{M}}(y), \quad \overline{\mathfrak{M}}(\lambda x)=\lambda \overline{\mathfrak{M}}(x) \quad \text{for} \quad \lambda\geqslant 0,$$

$$0\leqslant x(t)\leqslant y(t) \quad implies \quad \overline{\mathfrak{M}}(x)\leqslant \overline{\mathfrak{M}}(y),$$

 $\overline{\mathfrak{M}}(1) = 1$, where 1 denotes the constant function x(t) = 1.

Then, for any fixed $x \in X$, the functions

$$\varphi_1(p) = \overline{\mathfrak{M}}(|x|^p) \quad and \quad \varphi_2(p) = |\varphi_1(p)|^{1/p}$$

or an accordance of the Cart.

are continuous for p > 0.

⁽¹⁾ If the inclusions for X_p and the inequalities for $\| \cdot \|_p$ are opposite, the definition is analogous.

Proof. It suffices to show that $\varphi_1(p)$ is continuous whenever $|x(t)| \leq 1$ and p runs any interval (α, β) with $\beta > \alpha > 0$. Let us choose $\varepsilon > 0$ and then $\delta > 0$ so that $\alpha and <math>|p-q| < \delta$ imply $|u^p-u^q| < \varepsilon$ for all $0 \leq u \leq 1$. Then $||x(t)|^p - |x(t)|^q| < \varepsilon$ for all $t \in T$, whence $0 \leq \overline{\mathfrak{M}}(|x|^p) - \overline{\mathfrak{M}}(|x|^q) \leq \overline{\mathfrak{M}}(|x|^p - |x|^q) \leq \overline{\mathfrak{M}}(\varepsilon) = \varepsilon$ for $\alpha .$

1. Spaces of functions satisfying Hölder conditions.

1.0. Let H_p be the class of all real functions x(t) defined in $\langle 0, 1 \rangle$ vanishing at t=0 and satisfying the Hölder condition with the exponent p, i. e. the condition

$$|x(t+h)-x(t)| \leq K|h|^p$$
 for all $t, t+h \in (0, 1)$,

K being a constant depending on x, and 0 .

Next, let H_p^0 be the subclass of H_p consisting of all functions x(t) satisfying the condition $x(t+h)-x(t)=o(h^p)$, i. e. such that

$$\lim_{h \to 0_+} h^{-p} \psi(x,h) = 0 \qquad \text{where} \qquad \psi(x,h) = \sup_{0 \leqslant t \leqslant 1-h} \left| x(t+h) - x(t) \right|.$$

The following inclusions are well-known:

$$H_{p'} \subset H_p^0 \subset H_p$$
 for $p < p'$.

 H_n is a non-separable Banach space with respect to the norm

$$\|x\|_{p}^{H} = \sup_{0 < h \le 1} \sup_{0 \le t \le 1-h} |x(t+h) - x(t)| h^{-p} = \sup_{0 < h \le 1} h^{-p} \psi(x, h),$$

and H_n^0 is closed in $\langle H_p, || \parallel_p^H \rangle$.

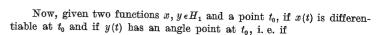
1.1. The space H_1 (i.e. the space of functions satisfying the usual Lipschitz condition, vanishing at 0) is isometric with the space L_{∞} of all essentially bounded measurable functions in $\langle 0, 1 \rangle$. Indeed, every $x \in H_1$ is absolutely continuous, whence

$$x(t) = \int\limits_0^t x'(au) d au \quad \text{ and } \quad \|x\|_1^H = \sup\limits_{t,h} rac{|x(t+h) - x(t)|}{h} = \operatorname*{ess\,sup}_{0 \leqslant t \leqslant 1} |x'(t)|.$$

Thus

(4)
$$U(y) = \int_{0}^{t} y(\tau) d\tau$$

establishes a one-to-one linear and norm-preserving map of L_{∞} onto H_1 . It is easily seen that U transforms the step functions onto the polygonal functions. Hence no function x = U(y) with y non-equivalent to any Riemann-integrable function cannot be approximated by polygonal functions (in the norm $\|\cdot\|_1^H$).



$$y_{+}^{'}(t_{0})-y_{-}^{'}(t_{0})=\lim_{h\to 0_{+}}\frac{y(t_{0}+h)-y(t_{0})}{h}-\lim_{h\to 0_{+}}\frac{y(t_{0})-y(t_{0}-h)}{h}=2b\neq 0,$$

then $||x-y||_1^H \ge |b|$. In particular, a polygonal function with an angle point at a non-rational value of t cannot be approximated (in the norm $|| || ||_1^H$) by polygonal functions possessing angle points at rational values of t only.

1.2. The set of all polygonal functions vanishing at 0 is dense in every space $\langle H_1, \| \parallel_p^H \rangle$ where p < 1.

Proof. The map (4) generates in the space L_{∞} the norms

$$\begin{split} \|y\|_p^U &= \|U(y)\|_p^H = \sup_{0 < h \leqslant 1} h^{-p} \sup_{0 \leqslant t \leqslant 1-h} |Uy(t+h) - Uy(t)| \\ &= \sup_{0 < h \leqslant 1} h^{-p} \sup_{0 \leqslant t \leqslant 1-h} \left| \int\limits_t^{t+h} y(\tau) d\tau \right|, \quad \text{where} \quad 0 < p \leqslant 1. \end{split}$$

We have to prove that the step functions are dense in $\langle L_\infty,\|\ \|_p^U\rangle$ for 0< p<1. The inequality

$$(5) \quad \sup_{0 < h \leqslant \delta} h^{-p} \sup_{0 \leqslant t \leqslant 1 - h} \left| \int\limits_{t}^{t + h} y(\tau) d\tau \right| \leqslant \sup_{0 < h \leqslant \delta} h^{1-p} \operatorname{ess\,sup}_{0 \leqslant t \leqslant 1} |y(t)| = \delta^{1-p} ||y||_{1}^{T}$$

holds for every $y \in L_{\infty}$ and $0 < \delta \le 1$. Let us consider the characteristic function y(t) of a measurable subset of $\langle 0, 1 \rangle$. Choose ε with $0 < \varepsilon < 1$ and an integer $n > 2/\delta$ where $\delta = \varepsilon^{1/(1-p)}$. Write $\Delta_k = \langle (k-1)/n, k/n \rangle$ and

$$z(t) = rac{1}{|ert arDelta_k|} \int\limits_{ert u_k} y(au) d au \quad ext{for} \quad t \in arDelta_k \ ext{and} \ k = 1, 2, ..., n.$$

Then $\|z-y\|_1^U = \underset{0\leqslant t\leqslant 1}{\operatorname{ess\,sup}} |z(t)-y(t)| \leqslant 1$. Since

$$\int_{T_{\tau}} [z(\tau) - y(\tau)] d\tau = 0,$$

we have

$$\left|\int\limits_{t}^{t+h}\left[z(\tau)-y\left(\tau\right)\right]d\tau\right|=\left|\int\limits_{t}^{k_{1}/n}+\int\limits_{k_{\delta}/n}^{t+h}\right|\leqslant\frac{2}{n}\left\|z-y\right\|_{1}^{U}\leqslant\frac{2}{n}<\delta,$$

where $k_1 = E(nt) + 1$, $k_2 = E[n(t+h)]$. Then

(6)
$$\sup_{\delta \leqslant h \leqslant 1} h^{-p} \sup_{0 \leqslant t \leqslant 1-h} \left| \int_{t}^{t+h} [z(\tau) - y(\tau)] d\tau \right| \leqslant \delta^{1-p}.$$

Finally, by (5) and (6), $||z-y||_p^U \leqslant \delta^{1-p} = \varepsilon$.

Banach spaces

Since linear combinations of characteristic functions are dense in $\langle L_{\infty}, \| \parallel_p^U \rangle$ and $\|y\|_p^U \geqslant \|y\|_p^U$, the step-functions are dense in $\langle L_{\infty}, \| \parallel_p^U \rangle$ for every 0 .

1.3. The set H_1 is dense in $\langle H_p^0, || ||_p^H \rangle$ for every 0 .

Proof. Given $x \in H_p^0$, let us write

$$x_n(t) = n \int_t^{t+1/n} x(\tau) d\tau - n \int_0^{1/n} x(\tau) d\tau,$$

where x(t) = x(1) for $t \ge 1$. Obviously, $x_n \in H_1$ and

$$x_n(t) - x(t) = n \int_0^{1/n} [x(t+\tau) - x(t) - x(\tau)] d\tau,$$

$$\psi(x_n-x,h) = n \sup_{0 \leqslant t \leqslant 1-h} \left| \int_0^{1/n} \left[x(t+h+\tau) - x(t+h) - x(t+\tau) + x(t) \right] d\tau \right|.$$

Given $\varepsilon>0$, let us choose an $h_0>0$ such that $|x(t+h)-x(t)|h^{-p}<\varepsilon/2$ for $0< h\leqslant h_0$ and $t\geqslant 0$. Then

$$h^{-p}\psi(x_n-x,h)$$

$$\leqslant n \sup_{0 \leqslant t \leqslant 1-h} \int\limits_0^{1/n} \left[\left| \frac{x(t+h+\tau) - x(t+\tau)}{h^v} \right| + \left| \frac{x(t+h) - x(t)}{h^v} \right| \right] d\tau < \varepsilon$$

for n = 1, 2, ... Now, let us consider the case $h_0 \le h \le 1$. Then

$$h^{-p}\psi(x_n-x,h)$$

$$\leq n \sup_{0 \leq t \leq 1-h} \int_{0}^{1/h} \left[\left| \frac{x(t+h+\tau) - x(t+h)}{\tau^{p}} \right| + \left| \frac{x(t+\tau) - x(t)}{\tau^{p}} \right| \right] \frac{\tau^{p}}{h^{p}} d\tau$$

$$\leq \frac{2\|x\|_{p}^{H}}{n^{p}h_{0}^{p}} < \varepsilon$$

for n sufficiently large. Hence $||x_n - x||_p^H \to 0$ for 0 .

- **1.4.** The set $\bigcup_{\epsilon>0} H_{p+\epsilon}$ is dense in $\langle H_p^0, || \|_p^H \rangle$.
- **1.5.** The spaces $\langle H_p^0, \| \parallel_p^H \rangle$ and $\langle H_p, \| \parallel_{p'}^H \rangle$ are separable for $0 < p' < p \leqslant 1$.

More precisely, the set of all rational polygonal functions (2) is dense in every space $\langle H_p^0, \| \parallel_p^H \rangle$ and in every space $\langle H_p, \| \parallel_{p'}^H \rangle$ for $0 < p' < p \leqslant 1$.

Proof. By 1.2 and 1.3 the polygonal functions are dense in the

space $\langle H_p^0, \| \|_p^H \rangle$ for every $0 . Thus, we have to prove that any polygonal function may be approximated (in the norm <math>\| \|_p$, p < 1) by rational polygonal functions; this follows trivially by the following lemma.

Let y(t) be a continuous function defined in $\langle 0,1 \rangle$, being linear in either interval $\langle a,b \rangle$ and $\langle b,c \rangle$, where $0\leqslant a < b < c \leqslant 1$; next, let a < w < b and let

$$z(t) = \begin{cases} y(t) \text{ for } 0 \leqslant t \leqslant w \text{ and for } e \leqslant t \leqslant 1, \\ \text{linear in } \langle w, e \rangle. \end{cases}$$

Then $\lim_{w\to b} \lVert z - y \rVert_p^H = 0.$

Indeed, we have

$$x(t) = z(t) - y(t) = \begin{cases} 0 \text{ for } 0 \leqslant t \leqslant w \text{ and for } c \leqslant t \leqslant 1, \\ A = y(w) - y(b) + \frac{b - w}{c - w} [y(c) - y(w)] \text{ for } t = b, \\ \text{linear in } \langle w, b \rangle \text{ and in } \langle b, c \rangle. \end{cases}$$

Obviously,

$$|A| \leqslant 2(b-w)\max\left(\frac{|y(b)-y(a)|}{b-a}, \frac{|y(c)-y(b)|}{c-b}\right) = B(b-w).$$

Next, we have $\psi(x,h) \leq |A| \leq B(b-w)$, whence

$$\sup_{h-w< h<1} h^{-p} \psi(x, h) \leqslant B(b-w)^{1-p};$$

finally

$$\begin{split} \sup_{0 < h \leqslant b - w} h^{-p} & \psi(x, h) \leqslant \sup_{0 < h \leqslant b - w} \|x\|_1^H h^{1-p} \leqslant \|x\|_1^H (b - w)^{1-p} \\ & \leqslant \max \left(\frac{|A|}{b - w}, \ \frac{|A|}{c - b}\right) (b - w)^{1-p} \leqslant \max \left(B, B \frac{b - w}{c - b}\right) (b - w)^{1-p}. \end{split}$$

Thus, $||x||_p^H = ||z-y||_p^H \leqslant B(b-w)^{1-p}$ for sufficiently small b-w.

Now, let $0 < p' < p \le 1$. Then $H_p \subset H_{p'}^0$ and every subset of H_p dense in $\langle H_{p'}^0, \| \|_{H}^{H} \rangle$ is dense in $\langle H_{n, 1}, \| \|_{H}^{H} \rangle$, too.

1.6. Let
$$0 \le p < 1$$
 and let $x \in \bigcup_{\epsilon>0} H_{p+\epsilon}$. Then

(7)
$$\|x\|_p^H = \lim_{\varepsilon \to 0+} \|x\|_{p+\varepsilon}^H.$$

In particular, for p = 0,

8)
$$\lim_{\epsilon \to 0_+} \|x\|_{\epsilon}^H = \|x\|_{0}^H = \sup\{|x(t+h) - x(t)| \colon 0 \leqslant t < t+h \leqslant 1\}.$$

⁽²⁾ By rational polygonal functions we understand polygonal functions with both coordinates of angle-points rational.

At the same time.

(9)
$$||x||_{p}^{H} = \lim_{\epsilon \to 0+} ||x||_{p-\epsilon}^{H} \quad for \quad x \in H_{p}, \ 0$$

Proof. First, we give the proof for p > 0. Writing

$$f_{q,(\ell,h)}(x) = \left\{ \begin{array}{ll} |x(t+h)-x(t)| \, h^{-q} \ \text{for} \ 0 < h \leqslant 1 \ \text{and} \ 0 \leqslant t \leqslant 1-h, \\ 0 \qquad \qquad \text{for} \ h = 0 \ \text{and} \ \text{all} \ t \epsilon \langle 0, 1 \rangle \end{array} \right.$$

and $T = \{(t,h) \colon 0 \leqslant h \leqslant 1, \ 0 \leqslant t \leqslant 1-h\}$ we observe that $f_{q,(t,h)}(x)$ are continuous on T for fixed q and $x \in H_{q'}, \ q' > q$. It suffices to prove this at the points (t,0) for $0 \leqslant t \leqslant 1$. Since

$$f_{q,(t,h)}(x) = rac{|x(t+h)-x(t)|}{h^{q'}} h^{q'-q} \leqslant ||x||_{q'}^{II} h^{q'-q} \qquad (0 < h \leqslant 1),$$

so, for any $x \in \bigcup_{\epsilon>0} H_{p+\epsilon}$, there exists a $\delta_0 > 0$ (dependent on x) such that $p+\delta_0(t,\hbar)(x)$ are continuous on T for $0 \le \delta \le \delta_0$. Thus, 0.2 may be applied to obtain (7). Similarly, (9) follows from 0.1.

Now, we proceed to the case p=0. Let $x\neq 0$ be a fixed element of $\bigcup H_p$; then there exists a p_0 such that $x\in H^0_{p_0}$.

Now, choose $\delta > 0$ so that

$$|x(t+h)-x(t)|h^{-p_0}<\frac{1}{2}||x||_0^H$$

for all $0 < h \le \delta$ and for all t. Then

$$|x(t+h)-x(t)|h^{-p} < \frac{1}{2}||x||_0^H$$
 for $0 < h \le \delta$, $0 and for all t .$

Consequently, for 0 ,

$$\begin{split} \|x\|_p^H &= \sup_{h\geqslant \delta} \sup_{0\leqslant t\leqslant 1-h} |x(t+h)-x(t)| h^{-p} \\ &\leqslant \sup_{0\leqslant t< t+h\leqslant 1} |x(t+h)-x(t)| \delta^{-p} = \|x\|_0^H \delta^{-p}, \end{split}$$

where p_0 and δ depend only on x. Thus we have proved

$$||x||_0^H \leqslant ||x||_y^H \leqslant ||x||_0^H \delta^{-p}$$

which implies (8).

1.7. Let C_0 be the space of all continuous functions in $\langle 0, 1 \rangle$ vanishing at 0. C_0 may be identified with the space H_0^0 which is defined analogously to H_0^0 , as well as H_0 may be identified with the space of bounded functions in $\langle 0, 1 \rangle$, vanishing at 0. The norm $\|x\|_0^H = \max\{|x(t_1) - x(t_2)|: 0 \leqslant t_1 < t_2 \leqslant 1\}$ is defined in C_0 and equivalent to the usual norm $\|x\| = \max\{|x(t)|: 0 \leqslant t \leqslant 1\}$; indeed, $\|x\| \leqslant \|x\|_0^H \leqslant 2\|x\|$. Thus

$$\langle \mathit{C}_{0}, \| \parallel_{0}^{H} \rangle = \overline{\Xi}_{p \to 0} \langle \mathit{H}_{p}^{0}, \| \parallel_{p}^{H} \rangle = \overline{\Xi}_{p \to 0} \langle \mathit{H}_{p}, \| \parallel_{p}^{H} \rangle.$$

Moreover, by the preceding considerations.

$$\langle H_p^0, \| \ \|_0^H \rangle = \overline{\widetilde{\mathfrak{S}}} \, \langle H_{p+\varepsilon}^0, \| \ \|_{p+\varepsilon}^H \rangle = \overline{\widetilde{\mathfrak{S}}} \, \langle H_{p+\varepsilon}, \| \ \|_{p+\varepsilon}^H \rangle \quad \text{ for } \quad 0$$

Finally, we conclude that the spaces $\langle H_p^0, \| \parallel_p^H \rangle$ form a family of separable Banach spaces, semicontinuous from below with respect to p. At the same time, the spaces $\langle H_p, \| \parallel_p^H \rangle$ are semicontinuous from above, neither family being continuous (3).

2. Spaces of functions of finite p-th variation.

2.0. We shall consider the classes CV_p and AC_p , defined for $p \ge 1$ as follows (4). Given a fixed closed interval $\langle a,b \rangle$ and a partition π : $a=t_0 < t_1 < \ldots < t_m = b$, we write

$$S_p(\pi, x) = \left(\sum_{i=1}^m |x(t_i) - x(t_{i-1})|^p\right)^{1/p}$$

for any function x(t) defined in $\langle a, b \rangle$. The value

$$V_p(x) = \sup_{x} S_p(\pi, x)$$

is called the p-th variation of x(t) in $\langle a, b \rangle$. Let

$$V_p = \{x \colon V_p(x) < \infty, \, x(a) = 0\}$$

and let CV_p be the class of all continuous functions belonging to V_p . AC_p will denote the class of all functions x(t) vanishing at a and p-absolutely continuous, i. e. satisfying the following condition: for every $\varepsilon > 0$ a number $\delta > 0$ may be chosen so that, for every finite system of non-overlapping subintervals (a_i, β_i) of the interval $\langle a, b \rangle$, the inequality $\sum (\beta_i - a_i)^p < \delta$ implies $\sum |x(\beta_i) - x(a_i)|^p < \varepsilon$.

All the spaces V_p , CV_p and AC_p are Banach spaces with respect to the norm $\|x\|_p^V = V_p(x)$ $(p \ge 1)$. Moreover, the following inclusions and inequalities hold for all x and $1 \le p < p'$:

$$AC_p \subset CV_p \subset AC_{p'}, \quad V_{p'}(x) \leqslant V_p(x).$$

The set of all rational polygonal functions is dense in $\langle AC_1, \| \|_1^r \rangle$ (indeed, the map (4) transforms isometrically the space L_1 onto AC_1 , and rational step functions are dense in L_1); hence, $\langle AC_1, \| \|_p^r \rangle$ is separable for all $p \geqslant 1$. Since the set AC_1 is dense in $\langle AC_p, \| \|_p^r \rangle$ (see [5] and [6]), all the spaces $\langle AC_p, \| \|_p^r \rangle$ have a common separable dense subset.

⁽³⁾ Recently, Ciesielski [2] proved that every function $x \in H_p^0$ may be developed in a series with respect to the Schauder polygonal functions (consisting of the known basis in C(0, 1)), convergent with respect to the norm $\|\cdot\|_p$. So he gave a new proof of 1.2, 1.3 and 1.5.

⁽⁴⁾ For the definitions and basic properties, see [9], [5] and [6].

2.1. Let π_0 : $a = u_0 < u_1 < \ldots < u_n = b$ be a partition of $\langle a, b \rangle$, and let $\sigma(t)$ be a function defined in $\langle a, b \rangle$, monotone in each interval $\langle u_i, u_{i+1} \rangle$ and continuous at each point u_i . Then

(11)
$$V_p(x) = \sup_{\pi \subset \pi_0} S_p(\pi, x) \quad \text{for} \quad p \geqslant 1.$$

Proof. It suffices to prove that, for any partition π' : $a=v_0 < v_1 < \ldots < v_m = b$ of the interval $\langle a,b \rangle$, there exists a subpartition π : $a=u_0 < u_{n_1} < \ldots < u_{n_k} = b$ of π_0 such that

$$(12) S_p(\pi', x) \leqslant S_p(\pi, x).$$

Let j be the least index such that v_j does not belong to π_0 $(j \ge 1)$. We distinguish two cases.

1º Let
$$[x(v_i)-x(v_{i-1})][x(v_{i+1})-x(v_i)] \ge 0$$
. Then

$$|x(v_{j+1})-x(v_j)|^p+|x(v_j)-x(v_{j-1})|^p\leqslant |x(v_{j+1})-x(v_{j-1})|^p$$

and $S(\pi',x) \leqslant S(\pi_1,x)$ where π_1 : $a=v_0 < v_1 < \ldots < v_{j-1} < v_{j+1} < \ldots < v_m=b$.

2º Let $[x(v_j)-x(v_{j-1})][x(v_{j+1})-x(v_j)] < 0$. Then there exists an index i_0 such that $v_{j-1} < u_{i_0} < v_{j+1}$,

$$|x(u_{i_0})-x(v_{i-1})| \geqslant |x(v_i)-x(v_{i-1})|$$

and
$$|x(v_{i+1})-x(u_{i_0})| \ge |x(v_{i+1})-x(v_i)|$$

Obviously, $S(\pi', x) \leq S(\pi_2, x)$, where

$$\pi_2$$
: $a = v_0 < v_1 < \ldots < v_{j-1} < u_{i_0} < v_{j+1} < \ldots < v_n = b$.

Thus, after a finite number of such steps we obtain a subpartition π of π_0 satisfying (12).

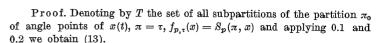
The formula (11) is valid in two important cases: for polygonal functions and for step functions. In the second case we assume u_i $(i=1,2,\ldots,n)$ to be the middle points of the intervals in which x(t) is constant. So, given two arbitrary partitions π_1 and π_2 with the same number of points, the space $\langle X_1, \| \parallel_p^p \rangle$ of polygonal functions with angle points at points of π_1 is isometric with the space $\langle X_2, \| \parallel_p^p \rangle$ of step functions with middle points at points of π_2 .

2.2. Given a fixed polygonal function x(t), the function $\varphi(p) = \overrightarrow{V}_p(x)$ is continuous for $p \ge 1$, i. e.

(13)
$$\|x\|_{p}^{V} = \lim_{\epsilon \to 0+} \|x\|_{p+\epsilon}^{V} = \lim_{\epsilon \to 0+} \|x\|_{p-\epsilon}^{V}.$$

Moreover,

$$(14) \quad \lim_{p \to \infty} \|x\|_p^{\gamma} = \|x\|_0^H = \sup\{|x(t+h) - x(t)| \colon 0 \leqslant t < t + h \leqslant 1\}.$$



Since

$$\left(\frac{1}{m}\sum_{i=1}^{m}|x(t_{i})-x(t_{i-1})|^{p}\right)^{\!\!1/p}\leqslant \left(\frac{1}{m}\sum_{i=1}^{m}|x(t_{i})-x(t_{i-1})|^{p'}\right)^{\!\!1/p'}\quad\text{for}\quad 1\leqslant p\leqslant p'$$

and since $||x||_p^p = \sup_{\pi \subset \pi_0} S_p(\pi, x)$, so $S_p(\pi, x) \nearrow \sup_i |x(t_i) - x(t_{i-1})|$ and, by 0.1,

$$\sup_{\pi \subset \pi_0} S_p(\pi, x) \to \sup_{\pi \subset \pi_0} \sup_i |x(t_i) - x(t_{i-1})| = \|x\|_0^H.$$

2.3. Since the convergence of a monotone sequence of norms in a dense set implies convergence everywhere (cf. [8], Th. 9.1), the preceding considerations yield

$$\begin{split} \langle AC_p, \| \ \|_p^F \rangle &= \overline{\widetilde{\mathfrak{S}}}_{\epsilon \to 0+} \langle AC_{p-\epsilon}, \| \ \|_{p-\epsilon}^V \rangle = \overline{\widetilde{\mathfrak{S}}}_{\epsilon \to 0+} \langle CV_{p-\epsilon}, \| \ \|_{p-\epsilon}^F \rangle \quad \text{for} \quad 1$$

Similarly as in the case of spaces $\langle H_p^0, \| \parallel_p^H \rangle$ and $\langle H_p, \| \parallel_p^H \rangle$, the family $\langle AC_p, \| \parallel_p^U \rangle$ depends on p semicontinuously from below and the family $\langle CV_p, \| \parallel_p^U \rangle$ — semicontinuously from above (5).

2.4. According to Riesz [7], we may consider another definition of the p-th variation of a function x(t) defined in $\langle a, b \rangle$:

$$arPhi_p(x) = \sup_{\pi} \Bigl(\sum_{i=1}^m rac{|x(t_i) - x(t_{i-1})|^p}{|t_i - t_{i-1}|^{p-1}} \Bigr)^{1/p}, \quad p \geqslant 1.$$

F. Riesz proved that in order that $\Phi_p(x) < \infty$ for a function x(t) and for p > 1, it is necessary and sufficient that x(t) be the indefinite integral of a function belonging to L_p , and

$$\Phi_p(x) = \left(\int\limits_a^b |x'(t)|^p dt\right)^{1/p}$$

(cf. [4], p. 224, and [10]). Thus the space

$$IL_n = \{x : \Phi_n(x) < \infty, \ x(a) = 0\}$$

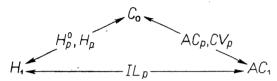
⁽⁵⁾ Let us note that families CV_p and AC_p , as well as families H_p and H_p^0 , resemble topologically the lexigraphical product of an interval (i. e. of an ordered set of type λ) and of a two-point set, provided with the order topology, i. e. the so called topological (non-metrisable) space obtained by "splitting of the points of an interval into halves".

is identical with

$$\left\{ x\colon x(t) \,=\, \int\limits_{a}^{t}z\left(u
ight)du\,,\,z\,\epsilon\,L_{p}
ight\} ,$$

both spaces being provided with the norm $\|x\|_p^{\phi} = \Phi_p(x)$. Obviously, the family $\langle IL_p, \| \parallel_p^{\phi} \rangle$ depends on p continuously. Moreover, $\langle IL_1, \| \parallel_1^{\phi} \rangle = \langle AC_1, \| \parallel_1^{\mu} \rangle$ and $\langle IL_{\infty}, \| \parallel_0^{\phi} \rangle = \langle H_1, \| \parallel_1^{\mu} \rangle$ (if a = 0, b = 1).

Thus, let us assume, for simplicity, that $\langle a,b\rangle=\langle 0,1\rangle$. Connections between families considered so far may be presented by the following scheme:



- **2.5.** In many considerations (e. g. in the theory of Fourier series) functions satisfying the Hölder condition and being of finite p-th variation, simultaneously, are very useful. Spaces of such functions $CV_p \cap H_q$, $AC_p \cap H_q^0$ etc. provided with the norms $\|x\|_{p,q}^{VH} = \|x\|_p^p + \|x\|_q^H$ are Banach spaces, moreover, the space $\langle AC_p \cap H_q^0, \|\|_{p,q}^{VH} \rangle$ is separable, rational polygonal functions being dense in it. These spaces may be treated as depending on a double parameter (p,q), where $p \geqslant 1$, 0 < q < 1.
- 3. Spaces of almost periodic functions. Let S_p , W_p and B_p $(1 \leq p < \infty)$ denote the normed spaces of almost periodic functions in the sense of Stepanoff, Weyl and Besicovitsch, respectively (§). The means

$$\overline{\mathfrak{M}}^S(x) = \sup_{-\infty < t < \infty} \int_t^{t+1} x(u) du, \quad \overline{\mathfrak{M}}^W(x) = \overline{\lim}_{t \to \infty} \sup_{-\infty < t < \infty} \frac{1}{t} \int_t^{t+t} x(u) du,$$

$$\overline{\mathfrak{M}}^B(x) = \overline{\lim}_{T \to \infty} \frac{1}{2T} \int_{\pi}^T x(t) dt$$

are defined for any bounded measurable function and, by 0.3, the norms

$$\|x\|_p^S = [\overline{\mathfrak{M}}^S(|x|^p)]^{1/p}, \quad \|x\|_p^W = [\overline{\mathfrak{M}}^W(|x|^p)]^{1/p}, \quad \|x\|_p^B = [\overline{\mathfrak{M}}^B(|x|^p)]^{1/p}$$

depend on p continuously for any fixed bounded x. Hence, the class $\langle S_p, \| \parallel_p^S \rangle$ depends on p semicontinuously from below (7).

The spaces $\langle B_p, \| \parallel_p^B \rangle$ depend on p continuously, since they are equivalent to the spaces $L_p(G, \mu)$, where G denotes the Bohr compactification of the additive group of real numbers and μ denotes the Haar measure on G. At the same time, this equivalence maps the uniformly almost periodic functions of Bohr on the continuous functions on G and maps the functions $e^{i\lambda}$ onto the characters on G; μ being regular, continuous functions are dense in each space $L_p(G, \mu)$, $1 \leq p < \infty$ (Følner [3]) (8).

We do not consider the spaces W_p , for they are not complete.

- 4. Spaces of strongly p-summable sequences.
- **4.0.** Let us denote, for $p\geqslant 1$, by M_p the class of all sequences $x=\{x_n\}$ such that

$$||x||_p^M = \sup_n \left(\frac{1}{n} \sum_{i=1}^n |x_i|^p\right)^{1/p} < \infty.$$

 $\langle M_p, \| \parallel_p^M \rangle$ is a non-separable Banach space. Further, let us denote by M_p^c the closure in $\langle M_p, \| \parallel_p^M \rangle$ of the set of sequences which are constant for almost all n. Obviously, M_p^c consists exactly of all strongly p-summable sequences, i. e. of sequences such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n|x_i-a|^p=0$$

for a number a being a generalized limit of $\{x_n\}$.

Finally, let us denote by M_p^b the closure in $\langle M_p, \| \|_p^M \rangle$ of the set of all bounded sequences. Evidently the following inclusion are satisfied

$$M_p \subset M_{p'}, \quad M_p^c \subset M_{p'}^c, \quad M_p^b \subset M_{p'}^b$$

for $p > p' \geqslant 1$.

4.1. Applying 0.3 with $\overline{\mathfrak{M}}(x) = \sup_{n} \frac{1}{n} \sum_{i=1}^{n} x_{i}$ we conclude that the families $\langle M_{p}^{c}, \| \parallel_{p}^{M} \rangle$ and $\langle M_{p}^{b}, \| \parallel_{p}^{M} \rangle$ are semicontinuous from below for $p \geq 1$.

4.2. The class M_p^c as well as the class M_p^b is not continuous with respect to p.

Proof. We shall prove that condition 5° is not satisfied. Let

$$x_n = \left\{ egin{aligned} a_k & ext{for } n = m_k, \ k = 1, 2, ..., \ 0 & ext{elsewhere,} \end{aligned}
ight.$$

^(*) An exposition of these spaces is given in the monography of Besicovitch and in the paper [1] of Bohr and Følner.

⁽⁷⁾ Professor S. Hartman has remarked that, by some results of Bohr and Følner [1], condition 5° is not satisfied for the class $\{S_p\}$.

^(*) We are indebted to Professors S. Hartman and C. Ryll-Nardzewski who have shown us this method.

where a_k is a sequence tending to infinity and $0 = m_0 < m_1 < m_2 < \dots$ is a sequence of integers such that $m_k/k \to \infty$,

$$rac{2}{3} < rac{1}{m_k} \sum_{i=1}^{m_k} |x_i|^p < 1 \quad ext{ and } \quad rac{1}{m_k - 1} \sum_{i=1}^{m_k - 1} |x_i|^p < rac{1}{3}$$

for k = 1, 2, ... Then $x = \{x_n\}$ belongs to M_p and does not belong to M_p^b , although $x \in M_p^c$ for every p' with $1 \leq p' < p$. Indeed, let us denote $l_k = m_{k+1} - m_k$; then

$$(\|x\|_p^M)^p = \sup_{k} \frac{|a_1|^p + \ldots + |a_k|^p}{l_1 + \ldots + l_k} \leqslant 1$$

and

$$\lim_{k \to \infty} \frac{|a_1|^{p'} + \ldots + |a_k|^{p'}}{l_1 + \ldots + l_k} \leqslant \lim_{k \to \infty} \frac{|a_1|^{p'} + \ldots + |a_k|^{p'}}{|a_1|^p + \ldots + |a_k|^p} = \lim_{k \to \infty} \frac{|a_k|^{p'}}{|a_k|^p} = 0$$

for p' < p. Hence

$$0\leqslant \overline{\lim_{n\to\infty}}\,\frac{1}{n}\,\sum_{i=1}^n|x_i|^{p'}\leqslant \lim_{k\to\infty}\,\frac{|a_1|^{p'}+\ldots+|a_k|^{p'}}{l_1+\ldots+l_k}\,=\,0\,.$$

References

- [1] H. Bohr and E. Følner, On some types of functional spaces, Acta Math. 76 (1945), p. 31-155.
- [2] Z. Ciesielski, On isomorphisms of the spaces H_a and m, Bull. Acad. Pol. Sci. 8 (1960), p. 217-222.
- [3] E. Følner, On the dual space of the Besicovitch almost periodic function spaces, Danske Vid. Selsk, Mat. Fys. Medd. 21 (1954), no. 1, 27.
- . [4] Л. В. Канторович, Б. З. Вулих и А. Г. Пинскер, Функциональный анализ в полуупорядоченных пространствах, Москва 1950.
- [5] E. R. Love, A generalization of absolute continuity, J. London Math. Soc. 26 (1951), p. 1-13.
- [6] J. Musielak and W. Orlicz, On generalized variations (I), Studia Math. 18 (1959), p. 11-41.
- [7] F. Riesz, Untersuchungen über Systeme intergrierbarer Funktionen, Math-Annalen 69 (1910), p. 449-497.
- [8] Z. Semadeni, Limit properties of ordered families of linear metric spaces, Studia Math. 20 (1961), p. 245-270.
- [9] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), p. 251-282.
- [10] И. Д. Заславский, Некоторые критерии компактности в метрических и пормированных пространствах, ДАН 103 (1955), р. 953-956.

Recu par la Rédaction le 9, 7, 1960

On very strong Riesz-summability of orthogonal series

by

J. MEDER (Szczecin)

1. Let $\{\lambda_n\}$ be a positive, strictly increasing, numerical sequence, with $\lambda_0=0$ and $\lambda_n\to\infty$.

$$(1.1) u_0 + u_1 + \ldots + u_n + \ldots$$

with n-th partial sums s_n , is said to be summable $(R, \lambda_n, 1)$ to the sum s, if

$$au_n = rac{1}{\lambda_{n+1}} \sum_{k=0}^n (\lambda_{k+1} - \lambda_k) s_k o s, \quad ext{ as } \quad n o \infty.$$

Obviously, the Riesz-method of summation is a generalization of (C, 1)-method, which is obtained by putting $\lambda_n = n$.

Series (1.1) is said to be very strongly summable $(R, \lambda_n, 1)$ to the sum s, if

$$\sum_{k=0}^{n} (\lambda_{k+1} - \lambda_k) (s_{v_k} - s)^2 = o(\lambda_{n+1}), \quad \text{as} \quad n \to \infty,$$

for every strictly increasing sequence of indices $\{v_n\}$.

In particular, if $v_k = k$ (k = 0, 1, 2, ...), we shall say that series (1.1) is strongly summable $(R, \lambda_n, 1)$ to the sum s.

Series (1.1) is said to be strongly (very strongly) summable (C, 1), if it is strongly (very strongly) summable $(R, \lambda_n, 1)$ with $\lambda_n = n$.

2. Further, we shall consider the strong and the very strong Riesz-summability of orthogonal series.

Let $ON\{\varphi_n(x)\}$ denote an orthonormal system defined in the interval $\langle 0, 1 \rangle$ and $\{e_n\} \in l^2$, i. e.

$$(2.1) \sum_{n=0}^{\infty} c_n^2 < \infty.$$