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where o is @ sequence tending to infinity and 0 = my<m, <m,<...
is a sequence of integers such that mylk - oo,

my mp—1
2 1 1 Vop o L
< — >mP <1l and E o " < 3
3 My, At my—1 =

fork = 1,2, ... Then # = {,} belongs to M, and does not belong to Mo,
although weMS for every p’ with 1 <p’ < p. Indeed, let us denote
I, = My —My; then

My — g <1
(o3 = sup 24—
and '
O o N Y g PO o N
lim < lim 5 > = & =
koo Dol oo |an| et ol koo ||
for p' < p. Hence
—1 X, ey [P ol
< lim — 7 < lim A = 0.
\n-—{?o n - & ke300 1+ A
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On very strong Riesz-summability of orthogonal series

by
J. MEDER (Szczecin)

1. Let {1,} be a positive, strictly increasing, numerical sequence,
with 4, = 0 and 2, — oo.
A series

(1.1) U+ Uyt Up+. .o

with n-th partial sums s, is said to be summable (R, 4,,1) to the sum s, if

n

*—Z(Ak+1—1;.-)8k~> §, a8 n—»oo.

T, ==
n Zn+1 &~
Obviously, the Riesz-method of summation is a generalization of
(0, 1)-method, which is obtained by pufting 1, = .
Series (1.1) is said to be wery strongly summable (B, 4y, 1) to the

sum 8, if
n

D e — &) (85, —8)% =

k=0

0(%pe1)y @S n — oo,

for every strictly increasing sequence of indices {v,).

In particular, if v, =% (k=10,1,2,...), we shall say that series
{1.1) is strongly summable (R, 1,,1) to the sum s.

Series (1.1) i3 said to be sirongly (very strongly) summable (C, 1),
if it is strongly (very strongly) summable (R, 4,, 1) with 2, = n.

2. Further, we shall consider the strong and the very strong Riesz-
summability of orthogonal series.

Let ON{gp,(x)} denote an orthonormal system defined in the interval
<0,1> and {e,}el? i e

2.1)

oo
2
ZO" < 00,
n=0
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Further, let

00
D) tnpal@)
n=0

denote orthogonal series being developments of functions f(a)eIL? i. e.
integrable with the square in Lebesgue sense. )

The strong summability (€, 1) of orthogonal series, as well as that
of Fourier series, has been investigated by several authors :such as:
A. Zygmund, S. Kaczmarz, 3. Borgen, Z. Zalcwasser, A. Alexits, B.'N.
Prasad and N. N. Singh, and recently by K. Tandori ([6], Mitt.
II, IV, VI). A. Zygmund [7] has proved the following theorem: If series
(2.2) by condition (2.1) is summable (C,1) almost everywhere to
2 function f(z), then it is strongly summable (C,1) almost everywhere
to this funection. K. Tandori showed ([5], IV Mitt., Satz II, p.19) that
under the same assumptions concerning the coefficients of series (2.2.)
the very strong 'summability (C,1) almost everywhere of this series
cannot be concluded. Moreover, he has proved ([5], Mitt. IV, Satz I,
p. 19, and Mitt. VI, p. 14) the following two theorems:

(2.2)

I. Let {¢,} denote 2 positive sequence such that {¢,}el* and Vu-e,
'>Vﬂ—l-cn+1 (n=1,2,...). It series (2.2) with these coefﬁei(.ents is
summable (C, 1) almost everywhere to a function f(#), then it is very
strongly summable (C, 1) almost everywhqre to this function.

II. If fci (loglogn)? < co, then series (2.2) is very strongly summable
n=2 )

(C, 1) almost everywhere to a function f(x)eL?2

In the first part of this paper (Theorems 1-3) we generalize the
above theorem of Zygmund and the last two theorems of Tandori, trans-
fering them the more general Riesz-method of summation. In t_he
second part (Th.4) we give an example of orthogonal series (2.2) with
coefficients satistying condition (2.1) which, being summable (B, 1)
(i. e. by the first logarithmic means) almost everywhere to a function f.(w),
is not very strongly summable (R, 1) almost everywhere to this funcmfm.

By proving theorems given below we shall often refer to the following
statements of A. Zygmund [6] (compare also G.G. Lorenz [3] and
J. Meder [4], Th.2 and Th.3, p.16-17):

TeeOREM A. Let {p,} denote a strictly increasing sequence satisfying
the condition
APni1
AP

1<g< <7

H

where g and r are constants, independent of n.
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In order that orthogonal series (2.2) with coefficients satisfying con-~
dition (2.1) should be summable (R, 20, 1) in a set E almost everywhere,
it is necessary and sufficient, that the sequence {s, (#)} of partial sums
be convergent in E almost everywhere.

THEOREM B. The orthogonal series (2.2) is summable (R, A,,1) almost
everywhere, if its coefficients satisfy the condition

2, ¢alloglog2,)? < oo (1),
=N
3. TuEOREM 1. If orthogonal series (2.2) with coefficients satisfying
condition (2.1) s summable (R, Any 1) almost everywhere to a function f(ax),
then it is strongly summable (R, Any 1) almost everywhere to this fumction.
Proof. Let us write

'gn(m) = Co¢o($)+01¢71(m)+~--+C‘n%(x)7
1 n
w(®) === > (e — )3 (@),
N+l k=0
We observe that for any » the following inequality is satisfied:
1

D G — ) (51 () — f (@)

g1 £

n

2, = 2a) (w2 (0) —f (@)

n+1 k=0

2 2

<

n
D) (s — 22) (s (@) — v ()2 +
N+l k=0

Since series (2.2) is summable almost everywhere to a function f(z),
50 the second term on the right side of the last inequality tends to zero
almost everywhere. To prove that the fi,, term on the right also
tends to zero almost everywhere, we notice that

1
k(@) — (@) =

k ik
D Gon—1) > e (o)

}“k+1 v=0 i=v1
E

}*k+1 i=0

1 k
=— Y ;4 (:
o _2 e (@)

I

i1
€1(2) ) (hyyy— )
v=0

Therefore we have
I3

Sp (@) — 7 () = 6 i ().

t+1 =0

(1) N denotes here the least positive integer such that loglogiy > 0.
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0 1
Dy Be— M \
+ o !
-—————2k+1 af(sk(m) Tk (m)) &L

__Z.o‘ }vk+1—llc 2 212 Ze lz lk+1‘1k
lh-}-llk—{-l =0 Fo—i

lk+1}“k+1
1 oG
<Zc 122(—2— o ):Zci< o,
i =1 fe==1 1 i=1
whence by Lévy theorem it follows that the series
D (g — M) (s (@) — w (@)
k=0

converges almost everywhere. Applying to this series the well-known
Kronecker theorem, we finally find that

(N

(s — A8 (@) — 7 (@) = 0(Anya)

=
=3

almost everywhere.

Thus we have shown that each of the terms on the right in the
mentioned above inequality tends to zero almost everywhere. This
completes the proof of Theorem 1.

TEEOREM 2. Let {ci}el® be a numerical sequence of positive terms
such that

P A
(3.1) ]//1 d;;‘/z,”“ . m=1,2,..).

n+1" }m n42 7 Z-n+1

Further let {c,) be an arbitrary sequence of real numbers satisfying
the relation

(3.2) ) 6n = 0(ch).

If orthogonal series (2.2) consisting of coefficients {c.} is summable
(B, Ay, 1) to a certain function f(x) almost everywhere, then it is very strongly
summable (R, 4,,1) to this function almost everywhere.

Proof. Let {v,] be an arbitrary strictly increasing sequence of
indices. We may suppose, without loss of generality of Theorem 2, that
V1 = Pi- :

Let Dy <0 < Pmya, Where {p,} has the same meaning as in
Theorem A. Let us assume that u; = pp.1. Since from the assumption
{cf} €12 and orthogonal series (2.2) is summable (R, 4,,1) to a function
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f(z) almost everywhere, so from Theorem A it follows that lims, (z)
= f(2) (?) and therefore e
(3.3) lims,, (#) = f(x).

k-

Let us observe that

. 1 n
(3.4) 7y 2 (e 1) oo (0) = f(o)?
n+l k=0
2 n
S D (= ) (5, (0) — sy @)+
n+l k=0
+ 12 Bir = 1) s (@) — F (@)%

In virtue of (3.3) we have
n
35) D (=) (5., (@) = (@) = 0(hsr), 85 m—> oo,
k=0
Now, we show also that
36) D (hgr— ) (5,,(0) — 50, (@))2 = 0(dus)), 8S 2 oo.
k=0
Since
}h[l. 1 m+
Tvﬁ = % Srtoor dup <y,

P,

hence we may write in view of (3.1) and (3.2)

oo 1 o0 3
z’k-‘)—l'—‘ Ak f 2 Al Zk+l_lk HE: -
> o P @ (0] do= DS N o

k=0 [ k=0

p=vk_

<Z lk+1—;~k . )“kcltz $ ’117+1‘—}“p

Ara 1 — Ag A
= n M= S Ay
oo
" %2
< E A /4;l+1_’lvk+1)<’2 E ¢ < oo.
k=0 [Tl i=0

According to the Lévy theorem the series

A A1 —

2 _;:_‘l(s#k(w)vs%(m))z
k=0 e+

(3) The symbol == denotes here that the corresponding equality is satisfied at
almost any point of interval (0, L.

Studia Mathematica XX
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is then convergent almost everywhere. Hence and from the Kronecker
theorem follows (3.6), and (3.4) gives our theorem.

4. Let

D) U= A (),

0 (3
o z,m
where {v,} denotes the sequence defined above.

We shall prove the following two Lemmas:

Lemma 1. Let {c,}<l2 For the convergence almost everywhere of the
sequence {7 ()}, it is necessary and sufficient that the sequence {37, (w)}
be convergent almost everywhere.

Proof. Necessity. Let {c,}<l>. Further, we assume that sequence
{z0 ()}, and therefore sequence {z{)()} also, are convergent almost

everywhere.
In order to show the necessity it suffices to prove that

(4.1) lim s, (2)— 15 (@)] = 0.

For this purpose we first notice that, applying to the expression
{+$) (#)} the Abel transformation, we may write

1 ﬂn;l Vk+1
Sup,, (@) — ) (0) = — Dl D) apa).
Dp+1 k=0 V=041

Hence and by (2.1) we have
Pp—1 V%41

1 0 1
§ | oy, (0 — o)1 < 5—12— E B D 6
=0 0 n=0 Pn %=0 v+l
o Vi1
= § Zi“ E ¢ E 1 E 6 < oo.
k=0 =g+l pp>k+l ”n

Basing upon the Lévy theorem we conclude that the series

y [8% (@) — Tﬂ(;z(

is convergent almost everywhere Hence there follows formula (4.1),
which proves, by virtue of convergence almost everywhere of the sequence
{x5)(x)}, that the sequence {s,,p”(w)} i3 convergent almost everywhere.

Sufficiency. To show this condition we first prove that the series

Z Z’n-}—z“ ;ln 1

is convergent almost everywhere.

(4.2) T (@) — ) () ]2
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‘We observe that
n41 7w
\ 1
(@)= (@) = V(Akﬂ 1) 80, (@) — —— 3 (a1 — M) ()
)" k= +1 k=0
Yn+1 n-1 V41

— nu—""ZnTl 2 Py w)__ T2 n+1 y)k— 2 o () -

n+12-n.__

n+" V=041 V=041
Hence
}'n-)-l ) ]
§ e f [+ (@) — (o) oo
n+4+2 7 fnil H
o (Z. 1 )l Pn-1 n—1 Pr+1
n4+2 " A1) hngl ) n+‘7 n+1
< Yo jmiien § PR S EAM >
=0 n+2 V=D +1 n=0 CnAlfed 3= v=1g+1

Now we show that the two last series are convergent. We see at
once that :

Un+1

2.0 (Zn+2_ln+l)ln+1 2 Gz
E—y v
n=0 A;‘T’ V=41
o Unt1 2 o Pnt1
= 5’ cvin—*-l( ZL'I)< 0§<OO,
n=0 v=vy,+1 2 n+2 =0 V=Ty+1

which proves the convergence of the first investigated series. We may
Write
Pt Ck+1

n—r 2— 4 T2 Mgl
il E Z'L-rl E o< g ( T ) § Zk-}-l § o
=0 pryur:s n-+1 ‘n4-2

il
n=0 "Tl}'"‘*'z v=vg+ V=gl

Vr+1

o0
<Zh+1 ZGDZ(_ —)<Zc§<oo.
n=0 n+1 7"+2 V=0
and this shows the convergence of the second series.

From the above convergence and the Lévy theorem it follows that
series (4.2) is convergent almost everywhere.

To show the convergence of the sequence {z{’(2)} let us assume that
Pu<E<puy (n=1,2,..). Applying the Cauchy inequality we find

that
[ m)-—r(”) )12 _{ Z [ () — 7, (% )}
i=py+1
Dy Ppt1
< _.L.[T(” ) (@) — 72 (2) 12 -’”_’r_l:__ﬁ
i=Dp+1 A= 1P+l A
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By (4.2), the first sum on the right side of the last inequality tends
to zero almost everywhere and the second one is bounded, for

Pl R Pp+1

li+1—Ai < 1 A 1) < g2
_J‘—}-_\Z (i+1— i)\"
i=pp+1 K Pntl i lppe1

The sequence {si,pn(m)} and by (4.1) a fortiori the sequence {zf)(x)}
is convergent almost everywhere. :

Hence and from above inequalities we conclude that the sequence
(¥(#)} is also convergent almost everywhere, which completes the
proof of Lemma 1. -

Remark. Theorem 2 seems to the anthor to be not true, if we do
not introduce the additional assumptions (3.1) and (3.2) besides the
agsumptions of Theorem 1.

LEvMa 2. Let {c,} el For the convergence almost everywhere of the
sequence {1\ ()} to & certain function f(®), it is mecessary and- sufficient
that series (2.2) be very strongly summable (R, 4,,1) to this function.

Proof. The sufficiency follows immediately from the inequality

(4.3) |75 (@) —f(@)] é]//ll 2 (R 1= Ax) [8u () —f (#) >

n+1 =0

To prove the necessity we assume that u, = v, for p, <n <pn.
(m=1,2,...).

Next, let us suppose the sequence {1(,7;’(90)} to be convergent almost
everywhere to the function f(#). Hence and from Lemma 1 we conclude
that the sequence {supn(w)} is convergent almost everywhere to the
function f(z); thus, the second expression on the right side of inequality
(3.4) tends to zero almost everywhere.

Now, let us observe that

77/%11 2’)!-{»1

1
A1 — An e
—ﬂ—ﬂf[sun(m)—sﬂn(m)]-dw
0

Y

=

m+1
Y Aa— A 2
N (R O et Gy)

I

Zy A
Mm=1 N=Dy,+1 e+l
) Pmt1 ) 2
n+1" S
< (s e v dcl ila LN
< T e vpm+1) P
Mm=1 N=Pp+1 s

[=+]
< 1‘22 € < oo,
v=0 !

icm®
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Hence and from the Levy theorem it follows that the series

An;l — ;‘n
Y [8y, (@) —s,, (@) ]*

n=p; +1 n+1

is convergent almost everywhere. Applying to the last series the Kro-
necker theorem, we conclude that the first expression on the right side
of the inequality (3.4) converges almost everywhere also, which completes
the proof of Lemma 2.

5. THEOREM 3. If

oo
(5.1) - N ci(logloga,)? < oo,
v=N

then series (2.2) is wvery strongly summable (B, 4, 1) to a function f(z)
almost everywhere.

Proof. In order to prove Theorem 3 we extend the sequence {1}
by linear interpolation to a strictly inereasing function A(@), which for
#=mn takes the value 1(n) = 1,, and we denote by I(z) the uniquely
defined function inverse to A(x) (see [1], p. 127, 2.8.8.).

Since for 1, = 2" the convergence of (2.2) holds, we may assume,
without loss of generality, that there exist positive integers n such that

2»1. < }‘n< 27n+l
Hence we may write

(m=1,2,..).

0EMI<UE™) < [1E™M]+1 < E™HI< U™ (3).

Now, we put p, = [[(2")] (m =1,2,..).

It is easy to verify that the sequence {p,,,} is positive, strictly increasing
to infinity, and furthermore,

o< fmn g
Ao
Hence by (5.1) and Theorems B and A, it follows that the sequence
{85, (@)} is convergent almost everywhere to a function ().
Further, let n be an arbitrary positive integer, for which the inequa-
lities ’ i
P KV, < Pmga
are satisfied.

Let us denote by % and I the lower and the upper bound of the set
of integers » fulfilling the above inequalities, respectively.

(®) [] denotés the integral part of w.
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..............................

It is obvious that the system {F,(»
orthogonal in <0, 1.

Let
1
[P
[}

From the Rademacher lemma ([2], p.162) we conclude that there
exists a function 0 < §,,(w)eL?® such that

Bor=1,2,...,1—k+2) is

Ydz = A (r=1,2,...,1—k+2).

n—k+41
10 80y, (@) — s, (@] = | ) Fr(@)| < na),
r=1
for 1<n—k+1l<Il—k+2,
1—k+4-2

1
2 f 82, (x)de =
[1]

Since I—%k-+2 <m+1 and log(m+1) = O(log(2m-—1)) = 0(log
log2™!) = 0 (loglog(2*"™")), so by (5.1) and the definition of fune-
tions F,.(x), we may write

0(log2(1—T+2)) D' A}
r=1

ca 1 < Pm+1
D' Su(a)de 1) dlogim+1) D' 6
m=20 m=2 V=D +1
00 Pmty Nl .
= 0(1) Z 2 2 (loglog 4,)2 = O (1) Zcﬁ (loglog 1,)? < oo
M=2 V=Ppp +1 v=N

The series Z 8%, (x) is then by the Lévy theorem convergent almost
everywhere, Whenee it follows that &, (2) — 0 almost everywhere. Thus

Suy, (m)—spm(m) —+0 (m - oco) almost everywhere.

The sequence {su (w)} is then convergent almost everywhere to the

funetion f(x) and from Lemma 1 it follows that ={”(x) — f(z) almost
everywhere, which finally, by virtue of Lemma 2, completes the proof
of Theorem 3.

6. The purpose of this section is to study & special case which is in
close connection with the previous results.

icm
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Namely, we shall prove an analogous theorem to that of K. Tandori
([5], Mitt. IV. p.19), concerning the (R, 1)-method of first logarithmic
means.

Series (1.1), with %n-th partial sums s,, is said to be summable (B, 1)
to the sum s, if

1

St
™= Togn+1) gwl =8

a8 n—> o0,

‘We shall now prove that the (R, 4,, 1)-method is for 4, = log(n+1)
equivalent to the (R, 1)-method.
‘We put

n
SeMk
?
P k41

. 1
= log(n+1)

where {n,} denotes a sequence strictly increasing to 1, with 7, > 0.
We verify easily that 7, — s involves 7 — s and conversely. In fact,

putting 7, = 1—e,, where ¢, form a sequence decreasing monotonously
to 0, we find

1 = S$r&x
log(n+1) & k+1 )

*
Ty = Tp—
Applying to the last sum the Abel transformation we may write

— +m210g (ot 1) T (66— 1)

1 S €1
log(n+ 1) & y k+1

Assuming z,, — s, and observing that the series Z(ak— £541) CONVErges,
k=0

we conclude, in view of Kronecker theorem, that the last expression
tends to zero, as m — oco. Thus 7 — 8.

Conversely, 7, — s involves 7, — s. In order to show it, we proceed
similarly es before.

We write

1 = S$1 Mk 1 . Sk €1
log(n+1) e k+1 log(n+1) = k1

Ty =

n
81 x Mk

1
__ *
=t gt 1) g e(i+1)

n—1

1 * x 8k+1)
— = Nlog+1 (————- :
log<n+1>2 e P

En s

== Tn+
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Since ) — s and the series

: =\ kg
converges, so arguing as before, we find also that =, —s.

This leads us to the conclusion that the (R, 1)-method of summation
can be considered as s particular case of the (R, 4,,1)-method, with
which it is that equivalent for A, = log(n+1). Therefore the results of
preceding sections remain true for the (R, 1)-method also. To avoid
repetition we take this for granted and the details of proofs we leave
to the reader.

Now we shall prove the following theorem:

THEOREM 4. There exists such a system ON{gp,(2)} in <0, 1), sequence

" of coefficients {c,)cl® and strictly increasing sequence {v,} of indices such
00

that the series D, cupn (@), with n-th partial sums S, (), is summable (B, 1)
n=0
almost everywhere to the function f(®), and nevertheless the sequence
1
log(n+ 1)

is divergent in <0,1) almost everywhere.

The proof of this Theorem is based on the following theorem of
K. Tandori ([5], Mitt. IT, Satz II, p. 151), see also ([1], Satz 2.9.1, p. 129):
Let {a,} denote a sequence satisfying the conditions:

@) 1+ 8y, (@) /2. 8y, (@) [(n+1)]

(i) e < oo,
N=0
(if) Vna, =Vatle,,, >0 (nm=1,2,..),
(i) Z a2 (loglogn)® = oo.
N2

Then there exists a system ON{ep,(x)} such that the series

2 O, P ()

n=0
consisting of these coéfficients is non-summable (C, 1) at any point of the
interval of orthogonality.
Passing to the proof of our Theorem, we define the sequence {an}
as follows:

a, =1 for ., [6°7,

a, =1/ anognloglogn(logloglogfn)z for

n=1,2,..

n =[],

icm
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It is easy to verify that the sequence {a,} satisfies assumptions (i),
(ii) and (iii) of the Tandori theorem, and that

(6.1) ) & (logloglogn)? < co.
n=N

Hence and from Theorem B we conclude that there exists a system
ON{y,(#)} such that the series

(6.2) D) Gun(®)
. N=0

is on the one hand non-summable (C, 1) at any point of interval <0, 1),
and on the other hand summable (B,1) in <0, 1) ‘almost everywhere.
To continue the proof, we lean upon an inequality proved by K. Tan-
dori ([5], Mitt. II, p. 164, 3.11):
Under the above assumptions the inequality

]a’ Vm-\-l"l’qu+1( IERE +a‘nV,,1+nm(z)+1y’e\m+nm(x)+1(-73 | =B>0

(B constant, n, (z)+1 < 2% N, = 9mt3_4)
is satisfied for every wzeF, |E| =1 and for an infinite number of in-
dices m.

Hence we verify at once that, removing in series (6.2) the terms with
indices 2"m**, the series obtained in this way will be yet non-summable
(0,1) in set B, whichis always possible, as N,,+ny (@) < Np.,. Moreover,
by suitable change of the values of functions y, (%) in a2 set of measure
zero, we can obtain such series, which will be non-summable (C, 1) at
any point of interval <0, 1).

Let the new series be

@y Y (2).

DNMe

(6.3)

n

il
=3

Obviously, the coefficients {a@,} of this series satisfy the condition
(6.1), whence by Theorem B it follows that series (6.3) is summable (R, 1)
almost everywhere.

Now, we construet a strictly increasing sequence of indices {v,}
and a strictly increasing sequence of positive integers {T,} satisfying
the inequalities

D +1

. D
(6.4) 97 <y < 22T (0 B g9 )

for every »p >1
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22

Putting v, =1¢ for ¢ =1,2,...,2
positive integer such that

, we denote by T, the least

2T
Vg < 2271,

T, being defined, we denote by 7', the least positive integer such
that
972 > 9714 9%,
Further, we put

oIy .
0222+i=2 ¢ for

i=1,2,..,92% —o®.

It is obvious that for those values ¢ the inequalities (6.4) are satistied
for p = 1.

Let us suppose that for an arbitrary positive integer m > 2, the
indices 7 < vy < ... < U ym and positive integers T; < T, <...< T,
are already determined, so that inequalities (6.4) are satisfied for P =
=1,2,..,m—1

Further, let T, denote the least positive integer satisfying the
conditions

T . mALm
2Tmt1 > 9Tm y g2+ pm =274 for i=1,2,.., 22" g,
L

We may easily verify that
U < V< e K v222m+1; Ih<Ty<...<Tpyy

and that the condition (6.4) is satisfied for p = m.

Hence, in virtue of complete induction we conclude that these
inequalities are satistied for every positive integer p.
Next, we construct the series

(6.5) : 2 6 Pn (2)
=
which is mentioned in Theorem 4.
Thusg, let
Pogn(#) = Po(@)  for m 2Vmtl =12, ..,
@(@) = pw,a(®) for v=1,2,..; o # Uy (n=0,1,..),
Ooy =y for w2t (. —0,1,..;m=1,2,..),

6, =0 for VFEVy, (W=0,1,2,...).
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The system {g,(«)} is, of course, orthonormal in <0,1> By (6.4)
and the above construction we have

(6.6) S2Zr(m) = '§22p+1 ()

for T, <r <1’,g,;H (p=1,2,...).
S,(#) and §,(») denote here n-th partial sums of series (6.5) and
{6.3), respectively.

Since the sequence {a,} satisfies the condition (6.1), so according
to Theorems B and A

6.7) }}fﬂ »§22p+1(w) = f(=)

almost everywhere in <0, 1)>.
From (6.6) and (6.7) it follows that

lim § ,(a) = f(z)

almost everywhere in <0, 1). «
In virtue of Theorem A and {c,}<I?, series (6.5) is summable (R, 1)
almost everywhere to the function f(w).
Teking into account the above construction we obtain

8y 0@ = Su(@)  (n=0,1,2,..).
Since the sequence {gzn(m)} is divergent in (0, 1) almost everywhere
so from the last equality it follows that the sequence {8y u(#)} and by
22
Lemma 1 the sequence
1
m[svﬂ(m)/l'f‘sul @) /2+...+8,, (@) [(n+1)]

is divergent in <0, 1) almost everywhere also.
Replacing in the inequality (4.3) 4, by log(n-+1), we conclude hence
that

(6.8) 0 (2) =

k)
5 1

— — 2 £ ’

2, kJrl[Sm-k(w) F@)? # o (log(n+1))

in <0,1) almost everywhere. This, together with & result obtained by
the author ([4], see the proof of Th. 1, p.15), or with Theorem 1 with
Ay = log(n+1), leads us to the following conelusion: If orthogonal series
(2.2), with coefficients satisfying condition (2.1), is summable (R, 1)
almost everywhere, then it is strongly summable (R, 1). However, there
exist orthogonal series (2.2), with coefficients satistying condition (2.1,)
which are not very strongly summable (E, 1) almost everywhere.
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Convolution of functions of several variables

by

J. MIKUSINSKI (Warszawa)

Introduction. In this paper we give & new proof of a theorem on
convolution which is an extension to several variables of the well known
Titchmarsh theorem [5]. The first proof, due to Lions [1], has been based
on the Fourier Transform. Another proof, due to Mikusitiski and Ryl-
Nardzewski [4], has been based upon a geometrical method. The proof
of this paper is based on the concept of Banach algebra.

‘We give several equivalent formulations of the theorem (Theorems
VIII-VIII d).

1. Let # be a commutative Banach algebra over the field of complex
numbers, and let of; be its least extension with unity.

Let E(f) (t > 0) be an exponential operator, i.e. an operator such
that B(t)wesl for med, x # 0, and moreover

10 B(0) = 1;

20 B(t)(wy) = (B@)a)y;

30 For every wed, the function H(t)x is eontinuous;

4° There exists an element lesf,, non divisor of zero, such that

d
ZEOL=E@) ).

Letting ¥ = 0 in 2° we obtain
BE(#)0 =0.
It is also easy to verify that, by 29,
E(t)e - E(t)y = B(t)y-Et)e = E(t,) B (t,)zy.
‘We shall prove that
1) B(t,)E(t) = B(t,+1,).

(*) This means that C%E’(t)lw = E(t)x for every wed.
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