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Extinguishing a class of functions

by

H. FAST (Jerusalem) and K. URBANIK (Wroclaw)

Let B be a set of real positive numbers. By L(E) we shall denote
the family of all intervals of the form

I={@y):a+y=1 2>0,y>0}

where acH and 0 < i< oco. A complex-valued continuous function ¢
of two variables defined on the first quadrant is said to be emtinguished
by the set B J':EI[qa(:c, y)ds = 0 for any interval IeL(E). It is well known

([2], p. 63) that

() The unique function extinguished by the right half-line is the function
identically equal to 0. :

Let of, denote the clags of all complex-valued functions ¢ of two
variables defined on the first quadrant and having the representation

p(@,9) = D h(@)9®),
=1

where all the functions f, fas ---s fny §15 g2y -+ g are continuous on the
right half-line. By €, we shall denote the class of all sets £ of positive
numbers such that the unique function belonging to <f, and extinguished
by E is the function identically equal to 0. From Titchmarsh’s Theorem
on convolution ([3], p. 327) it follows that all one-point sets belong to G,.
Indeed, if a function p is extinguished by a set {a} and ¢(z, y) = f(2)9(y),
then we have the equality

f®)g(y)ds =0

axt+y=i

(t >0).
Hence for any positive ¢ we get the equality

[
[f@)glait—a)de =0,
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which, according to Titchmarsh’s Theorem, implies either f(@) =0 for
£ >0 or gy) =0 for 4y > 0. Thus ¢(w,y) vanishes in the whole first
quadrant.

Let P, denote the least power of setis belonging to €, i e P, =

= minE, where T is the power of the set H. We have proved above that
K€y,

P, = 1. The aim of our note is to prove the inequality

) n <P, <hmi—ntd)  (n>2),

which for n = 2 implies the equality P, == 3.
: In the proof of inequality (#x) Mikusidski’s Operational Calculus
will be used [1].

Let us consider the set of all complex-valued continuous funetions
defined on the right half-line. This set is a commutative ring with respect
to wsual addition and convolution as multiplication:

12
(@) = [f@)g(—a)da.

By Titchmargh’s Theorem on convolution the ring in question has
no divisors of zero. Therefore it can be extended to a gquotient field. The
elements of that quotient field are called operators.

For any positive number « we pub

@) £ = f(ot).

Let us introduce a family of transformations I (0 < a << co) defining

them for every operator o = -;—, where f and ¢ are continuous functions,
by the equality

Ta =£.

a

It is easy to verify that this definition does not depend on the choice

of the representation of the operator by a quotient of continuous functions.
Moreover, we have the equalities

@ T4 = I*(TPa) = T%(1%a),
(3) e = a,
T"(ab) = T -T"b

for all operators ¢ and b and all positive numbers a and f.

) A gystem q,, Q. 2 a, of positive numbers is said to be independent
if from the equality of1¢j?-...-dym = 1, where my, My, ..., m, are inte-
gers, follows the equality m, = m, = ... =m, = 0.
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TLEMMA 1. The only imvariani operators under two iramsformations
T and TP, where o and p are independent, are constant operators.

Proof. Let us assume that an operator a satisties the equalities
T%q = ¢ and T%a = a, where o and f§ are independent numbers. By
properties (2) and (3), the operator a satisfies also the equalities

(4) T —a (ks =0, &1, 42, ...).

Writing the operator « in the form -g—, where f and g are continuous

functions and g is not identically equal to 0, and using notation (1) we
have, according to (4), the following equalities:

Icﬁs
fﬂk 9-:f (k,s =0, 1, £2,...),
e
or
(5) gfﬂkﬁs__fg“kﬁs =0 (k,s=0,41, +2,...).

It is easy to see that for any continuous function h the convergence
to y of & sequence y;, ¥a, - .. of positive numbers implies the convergence
to 17, uniform in every finite interval, of the sequence !, A2, ... Since

" for independent a and § the set (B %, 8 =0, 1, £2,...} is dense

on the right half-line, we have according to (5) gff —fg* = 0 for each
positive number A. This means that

. ¢
(6) [ (s@f(ai—a)—f(@)g (Ht—m))do = 0

0

for all positive ¢ and 2. Introducing the suxiliary function
(7 : oz, y) = g(@)f@)—f(@)9 ),
we have, according to (6),
[ ol@,y)ds =0
Iz4y=t

for every positive ¢ and 1, In other words, the function ¢ is extinguished
by the right half-line. Thus, by theorem (%),

(8) @(@,y) = O in the first quadrant.

We have assumed that the function g is not identically equal to 0.
Let y, be a positive number for which g(¥,) # 0. From (7) and (8) we get
the equality f(x) = —i—%’;«g(m) for any non-negative z. Thus, a = {}%”—;—,

0 0
which proves that a is a constant operator.
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For every system ai, asy ..., an, by, by, ..., b, of operators we ghall
denote by A(ayy aay ..., @nj by, by, ..., b,) the sot of all positive numbers 4
n

for which the equality /2; a;T*by = 0 holds. Further, for any pair « and 8.

of positive numbers we put By (a, f) = {1} and By(a, f) = {a*f*: & >0
820, kt+s<n—20rk=0,s =n—1and s = 0, b =n—1} if n 223
For example, By(a, p) = {1, a, B}, By(a, f) = {1, «, B at, 82}

Levmva 2. If B, ) C A(ay, dgy..., a3 by, by, ... nd n =9
then both of"* and o2 belonft] 1t,o Z(al: az,’ ..1.,, azn’; b1: I?:,) . ‘6%"70;)")7.& =

Proof. For n = 2 our assertion is obvious because af™* = aelly(a, B)
and o "2,3 = feliy(a, f). Therefore wo may suppose that n = 3. Mo’re~
over, if 4y =ay=...=a, =0, then every posttive number belongs
10 A(a@yy Gy oovy G5 byy by, onny by). Consequently, we may assume that at
least one operator a,, a,, ..., a, iz different from 0. Hence it follows that
the rank of the matrix [T%0;] (j=1,2,...,n; ded(ay, a
bay bay ..., by)) is not greater than n—1. T

TFirst let us assume that the rank of the matrix [T“kb’ I(i=1,2,...
wan; k=0,1,...,n—2) is equal to n—1. Since for overy ,ue/l(’a ’a
},."af; bl,nbz,...,”b,,2) the rank of the matrix [7%) (j=1,2,..1.’, ';::

=1,a,a® ..., d"" is also m—1, there i 7

oo 1;];1 gé , ore ?s a gystem of operators

crey Onj

-2

of *
by = 2 alb  (j=1,2,...,n).

8=0
Hence we, get the equality

n—2

Ty = 3 1,1, (j=1,2,..., ),

8=0
which implies

n n—2 [
Z ayTﬂ"bj = 2 Tu%; a,T"g'{'lb, =0
i=1 §=0 =1

because a,a?,...,d" B, (a, §)C A(as, a ey G

word!s we have got the ri{a.tioé 1;;;{1((;1; :z,,, ,b l’b ,nzz;,‘;.’bz:n)b. Ifl. .OtIJh‘;r

Prgzlzdzdl ,ue/l(al,aa,...,a,,;bl,bz,...,b,,). In particular, ’a"s"”ﬂ ’a:;'i

:ﬁd ﬂn_ezo}x)lglot;) At(all,gag, w03 03 byy by, ooy ), because for n =38 o"*p

T belog c; h(a, B). By symmetry it follows that o**g and

) . ng' 0 Ay, agy...yay; byy bay ...y b,) if the rank of the

matrix [T% ;] (3=1,2,...,n;_s=0,1,...,%—2) is equal to n-—1.

i -liov; let us suppose that the rank of the matrices [7%b,] and [7%'b,]

J=1,2....,m58=0,1, s++yW—2) i8 smaller than n—1. By symmetr’y
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it suffices to show that
Ba" e (ayy Gay -y Bnj Dyy Doy oy ba).

Since the rank of [T*b;] (j=1,2,...,m5 s=0,1,...,n—2) is
swaller than #—1, there are an index ¥ < n—2 and a system of operators
dyy dyy ..., 0y, where d; 7% 0, such that

k
D arty=0 (j=1,2,..,n).
8==0
Hence we get the equality

k-1
—! 2=k i 2 K d
(9) Ty = o () = (Z R “kbf)
8=0

k-1
=2k d T2~ - .
= _ZTﬁﬂ kd_;Tﬂa ’ k+sb7‘ (i=1,2,...,m).

8=0

Further, taking into account the inequalities 0 <n—2—k+4¢
<n—38 for 0Kk n~2 and 0 <s<k—1, and the definition of
B,(a, p), we have the relation Ba™ **+c¢H,(a,p) for 0 <k L n—2
and 0 < s <%k—1. Hence and from (9) we get the equality

n

k-1 n
_ e d, .
§ T = — § prniE 2 E P A V)
8=0 dk 1

F=1 j=

Thus Ba™ 2eA(@y, @ay..s Gnj b1y bay ...y by), which completes the
proof of the Lemma.

Since for 7 =2 aleB,(a, ) v {af*?) and fleB,(a,p) v {a" B}
for any AeE,_;(a, B), we get, as a direct consequence of Lemma 2, the
following

COROLLARY. If B, (o, f) C A(@yy Goy.evy @nj byy bay euny by) and n = 2,
then ad and B4 belong to A(@yy Gay ooy Gy by boy ooy by) for any Le B,y (a, Ble

LeEMMA 3. Let a and 8 be a pair of independent positive numbers. If
the operators by, by, ..., b, are linearly independent with respect to the
field of complex numbers and B, (a, B) C A6y, tgy ...y @y; byy by .oty by,
then a, = a, = ... = @, = 0.

Proof. We shall prove our Lemma by induction with respect to the
index n. For n = 1 our statement is a direct consequence of Titchmarsh’s
Theorem. Now let us suppose that # > 2 and for all indices smaller
than #» the statement of our Lemma is true. Further, let us suppose that
not all operators @, a,, ..., a, vanish. Without loss of generality of our
considerations we may assume that a, # 0. From the linear independence


GUEST


74 H. Fast and K. Urbanik
of by, bdy,..., b, we infer that b, -/ 0. Putting

IR

dy A
a'b b‘n

1,2,..,m—1),

we have the equalities

N1
(10) D G by 1, - 0,
P
W1
(1) DTy 1 = 0
J=1
for any Aed(ay, tay ...y @nj by, bay ...y by). Hence, by the Corollary to
Lemma 2, we get the equalities
n=1
(12) D @I 1 =0,
F=1
N1
(18) DT GT 41 =0
=1

for any Ael,_,(a,f). Applying the transtormations TV and T to
equations (12) and (13) respectively, we get the following isystem of

equations:
n-1 Nl
D TrGT 1 =0, 3 1141 = 0,
7=1 7=1

for any 1¢B,_(a,p). Hence and from (11) we obtain the equations

fn—1 N1

Y '~ ~ &
% (TG =) T8 = 0, 3 (1 &—a)T*; = 0
= Funl

for every AcH,_,(a, B). Thus, by the linear independence of 51, 752, veey Buey
and. 1th~e ?nduction agsumption, we have the equalities MGy = =
=T34 (j =1,2,...,n—1). The numbers 1/a and 1/8 are independent.
Consequen?:ly, in view of Lemma 1, all the operators dy, dg, ..., Gy ar6
qonsta.nb, l.e. are complex numbers. Hence and from (10) follows the
linear dependence of the operators by, by, ..., b,, which is impossible,
The Lemma is thus proved.

Proof of inequality (). It is very easy to verify that I, (a,p)

= }(n*—n4-4) for independent o and 8 and n > 2 b
i B 7 2 2. Consequently, to prove

Py < Hni—nt4) (n=9)
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it is sufficient ot show that for independent « and f the relation

(14)

holds.

For n =1 the last relation is evident. Now let us suppose that
% 2 2 and Fy(a, )€y, for k< n. Let ¢ be a function belonging to o,
extinguished by the set E,(«,) and having the representation o(z,y)

E,(a, ﬂ)fgn

(n21)

= D 'fi(%)g;(y). It the functions g,, ¢,, .., g, are linearly dependent, then
7=1

ged,_, and, by the inclusion B, _;(a, §)C B,(a, 8), the function ¢ is
extinguished by the set H,..(a, f). Consequently, @(z,y) =0 in the
whole first quadrant. Finally let us suppose that the functions g, g,
..., g, are linearly independent. Then we have the operational equality

ijT;'gj =0 for any AcH,(a,p).
i=1

Applying Lemma 3 we get f; = fs = ... = f, = 0 and, consequently,
o, y) = 0 in the whole first quadrant. Thus we have proved relation (14).

Now we shall prove the inequality P, >n (n >2). Let # be an

arbitrary n-point set: B = {py, va, ..., yu}. Put
-1
o Y1 l . o .
g5 (@) = sin’ {27 log—; 1ogml (1=1,2,...,n).
A 2

It is easy to see that all the functions g,,¢,,..., g, ave linearly

independent and

T"l/y”g,-:’::-lgj (1=12,...,n).
2

Hence
T?lgj z";‘)}‘l—Tyzgi (j=1,~27'~-7‘n)

and, consequently, the rank of the matrix [T™g] (j=1,2;...,%;
8=1,2,...,n) is smaller than n. There exists then a system of operators

g,y G,y - .., Oy satistying the equalities

n
(15) DayIrg =0 (s=1,2,...,n),

§=1
where at least one operator a; (1 < j < n) is different from 0. Writing the
i
f (

operators a; in the form ¢; == (j=1,2,...,n), Wwhere Frfisfayeeastn
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are continuous funetions, we have, according to (15), the following equa-
lities
n
Zf,.’l"’sgf =0 (s=1,2,...,m).

F=1

In other words the function
n
p(@,9) = D@5
j=1

is extinguished by the set M. Since not all function fy, fa, ..., f, vanish
and gy, gz -++y §n ave linearly independent, (®,y) is not identically
equal to 0 in the first quadrant. Thus H¢€, and, consequently, P, > n.
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A proof of Schwartz’s theorem on kernels

by

W. BOGDANOWICZ (Warszawa)

L. Schwartz has shown that every bilinear continuous functional
B(p,, ¢;) on the space D(2,)xD(2,) (see the definition below) may be
represented by & linear continuous functional 7' on the space .D(£2;X£2,),
i.e.

(1) B(py, @) = T(p1xgy) for geD(y), ¢+=1,2,

where (¢, X @e) (B, Bs) = @1(01) @2(@s) fOT 682y @ =1, 2.
Since every such functional corresponds to a linear continuous map I
of D(2,) into D'(2,) defined by

(Lp1) (2) = Blo1s 9a),
equality (1) may be written symbolically in the form
(2) L(gpy)(@e) = fT(wn o)y (1) dw,  for any @ e D(2y)

and therefore Schwartz’s theorem may be interpreted as a theorem
concerning representation of linear continuous™ operations by kernels.
The theorem. is a special case of a general theorem of A. Grothendieck on
topological tensor products.

The purpose of thig paper is to give a simple proof of Grothendieck’s
theorem for & special case which often oecurs in applications. The proof
is based only on elementary properties of (F')-spaces ((B,)-spaces in the
Polish terminology) and (LF)-spaces.

For the convenience of the reader we ghall make a short review of
the properties to be used in the paper.

1. Let X be a linear space over.the complex field. Given a family
of seminorms ||, (ae4) on X, we can define a topology on X taking the
family of sets {z: |o—a,lly, < ¢, ¢ =1,2,..., 7} as a fundamental system
of neighbourhoods of the point x,.

This topology is a Hausdorff topology if and only if the family of
semi-norms is separating, i. e. if, for every w 5= 0, there is an ae.d guch
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