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Operational calculus in linear spaces
by

R. BITTNER (Warszawa)

1. Introduction. There are papers of Heavigide, Volterra [12],
Curry [4], Plessner [10], Mikusingki [5-8], Stowikowski [11], Bellert
[1-2], Niculescu [9] treating the operational calculus by abstract methods,
without using Laplace transformation.

Bellert in his paper [2] has given a uniform theory for the operational
calculus with different interpretations in ordinary linear differential,
difference and differential-difference equations with constant coeffi-
cients and in Euler equations. He has defined an endomorphism T' of
a space X linear over the field I' of complex numbers, satisfying the con-
dition

N
(1) ZanT”m #0 for ay #0 and @ #0,

A=0

apel’y eX.

N
Then the ring of endomorphisms 3 o, 7" can be extended to the

N=0
field of elements

o+ ayT+...+ o, T
BotBrT+- ..+ pud™

which containg in particular the operator p = 1/T, so that we can obtain
Heaviride’s method.

Stowikowski in his paper [11] proves that the operational calculus
may be applied to differential equations

o (#)+ Ay 8D 4o A A (B) = F(2)

where coefficients 4, ,,..., 4, are endomorphisms of the space X.
He eonsiders also ag an example the wave equation, which could not be
treated in paper [2] as a differential equation.
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2 R. Bittner Im
Thig paper treats of an operational caleulus in linear spaces. It

contains a direct generalisation of papers [2] and [11], and is in some

degree connected with papers [7], [8], [9].

Algebra of operators in linear spaces

2. Derivative, integral, constants. Suppose we are given two linear
gpaces O° and O over a field I', and a linear operation § from O*
onto €9, i. e.

(2) S(amy+ fu,) = aSwy 4wy for @y, B0, a, fel.

In the following CC C°.

The general solution of the equation Sw = f, where we(?, feC®, is
of the form # = Tf-+¢, where S¢ = 0 and T is a linear operation with
the properties

8Tf =,
if Tf =0,

@) T(ycorcoeo,
then f =0 for feC°.

Operation S will be called a derivative, operation 7' will be called
an integral. Elements ¢ satisfying S¢ = 0 will be called constants. In what
follows we suppose that there exist constants not equal 0.

Let (™ be the domain of operation 8"; of course O"*'C O™ Let

o0
0% = (M (". For z¢0" we have the identity

N=1
2 = (#—T8#)+ T(Sz— T8 x)+.. .—}»T"’“(S“”‘m—-.’l’ﬂ“w)+1”‘;é"w,

which implies the Taylor Theorem:

(4) & = cg+Toy+...+T" 0y + T8 for m=1,2,...,%,

where ¢, = Sto— T8 w5, ¢ =0,1,...,n—1.

The development (4) will be called the Taylor development of order
m of .

The operation s = v—T'Sx from. (' into the set of comstants,
called the Uimit condition, is linear.

Evidently we have
()] sTf =0 for feOo,

and, from (4), ¢; = 8%, ¢ =0,1,..,,n—1.
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3. Linear derivative equations. Congider a linear differential equa-
tion. ‘
(6) Ly = gnm”"'-Aw—lbmmlw“'“-'l'-Aow =7, ze0" feO?,

where Ay 1,..., 4, are endomorphisms of (° and (%, linear and
commutative with 7 on 0° and with § on (2. ‘

The agsumption % (" implies the Taylor development of  of order n:
% = 6y Toy+...4-T" ¢, +T" 8w, where the constants ¢, €1y..., On
are uniquely determined by element # and endomorphism 7. If constants
Goy O1y «+ey Ony €0 DOt define the solution » uniquely, then the difference
@, = 0,—», of two solutions of equation (B) with the same Taylor
development of order = satisfies the equation

(M

with the limit conditions s, = ... = ¢8" ‘&, = 0.

‘We shall prove the following theorem.:

THEOREM 1. If any two solutions of equation (7) have the same Taylor
development of order m, then their difference x, satisfics the condition

Lo, = 8"5,+ Ap 1 8" @yt ..+ Agw, = 0

(8) @y =T"8"m,, n=1,2,...
Proof. From (7) we have
S0, = —An 8" 0, —. .. —A®,;
then
Ay 80— — Ay, = B(— A 1 80—~ Agt,) = 8w,
because endomorphisms A, i, ..., 4, are commutative with § on C.

We algo have x,¢0™", and by induction #,¢C*. Then o, has a Taylor
development of any order, @, = c§+Tei+...+T" tep +T"8",,
m=1,2,..., and for m >n we have

Lw, = (ch+Ap_165_1+...+ Aged)+
+T(hat An1Ont. .+ 4o037)+
+T*(en 2t Ano1Onprte. .+ Ag0F)+..
+ I Cmpnat AnoyGngnoa e+ AoGnn)+
+ IS g+ T Ay 8" By I AL

From conditions s'ILm, =0, i =0,1,..., taking m >n+1 we
obtain an infinite set of equations, ‘

CntAp10p .+ Ae0g = 0,...,
0:+1+A1?-10:+i—1‘+'--+Aocg' =0,... (¢=0,1,...),
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4 R. Bittner

and because ¢ =...=¢p_, =0 we have ¢t =0, k=0,1,... We
see that v, = T"8"x,, m ==1,2,..., which follows from Taylor’s for-
mula (4).

The solution x, = 0 of equation (7) satisfying (8) will be called
a gingular solution. We see that the number of linear independent solu-
tions of the homogeneous equation

9) 8w+ A, 8w Aw =0

iz not greater than d = nd,+ ¢, where d, is the dimengion of the linear
space of constants and o is the dimension of the space of singular so-
lutions.

The example of equation Adz(w,y) =0, where 4z = 0%z[0x*-
--8%2/0y?, proves that the number of linear independent solutions can
be greater than the order of equation. The example of equation Az
+az = 0, o being a real number, o >0, with limit condition 2, = 0,
0Q being the contour of 2, proves that singular solutions exist.

We can algo consider systems of linear derivative equations

(10) 8wy = Apw+...+ Apm@utfiy  0:0% fieCP
with limit conditions
(11) 8%y == 0y, T=1,...,m.

If the endomorphisms A,,, ..., 4., of C° and O' are commutative
with 7 on (° and with § on Ct, and if two solutions &{",..., ! and
o2, ..., o of system (10) have the same Taylor development of order 1,
that is

suf) = 0 = 82, i=1,..,m,

then their differences w;, = o) —af, condi-
tion (8).
If equations (10) are homogeneous (f; = 0), then the number of

linear independent solutions is again not greater than d = ndy- .

t=1,...,n, satisfy

4. Operational calculus in linear spaces. In the following consi-
derations we shall suppose that endomorphisms A, ;,..., 4, of 0"
and C' have the following property:

(12) if S"w+ A4, 8" o+ + A2 =0, s(S)=0, i=0,1,...,n—1,
then # = 0.

Besides we shall assume that endomorphisms 4, ,, ..., 4, commute
on (° and commute with 7 on C° and § on (.

icm
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Multiplying the equation

13) w4 Ap 8"t A =f, wel", feO,
with limit conditions
(14) 8w =0, ©=0,1,...,n—1,

by T" we see from Taylor’s formula (4) that (12) may be written in. the
form

(18)  (I+dp_ T+ 4,10

= On—l (w)+An—-1T0n—2(w)+- o Allm—loo(m) "‘ Tnf7
‘where

Or(®) = cy--Tey+.. R L

Ig =g for ge(C% constants ¢, ...,¢, are defined by Taylor’s formula
and by (14).
‘We shall prove the following theorem.:

THEOREM 2. If

(16) (T+Ag ,T+...+ 4,8 =0,
hen @ = 0.

Proof. From supposition (16) we have x<C", so that from Taylor’s
formula @ = Cg-+ Ty -+...- T Yo+ T8 w, and s8z=¢, i=0,
1,..,n—1 )

Now we have from (13)-(16) the equality

k=0,1,...,n—1,

(17) o+ Toy+ ..o T 0y s Ay 1 TG+ Tyt .+ T2 0y_s)+
di A T g T = 0.

Multiplying (17) by s we have ¢, = 0. Substituting ¢, = 0 in (17)
and multiplying by sS we have ¢; = 0, and by induction ¢, = ... = ¢,_,
= ¢,y = 0. We then have T™f = 0, whence f = 0 from (3). We thus
have the assumption of (12), and & = 0. We see also that conditions
(12) and (16) are equivalent.

An operation of the form
(18) W(T) = oIV (I+B,T+...+B, T2, ael, a #0

(%y, ky integers, k, = 0, k, = 0)
will be called a polynomial.

Let I be a commutative semigroup of polynomials W, (T), Wy(T), ...
which satisfy the condition

(19) if W(I') @ = 0, then # = 0.
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6 R. Bittner
equaﬁ?;rs [f, W(T)], where f,g,..., «C% W), Wy(T), ... Il, with
(20)  [f, Wy(1)] == [g, Wo(2)] if and only if Wy(T)g == W,o(T)f
and operations
Uy WilD)]+[gy Wa(T)] = [Wo(D)f+Wi(T)g, Wi (T)W(1)],
alf, Wi(T)] = [af, Wi(T)]

will be called results. qualiby (20) and operations (21) are well defined
because we have (19) and o

(21)

Wy c o for W(Iell,
Instead of [f, W, (T)] we shall writ “/n G P
y Wi(T)] write W) 'We then have
I 9 it and only i Wa(I)f = W1
Wl(T) ‘WQ(T) only Z(‘ )f == Wl(f)gv
(22) S i L Wo(T)f+ W, (T)g
WT) W) T T W (DWaT)
Wu(T) Wy (T)
‘We ghall also writ PuAD T i _ WD i
e W @) i) ingtead of W (L’zfﬁ?,ﬁ'")" it WL (T,

Wo(T), We(T)ell.

The set C°(II) of all results is a linear space. The operators ety @,

‘ W (T)
where @eC°(II), W, (T), Wo(T)ell, are endomorphisms of that ;pace.
Just W) i "

a8 a group of operators W:H‘S has a semigroup I7 of polynomials

W(T) . .
T = W(T)) isomorphically contained in it, g0 the space of results
0°(I1) hag the space (° isomorphically contained in it (1 = iw’).

By means of the space of results it is ible t ith limi

) _ posgible to solve (13) with limit
corlld,ltml}s (14). We take a commutative semigroup containing the
polynomial I+ A4, _;T+...-- 4,T" and we obtain ‘

el
(28) - z NI
e iy M ey (% Vit 1), we 0o,

where the polynomials V(7T -
V(1) ¢1I). i(T) are of degrees lower than n (in general

icm°
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Polynomial I+ A, 1 T+...+ A,T" is decomposable into the product
of polynomials of lower degrees if and only if (18) is equivalent to the
system of two equations of lower orders.

In particular we can have in gemigroup II a canonical decompo-
gition of a polynomial:

(24) T4 Ay T+ A A" = (I— Ry TY1(I— Ry T)%. .. (I— R T)'m

where endomorphisms Ry, ..., K, commute, and a canonical form of (13):

(25) (8—Ry) (8~ By)2....(8 — Rn)'ma = f,

o8 = ¢, ©=0,1,...,n—1, where ¢;4...-rin = 7.

Now we shall prove two fundamental theorems of the Algebra of
Operators:

Tamormy 3. If (13), where the endomorphisms Ay 1, sy Ay com-
maudte, is reducible to a canonical form (25) and if it has a wnique solution,
then that solution can be obtained by Heaviside’s algorithm consisting in
a decomposition of operators inio simple fractions

I . )
*‘(}:'ﬁfg{, 'I/==0,1,...,’b.
Proof. From (24) we have
n-—1
I 1111
3 = e V() 6+
(26) 0= 2w O

W(T) = (I—TR)"...(I—TRy)™,

where the degrees of polynomials V;(T) are lower than the degree of
. I ™, .
W(T). It we decompose the operators W@ WO into simple frac-

I . s
tions we obtain results of the form T g, 1=0,1,...,%, geC°

TumoREM 4. If equation (10) with limit conditions (11) has the unique
solution, if the endomorphisms A, very Apy commute on C° and if the
polynomial )
T Ay T, — 43,y — AT |
(27) (LY = | oevomme e l

has. a canonical decomposition in & semigroup IT containing W(T), then
the solution @ cam be obtained by Heaviside’s algorithm.
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8 R. Bittner

Proof. We multiply the equations by 7, and solve by simple frac-
tions equations with unknowns @, @3, ..., ¥y.

These results hold in particular for linear equations with numerical
coefficients considered in paper [2], where different interpretations of
space O° and integral T' can be found.

Analysis of operators in linear topological, locally convex spaces

5. The uniqueness of solution. Let C° be a linear topological, locally
convex fpace, sequentially complete, with topology defined by pseudo-
norms |#], (Aed), i.e.

@, 7> o if and only if |w,—w|, -0 for led, n->oc0,

(28)
¢ =0 if and only if |#|, = 0 for AeAd.

We shall discuss problems of wuniqueness of solution of a linear
derivative equation and we shall try to determine its form.

An endomorphism R of C° will be called a strongly bounded endo-
morphism if there exist positive numbers M,, such that

(29) |Ba)y < M, |l

For fixed A the leagt upper bound of such M, will be c¢alled the i-th
pseudonorm |R|; of a strongly bounded endomorphism R.

The set R of strongly bounded endomorphisms forms an algebra
with superposition as multiplication.

THEOREM b (see [11]). If pV |T%|, = 0 for p —>oco and AeA, and if the

endomorphisms A, _i, ..., Age R are commautative with S and TeR,
then (12).

Proof. If equation (12) is satisfied then (I-+Td,_;-4-...4-T"4,)w
=0 and » = (—1°T% (4, _;+...+T" 42, p = 1,2, ..., so that
(30) [P A PV R SR . W T TP

But we have
b4 (U J— P
VI Ao AT A0,V Tol, < VITPL 5,V ]
where M} = |d,_s|i+... T3 4,), and VITP), Vo], —~ 0 as p-oo

because l/ll"’{a - 0. Thus the series

00

D TP Ayt AT 4B ]

Pl

icm
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is convergent, and |77|;|4p_y4...~T" 14,3 |#]; — 0, whence, by (30),
jo|; = 0 for every Aed, and @ = 0.

THmoREM 6. If T, ReR and |T?], = 04(¢%), 0 < g; < 1, [P}, = 0,(p%)
for Aed, then Sw—Rw =0, 8w = 0 fmplies & = 0.

Proof. We have o= TRy = (TR)’» for p=1,2,...; then [a|,
< |17 | B3 )3 But |17, B, |0, —~ 0 a8 p — oo for every Aed. The
proof is just like the last part of the proof of theorem 5. Hence # = 0.

6. Operational convergence and analytic clements. Let an inte-
gral be a continuouns endomorphism of 09, and let II° be a subsemigroup
of IT composed of all continuous endomorphisms contained in II. In the
gpace of results O°(J1°) we introduce a convergence called operational
convergence (see [5]), defined by the formula

(81) &, - £ if and only if there exists a polynomial W (T)eII° such
that W(T)&, = W(T)E&.

It can be proved that there exists at most one limit for any sequence
of regults. If elements ®,¢C° form a convergent sequence, then that
gequence tends to the same limit also in the operatiomal semse, since
@, = In,, ® = Iw. The space of results C°(/I°) becomes a linear space
with convergence (may be non-topological); addition of results and

multiplication by a number are sequentially continuous.
W (T)

AT where W, (T),

With convergence (31) every operator

Wo(T)ell® is continuous. If ag in (26)

n-1

I ™
By, = g W’)‘Vi(T)ci,m‘*‘ me

and if ;. = 0y fn = f a8 m — oo, then

N1 I Tn
Ty, *gmvﬁ(l’)%'l" W) F
80 that sequential continuity of limit conditions ¢;. and of elements f,
implies operational sequential continuity of solutions of (13).
We denote by A the subspace of ¢® composed of all elements » of
the form (4) such that T™§™w — 0 as m — oo. Elements x will be ecalled
analytic elements (see [9]).
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10 R. Bitiner

‘THEOREM 7. QIf R is a continuous endomorphism commutative with
integral T, and if x<A, then for every positive integer n we have T"w, ",

Rwed, and
qn ( j ™ cm) — Zw‘ ™™,
m=0 M=
(32) S"‘( j g ) — Z =",
M= o]
R f I™ 6m) = Z T (Row).
M0 Nma

Proof. If @ =¢y-t...--I" Vep_y--T"8"w for m = 1,2, ..
T'w = T"¢y-+... T Loy 1+ T(T™ 8™ ),

Re = Rey+...+T" ' Roy, } -+ RI™ 8™,

., then

But T"8™» — 0 a8 m — oo implies, by the definition of operational
convergence, T"*™ 8"z — 0, RT™S8™x — 0 because T and R are conti-
nuous endomorphisms and R is commutative with T.

We thus obtain the first and the third of the equalities (32). We

also have » = 3 T™e¢,, 80 that
M=0

#—cy—Tey—...—T" g, _, <

== - -1
8 x T" = § i Cmn
M=ty

TEEOREM 8. If @ = ¢+...4+T" 0, 1 +T"8" s for m =1,2,...
. r .
and if |T?), = O,(@F), 0< ¢ <1, |8%als = 0;(p™), Aed, then 3 T™¢, >,

P M
ZkT’”“kcm = & a3 p - oo,
Proc;af kWe have |T% 8%o, < |T%);|87 @), < My g% Mop® and |17 8P g,
S|TPLIS o), < Mygf Mo(p+ %)™ for great p. The proof that
M1M=qpp >0 and M,M,gf(p+k)* >0 as p—> oo iy just like the

last pa.rt of the proof of theorem 5. Hence T% 8+ »=> 0 ag p — oo, for
m=1,2,..., k=0,1,

.7. The multiplier vo in the space of analytic elements. Let us
consider in the space A the operation

(33) 1:( g‘ T",) = E (n+1)T+,,

Ne=l n=0

icm°®
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The operation v will be called a multiplier.
Tt ig eagy to see that )

(34) St = w-+ 75w, Z T, 2% -

() M=
It can be proved by induction that

87w = ne"" -4 Sw.
Hence we have

d’m [ _L_n
d,?r}a?"

(35) Sﬂl TM ('—40 o 00

for constant ¢,.

TarorEM 9. If I = 04(%), 0 < @i <1, loph = 0,(0™), Ae<d,
. 00 «
then Y T"¢,eD (™) (*).

N

Proof. We have

| 3 o1 om0, < < w4,

D=7 P=r

(A m) TP il

and the last series tends to zero ag = -» oo, because it i3 the rest of
a convergent series.

8. The exponential operation in the space 4. Let us consider in
the space A an exponential operation

) o (Sra) = S 3 ()]

defined for every endomorphism R continuous and comunutative with
T and 8.
‘We have

00

w(Sre)= S S5 )

ne

() D(R) denotes the domain of operation R.
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80 that

37 e et = (B1+B)T for B commutative with R,,
(38) ¢ =1I, () r=¢F

(39) S8e®p = e S+ e Ry, 3w = sw.

TarOREM 10. If feD(e™™), then the equation

Se—Ro =f, sw=uq

has the solution

(40) ® = & (Te" T f 4 ¢,).

Proof. We multiply the equation by =%, and obtain §(e~x)
= ¢~ 2, s(6~ ™) = ¢,, whence (40).
In the particular case where an integral T is a continuous endo-

morphism of €9 and iu}l)lle = |T|| < 4o, and if the function F(2)
L

0
= Y'a,?" is analytic for |2|
n=0

> ||T], then

(41) IF (D)7 = 5

_J._.fl’(z) ¢*(Te~x)de for weD (™),
s}
where the contour O is counterclockwise and encloses the circle [2] < 1T
Formula (41) is a generalisation of the Laplace formula.
The proof of this remark is the following. Condition |T|,
that for |2 = ||T| the operation I—7 [z has the inverse

< |IT)| implies

go that

wdz.

‘. L (re &

1
TE(D)e = ﬁfﬁv(z) o 2 2T

2T )
The result p— Tw is the golution of the equation

1
Sy——;y:-w, sy = 0.

Operational calculus in linear spaces 13

TeEorREM 11. If the domain of the operation ™ '™ containg all -
constants, then the equation (S—R)"x = 0 has a solution of the form

m—1

m_Z “e¥e,,

=1
where ¢; are constants.
Proof. From (36) we have

* X
"R

e = E T"R"¢ = E ¢
n!

for ¢ constant,

‘whence

P _nipn
i Rr T R
TEe = ¢
n!

=0

By formula (36) ¢™¢, 1¢™¢, ..., 7" "*¢™¢ are solutions of the equa-
tion (§—R)"x = 0. Then the equation (S—R)"w =0, s8w = ¢,

+=0,1,...,m—1, has the golution
m—-l
@ = E m'r”“eR’ci
=0

THBoREM 12. If VTP, -0, oy = O:(m?), Aed, then

»= gT"onsD(eR').

Proof. We have

S5 wed) <

D=1

=

Mz

r
121 3 (%) 1t atamg =
i=0

| TP, M (| Bl A= mi)F,

»

1

T

3
=Ms

and the last series tends to zero a8 m — oo because it is the rest of
a convergent series.

TerorEM 13. If |17, = 0,(43), 0 < @ <1, |EP|; = 04(p®), then the
domain of the operation v™¢™ contains all constants.

Proof. We have ‘

’ i T?R¥¢,

Pa=TC

< D ITP12 1B feols
P=m
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and the last series tends to zero just as in the proof of theorem 12. Hence

[=2]
the series ) TP R¥¢, is convergent. But
Pl

|BP 6ol < |B?|3l0olz = O3(p™)
and theorem 9 implies e*7¢,eD(7™).

9. Relations between an integral and convolution and multipli-
cation. Suppose that the set of constants is & commutative algebra
with unit I. In the space A we can define a new operation ab, called
convolution :

Oki' oo [24] W

\’ n \7 al B \ 1

(49) Y Dy D1y = 3 3 b s).
Nexl W= N Joma0)

If convolution axb is defined for every pair of amalytic elements

@, b, then the space 4 with operation * forms a commutative algebra.
We have

(43) Ixa = Ta, Rlxa =TRa for aecd

and for every continuous endomorphism R on €° which commutes with 7.

‘ THROREM 14. Duhamel’s formula. If R is a continuous endomorphism
which commutes om C° with T, and if h = Rl, k = Rf where h,f, ke,
then

(44) k = S(hxf).

Proof. From relations (43) we have Rlxf = TRf, 8o that hxf = 1%
and & = S(hxf).

THEOREM 15. Borel’s Formula. If B, , R, are continuous endomorphisma
which commute on C° with T, then

(45) ‘ By By(frg) == Byfx Ryg,.
Proof. Let hy = Ryl, hy = Ryl We have from Duhamel’s formula
T3(Byf#Rag) = Ixlx R feRyg = I« Ry fxlxRyg
= TR f%TRyg = hysfhyng = hyx (hyn(fg))
= TR,TRy(f#g) = T2R,Ry(f*g)
and RB,f#R.,g = R, R,(fxg).

icm
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We see that the convolution can be extended [to the space A(II°)
W, (T)
Wy (T)
Wi(T) | WL}, _ [Wa(T)W(T)
Wa(T)  Wa(T) Wo(TYWo(T)

of results a in the following manner:

(46)

(a%b),

where o, bed, W(T), W,(T), Wa(T), W(T)ell
The element ¢ = 1/T' iy the unit of this convolution algebra.
Suppose that the set of constants is a commutative algebra with
nnit . In the space A we can define an operation a-b called multiplica-
tion (ree [9]):

(47) ( %; 1"a,)- (nzjrb) - 2 i [g{)‘ (Z) @ bn_k].

If we denote by ¢ the element T1, we have

o0

Ll e
D M=

Ti==0 =0

If multiplication a-b is defined for every pair of analytic elements, then
the space A forms under multiplication & commutative algebra. We have
formulas

8(a-b) = (Sa)-b+a-(8b) for a,bed,
(48) e m w B
e =1ta 6 @=¢ -6 Where ¢ =Zﬂ T

10. Examples. A. Differential equations with constant coefficients.
The space C° of continuous functions {#(f)} of a real or complex variable,
defined in o domain ©Q, with values in a linear topologie locally convex
space and with derivative S{w(?)} = {a' (1)}, is discussed by Stowikowski
{11} The limit condition has the form s{z(f)} = {@(f)}, Where #eQ.
The integral has the form

¢
Ta(®)} ={ [ dd, (o) = (t—t)2®)},
)
& ()} = (D).
The element » is analytic if it is the sum of its Taylor series. The

golutions of the equation (§—R)™@ =0 are analytic for every strongly
continuous endomorphism E. Slowikowski discusses in particular the
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)
wave equation ' (t)+A%a(t) = a(t), where A* is the operator — } i
1

Tml
congidered in a suitable B,-space.

Mikusinski [5] considers the differential equations in the field of
operators which is an extengion of the convolutlon ring of the functions
{a(t)} without divisors of zero, t > 0.

B. The iterated wave, harmonic and heat equations. Lot us consider
the space (° of continuous real funetions {u(@y, @, @, 1)} defined in
a four-dimensional space of points (@), @, @y, t), Wwith quasi-uniform
convergence. We define the derivative

, {om 0w
S{u @y, By @y, 1)} = F7 T B By [

and the integral

i) = g [ Fe =R

P o= 1/(501—»'11)2'1'(”2" tp)? 4 (05— )2

(retarded potential), thus obtaining the limit condition su = w—1T [Ju.
The integral is a strongly bounded endomorphism and satisfies the
assumptions of the uniqueness theorem, where the pseudonorms are

[y, = max|w(wy, %a) s, 1)

Therefore the equation
L AV S R o L TN RU B W TR i
-1
SU = Up, 81U = Uyy ...y SOI"7 U = Uy

with constant coefficients has the unique solution. In particular the
Klein-Gordon equation
Cu+ k2 = f,
W (@1 Bay By, 0) = (@, @y, ),
W@y Bay Byy 0) == (dy, b, Bg),
where f(®y, Bay 4, 1)y, @ (1, Doy Ds), (@1, s, ¥5), are continuous fune-

tions, has the unique solution

— w Tf — 3 7 7,20 S — 1) g2 et
= Ter P ier = 2 CUE e 3 (R,
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where
Ou® = 0, u®(zy, 2., T3, 0) = @(24, 2,, ),

0
Ut (Ty; Ty Tay 0) = (B, By, ).

If space 0° is the space of continuous real functiens w(ws,, s, @,)
defined in & closed domain 2 with uniform econvergence, then taking the
derivative 8§ = 4 (Laplace operator) and the integral defined by equations

ATy = u, Tul =0,
where 912 is the boundary of the domain 12, we obtain harmonic equa-
tions.

For example, an equation AdAu+ 4,4 = f where A4, is a continnous
endomorphism of C° with limit conditions wu|s5 = (@1, ®s, 2s), dulss
= (@1, @2, ¥) has & unique solution if the radius of the smallest sphere

—_— 4 ———
including is less than 1/6/l/||A0|] (see [9]).
Similar remarks ean be made for the iterated heat equation and for
other partial differential equations.

C. Difference equations. The gpace C°of functions {,} of an integer
#n 22 0 with complex values and operations

S{mn} = {mn-;—l—mn}; s{mn} = {wo}

correspond to difference equations (see [2]). We have

n

T.{mn} = { Zwk}7

k=0

v{m,} = {na,_,}, ¢ lw,) = {;2:; (Z)kan-k}'

The topology in C° is the convergence by each coordinate. All ele-
ments of C° are analytic.

D. Another point of view for difference equations. In the space C°
from example O the operations S{z,} = {w,..}, 8{@,} = {@,0,0,...}
corregpond to equations

am{-’”a-*-m} + o1 {mn+m_1}‘|’o s ao{wn} = {fn}
discussed by Bellert [1]. We have T{w,} = {z,_,}, where

o = | (2] ).

k=0

@_y =0, 7;{‘”':1} = {nw,_,},

All elements are analytic. .
E. Bulers equations and 'differential-difference equations. The
Euler equations (see [2]) correspond to derivative §{w(t)} = {ta'(2)} with

Studia Mathematica XX - 2
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limit condition slfx(t)} = {#(1)}. We have
i
rio) = { [ 22 aa}, +lat) = o0y ),
Frlw () = (Fa () = [tTa (1)

We can also solve the differential-difference equations with deriva-
tion 8{x(t)} = {«’(t+1)} and limit condition

e(t) for 011
Ho) = e(1) for t=1f
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STUDIA MATHEMATICA, T. XX. (1961)

CuexTpanbHAs TeOpUA HEKOTOPEIX JIMHEHHBIX onreparopos,
MepoMopdiHO 3aBMCAMX OT mapamerpa

. ®. XAPA3OB (T6ummen)

Pasiuamsie BOIPOCH TEOpHH JIHHEKHBIX OIeparopoB, MepoMopduo
3aBUCAINIMX OF IIApaMerpa pPacCMATPUBAJIACE MHOTHMI MATEMATHHAMI.
VccmenoBanuio cuexrTpa IMHEHHEX UHTErPANIBHEX YPABHEHHH ¢ ApaMu,
SaBHCAIINIME MepoMopdue oT mapamerpa mocBAmens paborsr K. Ma-
pamma [1, 2], P. Urauma [3], B. Manua [4] u aBTopa [3, 6]. PegonbsBeRTy
TARUX ANEDP B Kuacce Qyrrumit L2 mecmepoan . Tamaprmm [7 ]. 3anaga
0CpaleHus JIA IHMHEHHBX MePOMOPPHO BABHCAIINK OT nmapamerpa ore-
PaTOpOB B 6aHAXOBOM IPOCTPAHCTEE H3YTEHA asropom [8]. IToxy4eHHEIHR
B 5T0if pafoTe PeayNBTAT HCIONB30BAH MIIA MCCIEOBAHMS PesonbBEHTH
MEPOMOP{HbIX ATep HHTErPATBLHEIX YPABHEHHH B Hiacce Gyurmmit L7,
p >1. B cratee aBropa [9] uccmemyercs CIIEKTp JIMHEHHEIX MepoMop{PHO
SABHCALMIX OT IIapaMeTpa ONEPAaTOPOR B TUIL0EPTOBOM HpPOCTPAHCTBE,
06Iafalomux KOHEUHEIM 9HCIOM KPATHHX BeIIECTBEHHHMX MOLIOCOB.

B paGore X. Miommepa [10] uCCIeXOBAHE IHHEHHBIE mepomopdiHO
SABMCAIINE OT IAPaMeTPa ONMEPATOPH ¢ KOHEUHEIM MHOHECTBOM HPOCTHIX
BEINECTBEHHEIX IIOMNI0COB.

B macrosmeit paGore mMEr paccMoTpnM Kiace JMHEHHEIX MepoMopdHo
SABUCAIINX OT IapaMeTpa OIepaTOPoB ¢ GeCrOHEYHEM MHOKECTBOM IIPO-
CTHIX BEUIECTBEHHEIX IIONIOCOB.

1. HocranoBra 3agaum. IIyere X — HeroTopoe runL0epToBO MPOCTPaH-
cr80; Ay u A4, — nuHeiHBle CAMOCOTIPAMERHEIE OIIepaToOPH, HReHCTRYyIOmUE
B X II HMeIIIe KOREYHEIe a6COII0THEE HOPMEL [11], xpome Toro (4,z, ) <
< (2, ) wra moboro xeX, & 5 0. Iomommm

9

R o)el)

e i=1,2,...,

k=1 k&

rme {gfal (¢ =1,...,0) — OPTOHOPMUDOBAHHAA CHCTEMA . BIEMEHTOB
us X, ;3? - HEKOTOPLIC BEIIECTBEHHHIE YHCHA; IIYCTH aGCOMIOTHEIE HOPME

u.cmepsr [11] xoHeyHOMEPHHIX omepatopor Hy, 0G03HAYAEMEIE COOTBET-
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