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On normed semialgebras

by
8. BOURNE (Berkeley)

1. Preliminaries. In this paper we shall use the term semdiring in the
sense stated by the author in an earlier one [1]. For the sake of comple-
teness, we repeat that a semiring is a system consisting of a set § and
two binary operations in § called addition and multiplication such that

(8) 8 together with addition is & semigroup;

(b) 8 together with multiplication is & semigroup;

(¢) the left- and right-hand distributive laws a(b-+¢) = ab+ae
and (b+¢)a = ba+ca hold.

Semigroup is used in the sense of a closed associative system. We shall
assume that the additive semigroup is commutative and that S possesses
a zero element 0, 0-+s — s and Os = 0s = 0, for every s in 8. If both
gemigroups of a semiring are commutative, we say that the semiring is
commautative. Following Stowikowski and Zawadowski [15], we state a com-
mutative semiring § is positive, if § possesses a unit element e and ¢+
has an inverse in S, for every s in S.

Tn the body of this paper we shall make use of some facts about
maximal ideals in semirings. Sinee the reference [6] is not readily available,
we shall take the liberty of repeating some of the pertinent theorems and
their proofs.

There are many suggested definitions for an ideal in a semiring,
In faet, in his thesis, Bugenhagen [6] concerned himself mainly with
‘3 comparison of three definitions of ideals in semirings”. For the record,
we shall uge our own definition given in reference [1], cited above, and
which is the better one from the point of view of structure theory, our
main interest. We repeat that o right ideal of S is o subset I of 8 closed
under addition, such that is<I, for any i<l and any seS8. When the term
ideal oceurs in this paper, we are using it to mean a two-sided ideal. Also,
a = b(I), I an ideal of § if and only if there exist elements i,, iyel, such
that i+ @ = 4,4 b [1]. This equivalence relation partitions S into classes
Oy, ..., where C, = {zlo =a(I)}. Relative to the usual definitions
of addition and multiplication of classes, Cy, ... form a semiring, symbe-
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lized by S/I. The big difference hore is that C, cannot be necessarily written
as a+ 1. However, in the case thal addition is commutative I is contained
in a congruence class which is denoted by Cp. Oy s an ideal and 8/Cy = § /1.
This fact points up the importance of the assumption of commutativity
of the additive semigroup of the semiring S. As in the ring ecase, we call
the semiring of equivalence classes (/,,... the quotient semiring deter-
mined by I and symbolize it by S/I. As per usual an ideal is called mawimal
if it is not properly contained in any proper ideal of 8. ILere, either (f;; == §
or Cp;= M. A division semiring is a semiring in which the elementy # 0,
form a multiplicative group [2].

Definition 1. A semifield is a commutative division semiring.

Sinee Bugenhagen’s thesis is not easily accessible, we now proceed
to give the statements and proofs of some theorems pertinent to our
theory. .
THEOREM. If S is a commutative semiring with zero, M a mawimal
ideal for which <M implies meM, then S[M is a semifield.

Proof. Either Cp/ = 8§ or Oy = M. In the case Cy== 8 the result
is trivial. Let us suppose O 5 § and thus Cp = M C 8. Let a be a parti-
cular element of §, a¢M, then a?¢M and Sa (T M. The commutativity
of § implies that S is an ideal and furthermore M --Sa is an ideal. TI‘i.-
vially, M C M+ Sa, but a?¢ M and a® = 0-}-a?eM - Sa and thus M C M-
+ Sa. Since M is maximal then M--Sa = S and s = m-| ta, for amny
seS and some meM and tefS. Set 8 = m'+ b, beS and m' <M, then m'--b
= m+te. Therefore ta = b(M) and C,C, = C, in §/M. According to
Huntington [11], the elements s (5, form a multiplicative group.

TeeorEM. If 8 is a commutative semiring with zero 0 and wnit 6,
(md M is a mazimal ideal of S, then m2eM implies meM.

Proof. Let m?el, m¢M and (m) the principal ideal generated by
m [1]. Now M C M4 (m), but m = 0+ me M+ (m), m¢M, thus M C M-}
+(m). Since M is maximal in §, then M+ (m) = 8. Therefore, for any
se8, s =m'+tm for some te§ and m’ <M. Specifically, ¢ == m’-tm.
On multi_plyq‘ng both sides of this equation by m we have that m = mm’ -
+tm?, Smge m*elM, then m <M, which contradicts our assumption.
idea.lT};Ius, 111 t.hg case S has a unit ¢, the agsumption that the maximal

M containing the square of an element automatically containg the
elen}e.nt 1ts.e]f is redundant. Hence, as in the ring case for a commutative
;;rﬁrmg with zero and unit, M maximal in § implies that & [ M 8 o gemi-
assu;{;nmi(]f:: [10] .pf')mted out 1;}1at there is little loss of generality in

‘ g & semiring has a zero. In [9] he called attention to the fact

that if S has a unit, an i i iri

, an ideal in a semiring sense is also i i i
an ideal in a ring

sense and conversely. Y
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Definition 2. A halfring H is a semiring which is embeddable in
a ring. .
Zassenhaus [17] gave an equivalent definition in his classic monograph
on groups. Since addition is commutative in our semiring S, a necessary
and sufficient condition for 8 to be a halfring is that the additive semigroup
of § be cancellative. Examples of halfrings are the non-negative integers
P+ and the non-negative rationals Q*.

Let H be a halfring. Following [4], we construct the ring R in which
H is embedded. The product set H x H again forms a halfring according
to the laws of addition and multiplication:

) (iny Ja)+ (i3, Ga) = (i sy Ja o),
(15 1) (B2, J2) = (fxfa+J1das idﬁ'_’%]’x%
The diagonal 4 = {(z, #)|x<H} of H is an ideal HxH.

We define the following equivalence modulo A: (i, j1) = (fa) jay(4)
if and only if there exist elements (v, ) and (y, %) in A such that
(2) (By J1)+ (@, @) = (82, J2) + (¥, ¥).
The quotient ring R = H x H/[4 is called the ring generated by H. Let v
denote the natural homomorphism of H xH onto R, then the halfring
H is embedded in the ring R, for the mapping & « »(h+a, a), for any a,
is an isomorphism of H into R. We designate by »(H) this isomorphie
image of H in R and by »(s, ) the equivalence class of (s, ?). In order to
construct the ring R generated by H, it is not necessary to assume that.
H possess a zero, for RN automatieally acquires a zero, the class 4.

Ag in [3] we give

Definition 3. A topological semiring is a semiring S together with
a Hausdorff topology on § under which the semiring operations are con-
tinuous.

If in the above definition § is a halfring, we refer to it as a topolo-
gical halfring.

Definition 4. A halffield H is a semifield which is embeddable
in a field.

Examples of halffields are the non-negative rationals @* and the
non-negative reals R+

2. Introduction. Gelfand [8] defined a commutative real normed
ring R as a set @, y,... satisfying the following conditions:

(a) R is a commutative algebra over the field R of real numbers.

(b) R as a vector space gotten by considering only the operations
addition and multiplication by scalars is a Banach space.

(6) R has an identity e with respect to multiplication.
(d) @* is quasi-regular for every we R. :


GUEST


48 S. Bonrne

By embedding R in its complexification R, he showed that the quo-
tient ring of a commutative real normed ring R by & marimal ideal is the
field of real numbers and that each commutative real normed ring R can be
mapped homomorphically into some ring of real-valued continuous funelions
on o compact space, so that the kernel of the homomorplism is the radical
of the ring [8]. In the proofs of these theorems, Gelfand made use of the
Mazur [14] basic theorem for normed rings, that every complete normed
division ring is isomorphic to the field of complex numbers.

Tornheim [16] removed the necessity of completeness in his proof
that every normed field over the real field R is oither the real field R or
the complex field C.

In section 3 we introduce the concept of & normed halfring H over
the halffield of non-negative reals R+ and show that H iy embeddable
in a normed ring R over the real field R. In section 4 we extend the Mazur
‘theorem to read that every positive normed halffield H, in which (2 53,
2818y) 18 semi-regular for any s, s,<H 48 isomorphic to the halffield of non-
negative reals R+. The above mentioned Gelfand theorvem is extended to
read that each positive normed halfring H, in which (s3--43, 25,8,) 48 semi-
regular for any sy, syeH, can be mapped homomorphically into some half-
ring of real-valued non-negative continmous functions on a compact space.

3. Normed halfrings. Tn agreement with Tizuka [12] we give.

Definition 5. A commutative semigroup & with zero iy called
& left Z-semimodule if and only if 2 is a semiring and a law of composition
Z'x 8 into 8 is defined, which, for o, v<X and s, teS satisfies (a) o(s+1) =
= 08+at, (b) (o-+7)8 = a5+ 18, (¢) (o) = o(78).

If X has 2 unit 1 and 1 = s for all s, then § is called a wnital loft
Z-gemimodule. .

In the following, we introduce the concept of a semialgebra.

. Deﬁn’it.;ion 6. A semiring § is said to be a semialgebra, over & commu-
tative semiring X with unit, if a law of composition (o, §) — o8 of the
product set X'x S is defined such that

i) (8, +) is a unital left F-semimodule relative to the composition
(0, 8) > os,

(ii) for all oeX and s,1ef, o(st) = (as)t = 8 (ot).

) In ?he case that § is an arbitrary ving and X is a commutative ring
with unit, then our concept of a semialgebra coincides with the concept
of an algebra given by Jacobson [13]. As is with algebrag, when we wish
to a‘.pply the notion of homomorphism we restrict our semialgebras to
se_mxalgebra.s over the same commutative semiring X. Thus this notion
will be a mapping which is both a semiring homomorphism and a Z-semi-
module homomorphism T,i e, if 8§ and & are Z-gemimodules, then
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(i) T is a semigroup homomorphism of (8, +) into (8, +),

(i) T is homogeneous on S.

We indicate this briefly by referring to 7" as a X-homomorphism.
The terms Z-isomorphism, Z-endomorphism, and Z-automorphism are
similarly defined.

Definition 7. A semivector space is » semialgebra over a gemifield.

Definition 8. A semilinear space S is a semivector space over the
halffield of non-negative reals R*. .

Definition 9. A metric for a semilinear space S is a function d de-
fined on Sx 8§ to R+ satisfying for s, #, ueS§ and geR*

(1) d(s, 1) =d(t73)7

(2) do(s, 1) = od(s, 1),

(3) d(s,w) < d(s, )+ a(t, u),

(4) d(s,t) =0 if and only if s = 1.

In this case S is said to be a metric semilinear space.

Definition 10. A metric for a semilinear space § is said to be
invariont if and only if d(s+=,t+4 ) = d(s,t) for all s, 1, zeS.

LeMma 1. A semilinear space S with an invariant metric is a topolo-
gioal semiring.

Proof. Let s, — s, t, — 1, then d(s,,t) > 0 and d(f,,?) - 0. Now
d(sn"'tny s+1) < d(3n+tn3 3+tn)+d(8+tn: 3+t) = d(sny S)—I—d(t,,, t): for
d is invariant. Hence, d(s,+1t,, s+t — 0 and s,+1%, —» s+1.

Simjla’rly, d(sutny St) < d(sntn; St11)+d(3tn: St) = d(sny 8)‘4‘""(%7 t)'
Again, d(s,1,,st) > 0 and s,%, - st. Also, d(ps,, 08) = od(s,,s) and
@Sn — 08y geR*. )

Definition 11. A norm for a semilinear space § i3 a non-negative
real-valued funection ||s|| satisfying for s, t<S and ge<R*

(i) fsll =0,

(i) Jsj| = 0 if and only if s =0,
(ifi) Hlosll = elisll,

(iv) lls+2ll < flsll-+ el

In this case, § is said to be a normed semilinear space.

LEMMA 2. 4 semilinear space with an invariant metric is a normed
semilinear space.

Proof. We define |js|| = d(s, 0). Conditions (i)-(iii) for a norm are
obviously fulfilled. Now |js4-#|| = d(s+1¢,0) < d(s+-1,t)+d(¢,0) = d(s, 0)+
+d(t, 0) = |||+ |f]l, for & is invariant. .

Studia Mathematica XXI 4
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In the case of a normed linear space a topology on the space iy defined
by its norm. However, this is not the case for a normed semilinear space,
for the norm does not define an invariant metric on the space. I-Ience’
we shall cqnfine our study to semilinear spaces with an invariant metricr

Definition 12. A set & of elements ¢, 1, ..
lif and only if

(1) 8 is a semialgebra over the halffield of non-negative realy R+

(2) 8 is a semilinear space with an invariant metric d. .

(3) llstll < lls|[ill, where [isf) = d (s, 0), for any §, teN.

(4) If S possesses a unit ¢, then |jef} == 1.

If in definition 12, the semiring & iy a halfring i, we shall refer to it
a8 a normed halfring,

Examples of normed halfrings ave the following :

(1) Let C+(T) be the halfring of all non-negative real- valued functions
%(t),4(t), ... on a compact space 7', with the usnal operations of addition
and multiplication. We define the invariant metric d (®, y) on OH(T) by
the formula d(z,y) = 11;1) l2 ()~ g (t)| and the norm || — d(w, 0).

(2) Let W+ be the halfring of convergent yeries
1= oo
a(t) = Zé’ﬂ.@mt; y(t) = Z Un”mt) Ony Op e R,
o= M=)

with addition, multiplication, and sealar multi
on #(t). We give W+ the invariant metric

18 4 normed semiring

d(m,y) = Z l@n— onl
ahd norm it with |z = d(a, 0). "

LEM_IV.IA 3. If H is & normed halfring, then the halfring Hx H is a nor-
med halfring over R+ with invariant metric .D((sl, 8a), (U ot )} = d(81, )+
(s, 1) ond (3, 5] = o]+ [y R

Proof. A straightforward verification.

The ideal 4 in HxH is a cloged set in the pr

' LuMMA 4, The ring R generated b
ring over the real field R, with norm.

oduct topology [7].
Y the normed halfring H is a normed

3) sy sall = imi i, ).
(,v)ar™ Lu(sy,85)
Proof. We verify that the conditions for
¥ (81, 85)
1) lo(sy, o)l = 0.
o W) 4l = 0. Let (s, 5,)|
t =1, 2, such that (

2 norm are fulfilled by

| =0, then there exist sequences s;, — 0,
$iny $m) = (81, 85)(4). The latter condition implies

plication as the operations -
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that there exist elements (@, @), (Yn, ¥n) sueh that (8, 8um)-+ (B, @)
= (81, 82)+(Yns ¥n)y OF equivalently sn+$, = 85,+8,. The continuity
of addition in H yields that s, = s, and »(8y, ;) = »(8y,8;) = 4.

(iil) Since H contains ¢, we may identify ge in H with ¢ in R+. Now
llov (s, 83l = (@, go-+a)v(sy, so)ll = p(e8atb, 081+ b)ll = I#(0se, 08l =
= —p inf = —p|p(sy, $s)ll, for oeR~. Similarly for peR*. Thus,

(w,v)ev—19(8;, 89)
llev(sy, sa)ll = lolll(81, 82)ll, @<B.

(iv) For every & > 0, there exist (u;, us)ev™1»(8y,8,) and (v, vs)e
71y (ty,s) sueh that |[(wg, w2l < liv(sy, sall+¢ and |[(vy, va)l} < (8, B+
+ . Then |y (8y, 82)+v(t1, ta)ll = (8121, ot )l < (a2, w142}l =
= [yt ol 4 §or+vall < Nwgfl+ Nlwall- oo+ 102l = [|(uy; )|+ 1015 92} [l
Therefore, |[v(sy, 82) + ¥ (f1y ta) < (1, Salll+ lIv(ta, )|+ 22, Since & is
arbitrary, |v(s1y 82)2 (1, )l < [Iw(81, s2)ll+ [ (B, E)I-

We verify that [v(sy, $2)v(ty, to)ll < Iv(sy, Sa)lllv(By, o)l Lot (uy, us)
and (v;, v;) be defined as in (iv), then |In(sy, 85) ¥ (f1, T)} < |[{1, %) (01, )|
= (| (014 Uas, Uy 05+ 1201) | < (0101, Uy V)l + (%203, uav)ll < allilogll+
Il o2l o]l ool Hllesall o1l = (llaeall -+ llasall) (ol [wall) = (2015 22) 11105, )i
Therefore, [[v(s,, 83)9 (t, L)l < (815 2)| [ (15 8} + £ (llp (315 82l 12 (B0, ) +
+ 2. Since & is arbitrary, then |lv(s1, 8a)¥ (%, Ba)ll << (81, S2)lill» (21, Bl

Ag in [7], we prove

LEMMA 5. The mapping v of HxH onto R is open, and R is a topo-
logical ring.

Proof. Let #(81,,y 82n) — ¥(81, §2). Then

[ (8a+81ms 81+ 82|l = inf ffu,y w)li - 0,
(,0)av~ 1o (83 817, 81 +837)
yields sequences %,, Vs, € H, such that |[vi,)] — 0, |[vs,]] = 0 and (v, Vea)
= (83 S1ns 81+ 82) (4), 0 equivalently 9,481+ 8 = Vg + 85+ 81n. Letb
Uiy = Dy +8; BN Uy = Vopt8p, then (g, Usn) = (S1) 820)(4) and
(%15 Usn) — (81, 85). This implies that the mapping » is open.

We introduce in R the quotient topology, that is, the largest topo-
logy for R such that the projection (quotient map) » is a continuous map-
ping of Hx H onto N. Since » is open, the operations in H continuous
and the topology in H is Hausdorff, then R is a topological ring [7,
theorem 4]. As a consequence of lemmas 4 and 5, we have

THEOREM 1. A normed halfring H over the non-negative reals Rt
is embeddable with preservation of norm in the normed ring R over the reals R.

4. Positive halfrings. Following Bourne [1], we state
Definition 13. A pair of elements (s;, §,) of the halfring H is said
to be semi-regular if there exists a pair of elements (¢,,t,) in H such that

(4) : 81+t 818+ 85ty = Syt la+ Saly+ 8175,
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LEMMA 6. If H is commutaiive and (s3] $3,28,8,) is semd-regular,
for any sy, sye H the square of any element of the ving R is quasi-reqular
Proof. Since (si+ i, 2¢,8,) i semi-regular in 1, we have that (tyy 1)
exists in H such that ’

(514 83) b4 (814 83 b Dy 8y s == 28,844y -+ 28, 8,0 - (st 83ty
This implies that

(815 82)24 (byy da) -+ (81, 80)2 (by ba) -1 (@, ) == (4, y)
and

(815 82) 15 -F 2 (b Go) -+ [0 (81, 82) I [¥ (b, £2)] == 0.

Hence the square of the element of RN iy quasi-regular,

' From here on, H is isomorphically and homeomorphically embedded
in R. For the sake of simplification of notation, we ghall write s for » (815 8)
and when s in H, rather than write »(s-+a, a) we shall simply state thi;
fact. The condition that s shall be quasi-regular in R is precisely the one
Gelfend [8] assumed and makes R a commutative real normed ring in
the sense of Gelfand. We recall that the quotient ring of a commutative
real normed ring by a mazimal ideal is the field of real numbers [8). Let
My be the set of maximal ideals of the ring RN. We denote the natural
homomorphism of R onto N/M, M« My, by ¢ur. Tf we hold s fixed and
let'M vary over My, we obtain a real-valued function f,(M)= o (8),
def.med on My. The mapping s — f, is an ‘R-homomorphisml of the commi-
tative real normed ring R into a ring of real-valued continuous functions
on a eompaot space so that the kernel of the homomorphism is the radical
of the ring [8]. It is the canonical mapping of the Gelfand theory. We
shall now prove the following basic result: ‘ "

\ TOBEOREM .2. If H is a normed commutative positive halfring, in which
(s1+52, 28, 8,) ds semi-regular for any s,, saeH, then the quotient semiring
of H by a mawimal ideal is the halffield of non-negative reals R+,

Proof. Let R, My, and f,(M) be defined as above. If g is an element
.of H, then ’?he positive nature of H impliey that 1-- (M) 5 0, for R/M
is the real field. If fo(M) = -0, ¢ a positive real number, then fy,(M)
= —1, a contradietion. Thus, if §<H,.then fo (D) i non-uega.‘(;ive./a
N lfﬁFtl); each MMy phere oxigts a proper homomorphism of H into the
alffiel of‘ non-negative real numbers R+, which in turn determines
& maximal ideal M+e My, the set of maximal ideals of the halfring H [6]
sueh that f; (M) = f,(M), for seM. It s M+, then 0 = fo(M+) = (M)7
whm}; implies that seM. Hence, M+ = H r‘\’M . o T
Lot \1?\[73 :t)oj;v s:m;vﬂt;ha.t every ideal of My is obtained in thiy fashion.
ol d;ff ‘ H‘ an be t.he ideal of R generated by M+. M consists of
CTeNCes My —my, With my, meeM+. M is a maximal ideal for the
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mapping which associates to each element 8;—8,¢ N the real number

Sar-sy (M) = Jo (M) —fs, (M) defines 2 proper homomorphism of R

into R, with M as kernel. Hence, H ~ M = M*. Since M is the minimal
such ideal of R, M+ is contained in no other ideal of My.

We have set up a 1-1 correspondence between the sets My and
My, such that fy(M+) = f,(M), for any seH. Since fo(M), seH, is non-
negative, the quotient semiring H/M* is the halffield of non-negative
reals Rt.

We topologize DMy after the manner of Gelfand [8]. It is the weakest
topology in which the functions fs(M*) are continuous, and My is & com-
pact Hausdorff space. Since the halfring H generates the ring R, Mg — My,
and f,(M+) = f,(M), M+~ M, s<H, the topology of My is the same
as that of My,. Hence, we have

TaEoREM 3. If H is a normed positive halfring, in which (s1-s3, 25182)
is semi-regular for any s,, sy H, then there exists a homomorphism of H inio
the halfring of real-valued non-negative continuous functions on a compact
Hausdorff space.

Detfinition 14. The spectral norm |s|, seH, is given by the formula

lsl = sup fo(MF).
M+ oMy

Sinee f,(M*) = fo(M), s<H and Me My, it follows that

ls| = sup fo(M) = Lm[s"|".
MeMg N—>00
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Banach spaces of Lipschitz functions

by
K. DE LEEUW (Stanford)*

§ 1. Introduction. If 0 < « < 1, Lipa is the space of all complex
valued continuous functions on the real line R of period 1 with

Su];lf(d-i-f)——f(ﬂ)l =0(z) as -0

lipa is the subset of Lipae consisting of those f with
Su%lf(0+r)—f(0)l =o(l7]) as T-0.

Supplied with the norm |-, defined by

il = suplstor, TOTDZTL,
0,0,7 7]

Lipa is a Banach space and lipe is a closed linear subspace ().

We show in § 2 that the Banach space Lipa is canonically isomorphic
and isometric to the second dual space of the Banach space lipa. In §3
we identify the extreme points of the unit sphere of the dual of lipa and
obtain as a consequence in § 4 the fact that lip« has no isometries in addi-
tion to the expected ones.

§ 2. Lipa is the second dual of lipa. Two definitions are necessary
before we are able to state the main result of this section. For each ¢ in
R, we define the functional @, in the dual space (lipa)* of lipa by

P,(f) = fo), [felipe.

For each funetional F in the dual space (lip @)** of (lipa)¥, we define
the function # on R by

F(o) = F(D,), oek.

* This work was supported by the United States Air Force Oftice of Scientific
Research.

(1) In [8] it is shown that lipa is the closed linear subspace of Lipa spanned
by trigonometric polynomials.
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