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On the form of pointwise continuous positive functionals
and isomorphisms of function spaces
by

8. MROWKA (Warszawa)

In § 1 we are concerned with the form of pointwise continuous positive function-
als defined on a linear space of continuous real-valued functions. In §2 we give
a sufficient condition under which the existence of an isomorphism of function spaces
implies the existence of a homeomorphism of spaces of arguments. § 3 contains a ge-
neralization of those results to the case of linear spaces satisfying less restricted con-
ditions than those assumed in §§ 1 and 2. .

§ 1

Given a topological space X (*), we denote by C(X) (C*(X)) the set
of all continuous (all bounded continuous) real-valued functions defined
on X. It is known that

(A) 4 space X is a Q-space if and only if each non-trivial linear multi-
plicative functional ¢ (2) defined in C (X) can be written in the form

(%) o(f) = f(po)

where py is a fived point of X (3).
Now let E be any linear ring contained in C(X) and satisfying the
following conditions:

(@) all constant functions belong to R;

(B) if faeR, 0 <fu(p) <1 (n=1,2,...,), théen there ewists a sequence
a, of positive numbers such that Z’a" < +oo and Z%-fn eR;
n n

(v) i feR and f(p) # 0 for each P in X, then 1/feR.

(*) All topological spaces under consideration are supposed to be Hausdorff
completely regular.

(*) A functional is called non-trivial if it does not vanish identically.

(?) The original Hewitt definition of @-spaces [2] is as follows: a maximal
ideal Min the ring ¢ (X) is said to be hyper-real provided that the quotient field ¢ (X) /M
containg (within isomorphism) the field of real numbers as a proper subset; M is called
free if for each p in X there is an fin M with f(p) % 0. Then a space X is said to
be a Q-space if each maximal proper free ideal in C(X) is hyper-real. Restating
this definition in terms of functiowzﬁ]‘%&n (A).
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2 8. Mréwka

In [6] the author proves following theorem (*):

(B) Bach non-trivial multiplicative linear functional @ defined on any
linear ring R C O(X) which satisfies conditions (a), (B) and (y) can be writien
in the form () if and only if X is a Lindelof space (°).

An analogous situation may be observed in connection with pointwise
continuous positive linear functionals. Namely, in [5] the author proves
that (%)

(C) Bach pointwise continuous positive linear funciional ¢ (') defined
on 0" (X) can be written in the form

(%) p(f) = e f(@)+...+anf(De),

where Py, ..., py are fived points of X and «y, ..., @, are fiwed real wumbers
if and only if X is a Q-space.

Now let B C 0*(X) be a linear space satisfying conditions (x) and
(8) and the following one:
(8) if feB, then |f|<B.

Then the following analogue of statement (B) can be proved:

(D) Each pointwise continuous positive linear fumetional g defined
on_any linear space B C C*(X) which satisfies conditions («), (B) and (9)
can be written in the form (x*) if and only if X is a Lindelsf space (*).

We shall deduce statement (D) from a more general statement
which will be given in the next section. Now we explain the role of
condition (3).

Notice that condition (8) is satisfied if B is a linear subring of 0% (X),
which is closed with respect to uniform convergence and satisfies con-
dition («). Indeed, in this case, the function |f| (feB) can be written as
the sum of a uniformly convergent series of members of F.

Condition (3) is essential. We shall show that, even in the case when
X is the unit interval [0,1], there exists a linear space B C C*(X) which

(*) This theorem is a generalization of an unpublished theorem of 8. Mazur,

() A completely regular space is called Lindeldf if each open covering of the
space contains an enumerable covering.

(*) This theorem is a generalization of a result of §. Mazur (seo [71).
. (") A functional ¢ is said to be continuous with respect to pointwise convergence
(or, shortly, pointwise continuous) if the conditions f, fy e domain @, fn— [ inaply the
condition g (fu) — @ (f), where fn—>f means that In(p) = f(p) for each pin X; ¢ is
said to be positive it ¢(f) > 0 for each f > 0, where f > 0 means that f(p) > 0 for
each p in X.

(*) The assumption of positivity of a functional in theorems (C) and (D) is not
essential; indeed, every pointwise continuous linear functional @ can be written in

the form ¢ = ¢, —¢, where p, and ¢, are pointwise continuous positive functionals
(see, for instance, [3]).

Continuous positive functionals 3

satisfies conditions («) and (B), and a pointwise continnous positive linear
functional ¢ defined on E which cannot be written in the form (). We
shall use the following unpublished result of S. Mazur:

Suppose that is an increasing sequence of positive integers with
p q P g

207 < oo and fo(#) = of?+ 3 af"-aPi, where the series 3 a®a®i are

7 i 3

convergent in the whole interval [0,1]. If f,(x) — f(@) for each 0 <o < 1;
then f(x) is also of the form f(a) = ay+ Y a; a”:, where the series Y a; %
B 7

18 conwergent in the whole interval [0,1]; moreover, f, converge to f almost
uniformly in the interval [0, 1).

Congider the following infinite matrix of positive integers:
2-1, 2.2,

22-1, 922.2, 28.3, 2%.4

2%.1, 2%.2, 28.3, 23.4, 28.5, 23.8,

2k, o*.2, 2%3, 2%, . . . . . . . 2%g%

Of course, the sum of the inverses of nmumbers standing in the k-th
row of the matrix does not exceed 275/2"‘ Let p; be the increasing se-
quence consisting of all terms of the matrix. If follows from the preceding
remark that the series 'p;' is convergent.

i

Let E be the set of all functions f on X which can be represented

in the form f(z) = ay+>'a; 4, where the series Ya; 2% is convergent

t
in the whole interval [0,1]. By Mazur’s result quoted above, ¥ is & linear
subspace of C*(X) satisfying conditions («) and (8).
Now let
12

p(f) = [flo)de for fem.

Of course, ¢ is a positive linear functional and it follows from Mazur’s
result quoted above that ¢ is pointwise continuous. But ¢ eannot be written
in the form (+x). Indeed, let #,, ..., #; be any points of the interval [0,1]

and let

fl@) = (wzk—m k)z...(a;zk—-wik)ﬁ.

Then feF (indeed, exponents of the variable # occur in the k-th row of
the matrix), f() =0 (j =1,..., %), p(f) 0.
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I. The main result. DBefore formulating the main regult of the
present paragraph we recall some definitions.

A subset P of a topological space S is said to be Q-closed in § pro-
vided that for each p in S P there exists a Gy-set ¢ C 8 which containg
p and is disjoint from P.

0Of course we have

(i) 4 set PC 8 is Q-closed in 8 if and only if for each p in 8P there
ewists @ continuous real-valued funetion f on S which i positive on P and
2ero at p.

Moreover, we have (see [T])

(if) 4 space A is Q-closed in BX if and only if X is a (-space.

(ill) A space X is Q-closed in each of its compactifications (*) if und
only if X 4s a Lindelof space.

Suppose T is a family of bounded continuwous functions, each defined
on 2 space X. Let I; be the interval of values of a function feF (i. e. I,
is the interval [ini;f (p), 3141\'1) f(p)]) and denote by I% the Cartesian product

e De.

P I;. Let Py be the mapping of X into I¥ which carries a point peX
into the point £¢I% whose f-th coordinate, is equal to f(p). Clearly, Py is
a continuous mapping.

TarorEM 1. Let B C C*(X) be a linear space satisfying conditions
(@), (8) and (3). Then each pointwise continuous positive linear funclional
® dgﬁoﬁd on B can be written in the form (xx) if and only if Fu(X) is Q-closed
in Fg(X) (the bar indicates the closure with respect to I).

The proof of the above theorem will be given in the next sections.
Now we shall show that statements (C) and (D) are immediate conse-
quences of this theorem.

To begin with, if B = ("(X), then Fy is a homeomorphism and
Fg(X) = fFg(X) = pX (¥). Hence, each pointwise continuous posi-
tive linear functional ¢ defined on C*(X) can he written in the form (s*)
if and only if X is Q-closed in BX, i. e. if X is a @-space. Thus (¢ is pro-
ved. Now suppose that X is & Lindelof space. 1f B C (*(X) is any linear
space satisfying conditions (), () and (8), then Fy(X), being the eoxn-
tinuous image of X, is also a Lindeléf space, whence Fu(X) is @-closed
in Fg(X). Conversely, suppose that X iy not a Lindelof space. Then, by
(iii), there exists a space ¥ which is a compactification of X and is such
that X is not ¢-closed in Y. Denote by F the set of all functions on X
which can be continuously extended over Y. Then £ is a linear subspace

'(") By a compactification of a space X we understand any compact space which
containg X ag a dense subset.
(*") Theorem of E. Gech: see [1].

icm
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of (*(X) which satisfies conditions («), (f) and (3). Moreover, Fx is a
homeomorphism and Fj can be extended to a homeomorphism Which

maps ¥ onto Fy(X). It follows that Fp(X) is not @-closed in Fy(X)
and (D) is proved.

II. Auxiliary theorems. We say that a family F of functions, each
defined on a space 8, distinguishes points of § if for every p, p'<8,p #p',
there is an f in F with f(p) # f(p’); we say that F distinguishes points

and closed sets of S if for each A = 4 C § and poeS 4 there is an fin ¥
with f(p) =1 for ped and f(p,) = 0.

LummA 1. Suppose that S is a compact space and that E is a linear
subspace of O*(8) satisfying conditions (o), (B) and (3) and distinguishing
points and closed sets of S. Then a set P C 8 is Q-closed in S if and only
if for each po in 8 P there is o function f in I and a sequence f1, foy ... (faeE)
such that fo(p) — f(p) for each p in P and f(po)+ f(po)-

Proof. Let P C S be a @-closed set and let p, be any point in S~ P.
Then there exists a sequence Gy, @,,... of open sets such that p,eG,
(n=1,2,...)and P~ G, = 0. Let F,, = 8" @G,. There is a function

n
h, in F such that h,(p,) = 0 and h,(p) =1 for peF,. Setting g,(p)
= min{1, max {0, k,(p)}} we have g,eF, g.(po) =0, gu(p) =1 for
peF,and 0 < g,(p) < 1forpeS. By condition (f), there exists a sequence
y, a3, ... of positive numbers such that Ya, < +oo and g = Ja, g, B.
i n "

Of course, g(p,) = 0 and g(p) >0 for peP. Setting f, = min {1, n-y¢},
we have f,eE, f,.(p) — 1, for peP and f,(p,) + 1.

Conversely, suppose that P is not @-closed in 8. Then, by (i), there
exists a point poe SN P such that for each continuous function % on S the
condition %(p) > 0 for each peP implies h(p,) > 0. Now let f be any
function in F and let fi, fs, ... (fn<E) be any sequence sueh that f,(p) —
— f(p) for each p in P. Let

o) = @~ + Y e P

Then % is & continuous function on § and %(p) = 0 and it follows that
f(p2) = 0 for some p, in P. But h(p,) = 0 implies f(ps) = f(p1) 2nd f,(po)
= fu(py) for mn=1,2,... Since fulpy) = f(P1);fn(Po) - f(p) and the
lemma follows.

Levma 2. Let S8 be a compact space and E a linear subspace of
C*(8) (= C(8)) which satisfies conditions (), (B) and (3). Then if B distin-
guishes points, then E distinguishes points and closed sets.
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Proof. Suppose that 4 is a closed set in § and p, is a point in §~\A.
Tor each p in A there ig a function f, in 7 such that f,(po) # f,(p).
Let g, be defined by the equality

2 lfp (Q) “"fp (Po)| .
fp () — T (P0)

Then gyeE and gu(pe) =0, gp(p) =2. Let U, = {qeS:yg,(q) > 1].
Then the system {U,},.4 i8 an open covering of the set .4, whence there
exigts o finite system py,...,pr with ACU, v...w Uy. Let
g =min{l, g, +...+gp,}. Then gell, g(p,) = 0, and g(p) = 1 for ped
and the lemma follows.

gz)(Q) =

III. The case of a compact space.
the following

TuvorREM la. Suppose that X is a compact space and that B is o linear
subspace of C*(X) which satisfies conditions (x), (B) and (5) and distinguishes
points and closed sets. Then each poimhwise continuous positive linear fume-
tional ¢ defined on B can be written in the form (#x).

Suppose that ¢ is any pointwise continuous positive non-trivial
linear functional defined on X. For any f in B we denote by Z(f) the set
{peX:f(p) = 0} and let Z, be the intersection of all sets of the form
Z(f) where f is any non-negative function in B with ¢(f) = 0. The proof
of Theorem 1a is based on the following lemmas:

Levmea 3. If f 98 a non-negative function in B and if o (f) = 0, then

Z(f) # 0.

Proof. Suppose that Z(f) = 0. There is g in F with p(g) 5 0. Let
h=g|. Then heE and ¢(h) > |p(g)| > 0. Let f, = min {k, n-f}. Then
faeB and f, —~h, whence ¢(f,) - ¢(h). But 0 < gp(f,) < n-p(f) =09,
whence ¢(h) = 0, which leads to a contradiction.

Lemwa 4. The set Z, is non-empty.

Proof. If f and ¢ are non-negative functions in B, then Z(f) ~ Z(g)

Z(h), where h = f+-¢. It follows by Lemma 3 tha.t/ is the intersec-
mon of a cenftred system if closed non-empty subsets of X By the com-
pactness of X, Z, is non-empty.

Lemma 5. If f is any mon-negative function in H, then @(f) = 0 if
and only if Z,CZ(f).

In this section. we shall prove

‘Proof. If ¢(f) = 0, then Z,C Z(f) by the detinition of Z,. Con-
versely, suppose that 27, CZ(f) and let M = supf (p), F, ={_’peX
f(p) =1/n}. It pel,, then peZ,, whence there exmts a non-negative

functmn hy in B with hy(p) =1 and @(h,) = 0. Let U, = {geX: hy(g)
> }}. Of course, the syﬁtem {Up}per,, is an open covering of F,, and thus

icm®
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there exists & finite system op,,...
Let gy, = hy, +...+hy,. Then g,eH and g,(p) >4 for peF,. Let f,
= min {f, 2Mg,}. Then f, B, 0 < ¢(f,) <2M-¢(g,) = 0 and f'n(p) = f(p)
for peZ(f) v F,. Since Z(f) v F, C Z(f) v Fp,, and U(Z v F,) =X,

(P} = f(p) for each p in X. Thus ¢(f) = 0 and the lemma follows.
Lemma 6. If f is any function in B and Z,C Z(f), then o(f) = 0.
Proof. Let & = [f|. Then heE and Z(h) = Z(f), whence, by Lemma 5,

(k) = 0. But —h <f <h, whence —p(h) < ¢(f) <e@h), and ¢(f) = 0.
Levma 7. The set Z, is finite.

Proof. Suppose that Z, is infinite. Then one can select a sequence

G4, G4, ... of mutually disjoint open subsets of X such that Z, ~ G, # 0

(n=1,2,...) (see [7], Lemma 1). Let p, be any point of Z, ~G,.

Since E distinguishes points and closed sets, there i3 & non-negative

function f, in E such that f,(p,) =0 and f,(p) =1 for peX\G,. Let

hy, = max{0, 1~f,}. Then h,eE, h(p,) =1, hy(p) =0 for peX\G,.

By Lemma 3, ¢(hy,) 7 0. Let g, = h,/p(h,). Then g,eE, g, -0, but

¢(g,) — 1, which leads to a contradiction. )

yPr With - F, C U7’1 (G Uﬂk'

Proof of Theorem la. Let ¢ be any pointwise continuous positive
linear functional defined on E. If ¢ is a trivial functional, then there is
nothing to prove. Suppose that ¢ is a non-trivial functional. Then, by
lemmas 4 and 7, the set Z, is non-empty and finite; let Z, = {p,, ..., P&},
where the points p; are mutually distinet. Since Z distinguishes points
and closed sets, for each ¢ there is a function f; ¥ such that f;(p;) =1
and fi(p;) = 0 for j == 4. Let a; = o(f;). Let f be any function in # and
let us set % = f(p,)-fi+...+f(pr) fx—f Then heE and Z,C Z(h),

whence @(h) =0. Bub @) =F(@) e(f)+...+F(00) o(f)—e(f) =
= oy f(p)+ ...+ axf(Pr)—o(f) and it follows that ¢(f) = af(py)+
+ ...+ az f(px). Thus Theorem 1 is proved. - R

IV. Proof of Theorem 1. Let ® be any linear subspace of O(X)
satisfying conditions («), (B) and (3). We denote by FE, the set of all
continuous functions » defined on. ¥ = Fyz(X) for which there is a func-
tion f in F such that :

(1) fp) =

Of course, for each f in F there exists exactly one function h in E,
satisfying (1), namely the f-th coordinate of a point y< Y. It follows that
B, is a linear subspace if C(X) satisfying conditions («), (8) and (3).
Moreover, for each f in E, the function p, belongs to E; (we recall that
the coordinates of points of ¥ are enumerated by means of members
of B and p;(y) denotes the f-th coordinate of a point yeY). It follows

h(Fgz(p)) for =~ each p in X.
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that F; distinguishes points of Y. Since ¥ is compact, 1, distinguishes
points and closed sets of Y.

Now assume that F;(X) is @-closed in ¥ and let @ be any pointwise
continuous positive linear functional defined on . Tet ¢, bo the funetion-
al defined on E, by the equality

@) Pu(h) = o(f),

where f is & member of I satistying (1). Of course, gy is & pointwise con-
tinuous positive linear functional. By Theorem la, we have

®3) P(h) = o h(yy) . b h(yy)  for each b in 7,

theII;o Gyy ..oy 0y are fixed real numbers and v, ..., y, ave fixad points
of Y.

We shall show that y; e 'y (X). Assumne that Yige X -l (X) and ; £ 0.
Since Fp(X) is Q-closed in ¥ by Lemma 1, there is a function heE(l and
& sequence hy, hy, ... (h, e E,) such that b, (y) — k(y) for each y in Iy (X)
and hy, (y;)) + h(yy). Let h, = [k, —h|. Then JnyeByy hy,(y) — 0 for ;aach
¥ in Fp(X) and hn(y5,) = 0. Sinee B, distinguishes points and closed sets
of I’., there exists a function g in B, such that 9(s) =1 and g(y) =0
for ¢ %i"' Let ¢, = max |0, min{g, hy}}. Then O €y, gn(gc/)‘—-; 0 for
each y in Fp(X) and from (3) it follows that P1(gn) + 0. Bub from (1)
and (2) it follows that if g,(y) — 0 for each Y in Fy(X), then ¢, (g,) — 0
which leads to a contradietion. Thus Yielp(X) for ¢ =1,..., k. ,

Now let p; be any point in X with Fa@) =9, (i =1,..,k). It
follows from (1) and (2) that o ,

) = arf(p)-F ...+ f(p) for each fin B.

GO'nversely, suppose that Fiy(X) is not Q-closed in Y. Then, by Lemma 1,
there is a point Yoe Y \Fp(X) such that for any function % in %, and
each sequence %,,h,,... of members of B, the condition h,(y) - h(y)
for e@ch y in.FE(X) implies the condition h, (#o) = h{yy). Lot ‘q) bo tho
functlona:l d(?flned on F by the equality ¢(f) = T (yo) where h i8 a function.
in B, satistying (1). Then » i8 a pointwise continuoug positive linear func-

tional which cannot be written in the form (*x). Thus the proof of the
theorem is complete, .

§ 2

) In th-is paragra.ph we shall show that if & O*(X) is a linear space
which satisfies conditions (), (B), () and distinguishes points and closed

sets of X and if Fy(X) is Q-closed in Fyp(X), then the topology of X is,
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in a certain sense, determined by E. Before an exact formuiation of the
theorem we give 2 definition.

Let B, and F, be linear spaces consisting of functions. A lineer one-to-
-one mapping £ of &, onto E, will be called an isomorphism if £ satisfies
the following conditions

(I,) if feBy, g = &(f), then f =0 if and inly if g = 0;

(To) fon By, fu >fn+1: gn = £(fu), then fn -0 'l:f and only if g, — 0.

We shall prove the following

THEOREM 2. Suppese B, C C*(X,), B,C C*(X,), are linear spaces
satisfying conditions (a), (B) and (3) and such that E; distinguishes points
and closed sets of X; and Fg (X;) is Q-closed in Fp(X;) (i =1,2). If the
spaces By and B, are isomorphic, then the spaces X, and X , are homeomorphic.

The proof of Theorem 2 will be given in section ITI. Now we shall
show some elementary properties of isomorphisms (ex denotes the fune-
tion which is identically equal to 1 on X):

(iv) E(Ifl) = |£(f)| for each f in B,.

We have —|fl <f<|fl, whence —&(if])<&(f) <&(lf)) and
NI <E&(f). On the other hand, —I&(f) < &(f) < |&(f)l, whence
=EHIEW) <F < & (1E) and If] < E71E(N), and thus §(If) < 6
Finally, &(|fl) = 1&(f).

(v) If feBy, f = 0, g = E(f), then Z(f) = 0 if and only if Z(g) = 0.

Suppose that Z(f) = 0. Let fo = ex, = £ ' (ex,) and f,, = min{f,, n-f}.
Since Z(f) = 0,f, # f (**) we have £(f.) # &(fo). Since &(fo) = £(ex,) = ex,
is a strictly positive function on X, and &(f,) < n-g, Z(y) = 0. The con-
verse can be shown in an analogous manner. ’

Remark 1. It can be shown that condition (v) actually characte-
rizes isomorphisms among linear one-to-one mappings satisfying condi-
tion (I,). In fact, suppose that & is sueh a mapping of &, C 0*(X,) onto
B, C O"(X,) and let JoeBy, fo 2 fosry gn = E(fudy 00 = ‘f(ffxl) Suppose
that g, -0 and let p, be any point of X,. Let f, = min{eyx,
fo—=Fu(@)l}, §u = £(fn). By condition (3) there exists a sequence a,
of positive numbers such that Ya, < +oo and f = Ya, freB,. Let

w n

g = &(f). Of course, f > 0 and f(p,) = 0, and it follows by condition (v)

.that g(go) = 0 for some gyeX,. On the other hand, let 7, = 3 a,"fu. Of

M=n-{-1

course, 0<r, < 2 Uy, whence 0 <é (‘rn) < Z O & (eXl)y and thus E(“L)_'Oy

M= 41 M=n4-1

consequently § = &(f) = Ya, 7, and it follows that §,(g) = 0 for
. n

() f,L\ f means that f, is a decreasing sequence and f, — f; fu 7 f has a si-
milar meaning.
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n=1,2,... But by condition (iv) (its proof does not depend on the
condition (Ip)) n = £(f,) = min{go, g —Ff(po)*gol}. Since gy(go) > 0 (hero
we use a;ga.l.n condition (v)), ¢,(qo) = f. (Do) Go(q). Since Iu(Qo) = 0
Fa(po) = 0. Since p, is an arbitrary point of Xy fu = 0. In an a,ILa,logou;
manner one can show that the assumption f, — 0 implies g, - 0. »

IL Givel} a linear space BC C*(X), we denote by @ () the class
of all non-trivial positive linear functionals @ on I which satisfy the
following conditions: ’

e(f)) = lp(f) for each f in H;

if fuell, £, 0, then p(f,) - 0.

Levya 1. If B is o linear space satisfying the conditions (), (B) and
(3) and pe®(H), then ¢ is a pointwise continuous Sfunctional,

-Pro of. Suppose that pe®(H). We can assume, without loss of gen-
era;ht}rr, that g(ex) = 1. First let us notice that if Jell, f > 0 and ¢(f) =0
then Z(f) == 0 (the proof of Lemma 3 of §1 applies to this case). I\Tovsi
let f,, ~>.0 (fa<B). Let us set g, = min{1, fa—o(fa)ex|}. By condition ()
thelfe oxists & sequence a;, a,, ... of positive numbers such that Dty < oo

o n
and g = %‘a,,-g,, eB. Let 7, = 3 an-gn. Of course, 7,/ and 7, 0,

M=t el

whence g(r,) » 0 and it follows that g(g) = 2o glg). Bub p(g)
. < Jn
=min{1, jp(fu) —¢(f)]} = 0, whence ?(9) =0. On the other hand,

g(? 0 and it follows thg.t 9(po) = 0 for some p, in X. Bub g(p,) = 0 implies
?ouz)wg Ju(po) for m = 1,2, ... Since Sa(®o) = 0, p(£,) — 0 and the lemma

LeMma 2. If‘ch Cj*(X) is @ linear space which satisfies condstions
(o), (B)y (8) and distinguishes points and closed sets of X, and if Fg(X) is

Q-hclosed méf’ (X), then each functional g e ® () is of the form @ (f) = a-f(po),
where « >0 and p, is a fived point of X which is wnigu M
tho unctionat niquely determined by

Proof. By the preceding lemma and Theorem 1, ¢ is of the form
?(f) = af(py)+...+ e f (D) s

where «; > 0 and the points P1y -y Pr; are mutually distinet. We shall
show that at most one «; iy different from 0. Assur'ne for ingtance that
:_1, oy # (: Since F distinguishes points and cloged sets of X, there iy a func-
ton. foe Juch that fo(pa) =1/, folps) = —1ja, and fu(py) = 0 for
dicf,io]’l. "E[:h . ourse, o (fy) = 0 and ¢(|f,]) = 2, which leads to a contra-

- Lhus we have ¢(f) = a-f(p,) for some PoeX and for each f in

(**) We say that p, corresponds o the functional ¢.
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E. Since ¢ is non-trivial, a > 0. Since ¥ distinguishes points and ‘closed
sets of X, the point ¢, is uniquely determined by the functional ¢.

1L, Proof of Theorem 2. Lot £ be an isomorphism of #, onto E,.
For each p in X,, we denote by ¢, the functional defined by the equal-
ity gp(f) = f(p). Of course, p,c<P(H,) and it follows by (iv) thatb the
functional qa,,(f“(g)) (geIl,) belongs to P(H,); denote by h(p) the point
which corresponds to the functional ¢, (67 (g)). We see that the following
relation is satisfied:

() #o(E71(9) = g (h(p) for each g in Hy,
where a, is a positive number which depends only upon the point p.
‘We shall show that b is a one-to-one mapping. If p, geX,, p # ¢, then
there is & function feF, with f(p) =1, f(g) = 0. Let g = &(f). Then,
by (1), ap g (R(p) =1, ag'g(h(g)) = 0 and it follows that h(p) +* h(q).

We shall show that & maps X, onto X,. Lebt g = &(ex,) and. let s
be any point of X,. By (v), go(s) > 0. Let ¢ be a functional defined on H,
by the equality
_ 90

0(s)’

Of course, p<®(H,); lot p be & point which corresponds to . We have
plex,) =1 and it follows that ¢ = @,. We have

where

o(f) g = &(f-

vp(E7(g) = -g(s)  for each g in H,,

go(s)
whence, by (1) s = h(p).

Tt remains to show that h and ' are continuous. Let ¥ be any neigh-
bourhood of a point k(p)eX,. Since H, distinguishes the points and closed
sets of X,, there is a function ¢, eF, which is 1 at h(p) and 0 on X\V.
Let fi = £7(g,). By (1), fi(p) >0, whence U = {geX;:fi(g) >0} is
a neighbourhood of p. Moreover, if geU, then, by (1), 0 < g, (fy)
= ¢,(67 (1)) = ag'g:(h(g)), Whence g¢i(h(g)) >0, and thus h(g)eV
and A(U) C V. Thus & is continuous, and in. the same manner one can show
that k! is also continuous. Finally, % is & homeomorphism of X, onto
X, and the theorem follows.

§ 3

In this paragraph we give a generalization of Theorems 1 and 2 to
the case of linear spaces which satisfy & weaker condition than condition
(3), namely the following one:
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(%) for each f in B and each ¢ > 0 there is a ¢ in 1 with |||f|— gl < e
where |fl| denotes, as usual, the number sup|f(p)|. ‘ ’
2N

This generalization is based on the following lemuna (# denotes the
set of all functions which are limits of uniformly convergent sequences
of members of , f, > f means that the sequence fn 18 uniformly conver-
gent to f. Moreover, we say that B C O*(X) separates pointy a.,nd closed
sets of X provided that for any py¢d = 4 C (! there is an fin B sueh
thats [f(po)—f(p)] =1 for ped): '

Levwis. Suppose that 1 C C*(X) (B,C 0*(X,), H,C (*(X ) s
« linear space satisfying conditions («) and (8"). Then ) ’

1% B is a linear space satisfying conditions (@), (B) and (8)

)
20

if I separates points and closed sets of X, then T distinguishes poinds
and closed sets of X; ‘ )

3% each pointwise continuous positive funstional o defined on B admils
an extension o a pointwise continuous positive fmzycmlow,al,l ¢ defined on I
. 4° each i:s'omorphism & betweon By and B, admils an extension to m;
tsomorphism & between B, and I,.

Proof. Part 1° is obvious.

. Part 2°. Let p,,fA = A C X. There is an fe¥ such that If(po)—F(p)]|
= f?i ped. Settmg.g(p)‘zf(p)—f(po), we have gell, g(py) = 0 and
g(g);’ (¢ )1 foz ped. Since T satisfies condition (8), b =min{1, |g|} B
but h(py) = 0 and h(p) = 1 for ped, whence B distinenishe iuts and
s = 0 ped, distinguishes points and
_ Part 3°. If fﬂ';:>f(f7,,e'!’), then, by the inequality [p(fu) ~ @ ()]
< glex) Ifa—~Ful, we infer that the sequence ¢(f,) is convergent; let

&y P(f) = mg(f,).

o EOufl can eagily verify that formula (1) Slefines a linear functional 7
which 1s an extension of ¢. Of course, ¢ is & positive functional. To
prove that ¢ is pointwise continuous, assume » that f, - 0 (f eff/‘)
Let g, be a member of 7 With {|f,—~ gull < 1/n. OF course, (./,b‘ -+ 0 \;V;bleilc(;
7(0) = p(gn) = 0. Bt [5(£,)—G(ga)| <plex)n and it follows that
?(fa) = 0. |
Part 4°. We lhave |f| < ex, *|Ifil, whence fl) < )
E1A) = 1£(A)l, whence |¢(f) < £(ox,) -Jl’l,fll, and th\fsm s fe)

fll; but

IEDN < 1€ ex) - 015
Analogously

for each f in H.

e () < Hcf'l(exz)ﬂ-ligl[ for each g in B,.
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It tollows that 2 sequence f, of members of ¥, is uniformly con-
vergent if and only if the sequence g, = £(f,) is uniformly conver-
gent. Hence & can De extended to an isomorphism £ between I,
and E,. :

From Theorems 1 and 2 we obtain by the foregoing lemma (we recall
that & continuous image of a Lindeléf space is again a Lindelsf space and
a Lindelof space is @-closed in any of its compactifications):

TEEOREM 1'. If EC CY(X) is a linear space satisfying conditions
(o) and (8') and X is a Lindelof space, then each pointwise continuous po-
sitive functional ¢ on B can be written in the form (wk).

THEOREM 2'. Suppose that B, C C*(X,) and E,C C*(X,) are linear
spaces satisfying conditions () and (8') and such that E; seporates points
and closed sets of X;, and X; is a Lindelof space (i = 1, 2). If the space-
E, and E, are isomorphic, then the spaces X, and X, are homeomors
phic.

Remark 2. In section I we have shown that if spaces B, — C*(X4),
B,C C*(X,) satisfy conditions («), (8) and (3) and £ is a linear one-to-ons
mappin g of B, onto B, which satisfies conditions (I,) and (v), then ¢ y
an isomorphism. This is not true if the spaces H, and F, satisfy onle
conditions («) and (8‘); moreover, in this case the existence of such 2 map-
ping of E, onto E, does not imply the existence of 2 homeomorphism
between X, and X, even if they are Lindelof spaces. Let us consider
the following example:

Let X, =[0,1] and X, = [0,1). Let B, C C*(X,) be the space of
all continuous functions f defined on X, for which there exists 2 posi-
tive number & such that f is constant in the interval [1—d; 1], let
E,C C*(X,) consist of all functions of the form f|X, (**) where f<E,.
Then E, and F, are linear spaces satisfying conditions (o) and (8) and
F; distinguishes points and closed sets of X; (i = 1, 2). Moreover, the map-
ping £(f) = f|X, is a linear one-to-one mapping of F, onto B, which
satisfies conditions (I,) and (v); nevertheless the spaces X, and X, are
not homeomorphie.

Remark 3. Theorems 1 and 2 can be applied to spaces of differen-
tiable functions. Indeed, if M is a manifold of the class €™ (n =1, 2, ..., oo)
(or an analytic manifold), then the space E of all bounded functions on
M being of the class C" (or analytic functions) is a linear space which se-
parates points and closed sets of M and satisfies conditions («) and (3")
(the last follows from the fact that, for each member f of B, |f| can be
uniformly approximated by means of polynomials with respect to f).

(1) f|X, denotes the function [ restricted to the set Xj.
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On quasi-modular spaces
by

SHOZO KOSHI and TETSUYA SHIMOGAKI (Sapporo)

§ 1. Introduction. Let B be a universally continuous semi-ordered

linear space (i. e. a lattice ordered linear space in which there exists q @,
e

for every system of positive elements {a;; AeA} of R).

H. Nakano has considered a kind of functional on R which is called
a modular (1), and constructed the most important parts of the theory
of modular spaces (i. e. spaces on which modulars are defined).

In this paper we shall consider a funectional ¢ on R which satisfies
the following conditions, weaker than those of modulars:

(0:1) 0 < o(2) = p(— ) < Foo for all weR;

(p-2) e(a+y) = o(®)+ ely) for every v, yeR
with [#] ~ |y} = 0;

(p-3) for any system {w;;Aed} such that |oy| ~ |o,| =0 for
L #y, Ay yed and ,%;9(%) < +oq, there exists #,eR with > @, =z, and

Aea
2 eol@m) = e(m);
Y

(p.4) limp(aw) < +oo for all zeR.

a—0

R ig called a guasi-modular space if the above ¢ is defined on R and
¢ i8 called a quasi-modular. This quasi-modular is considered as a genera-
lization of a Nakano’s monotone complete modular or of a concave modular
[4 and 6].

Recently, J. Musielak and W. Orlicz considered the pseudo-modular
on a linear space in [8]. If we add the order structure to linear spaces
and additive conditions: (p.2) and (p.3) to those of a pseudo-modular,
then a quasi-modular can be considered as a pseudo-modular in the case
of semi-ordered linear spaces.

Some of the examples of a pseudo-modular established in [8] are
regarded as those of a quasi-modular.

(*) For the definition of a modular see § 2.
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