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Banach spaces of Lipschitz functions

by
K. DE LEEUW (Stanford)*

§ 1. Introduction. If 0 < « < 1, Lipa is the space of all complex
valued continuous functions on the real line R of period 1 with

Su];lf(d-i-f)——f(ﬂ)l =0(z) as -0

lipa is the subset of Lipae consisting of those f with
Su%lf(0+r)—f(0)l =o(l7]) as T-0.

Supplied with the norm |-, defined by

il = suplstor, TOTDZTL,
0,0,7 7]

Lipa is a Banach space and lipe is a closed linear subspace ().

We show in § 2 that the Banach space Lipa is canonically isomorphic
and isometric to the second dual space of the Banach space lipa. In §3
we identify the extreme points of the unit sphere of the dual of lipa and
obtain as a consequence in § 4 the fact that lip« has no isometries in addi-
tion to the expected ones.

§ 2. Lipa is the second dual of lipa. Two definitions are necessary
before we are able to state the main result of this section. For each ¢ in
R, we define the functional @, in the dual space (lipa)* of lipa by

P,(f) = fo), [felipe.

For each funetional F in the dual space (lip @)** of (lipa)¥, we define
the function # on R by

F(o) = F(D,), oek.

* This work was supported by the United States Air Force Oftice of Scientific
Research.

(1) In [8] it is shown that lipa is the closed linear subspace of Lipa spanned
by trigonometric polynomials.
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Note that if fis in lipe and #; is its image under the canonical imbed-
ding of lipa in (lipa)*™, the function F; iy simply f.

THEOREM 2.1. The mapping F — I is an isomorphism and £80metry
of (lipa)** onto Lipa. ’

The proof proceeds by a sequence of lemmas. Wo shall denote by
Il and ||-|l* the norms induced on (lipa)* and (lip)*™ by the norm
Il on lip a.

LeMyMa 2.2. If F is o funstional in (pa)*™, then the function I i
i Lip a.

Proof. If ocR, veR, and f in lipa satisfies |lfll, = 1, then

D5 (f)— D ()l = If (o)~ f(2)] < [o= 7|
Thps

(2.1) 6.~ |2 < |o—7|",

and as a congequence,
\F (o) = F(z)] = [F(D,)— F(D,)] = |F(d,—b,)|
<P @~ @k < [ B]* o~ |,

o

and so ¥ is in Lipe.

We next identify the continuous linear functionals of lip a by construc-

ting an isometric imbedding of lip« into a space of continuous funetions
supplied with the sup norm.

Let W be the locally compact topological space U o ¥, where

U=1{e:0 <o <1)}
and

V={lo,0:0<0<1,0<7—0 < }}.

We denote by C,(W) the Banach space of complex valued continuous

funetions " S Fimd : .
dofin® y011 W that are zero at infinity, supplied with the norm |||l

il = sap|h(w)].
welW

We denote the norm of the dual space

. W)* of ¢ ]
Riesz representation theorem, (V)" of Co(W) by [-Iffy. By tho

each element v of Cy(W)* is of the form
vh) = [hdu,  heCy(W),
w

for a unique finite measure #on W, and we define llulli to be - [l

icm®
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Tor each funetion f in lipe, we denote by f the funection on W
defined by

Jlo) =fla), @eU,
flo, ) = ﬂg:%gl’, (o, 7)€V

LEMMA 2.3. The mapping f - f is a linear isometry of lipa, supplied
with the norm |||, into Co(W), supplied with the norm ||*|lw-
Proof. It is clear that f — f is a linear mapping of lip« into Co(W).
If f is in lipe, f has period 1, so .
sup{|f(e)l: e« R} = sup{lf(e)l: e« U}
and ‘

If (o) —f ()]

lo—°

() —f(2)]
_s“p{ o=

a,reR}::sup{ :(U,‘Z)GV},
and as & consequence, [|fll. = flw- .

Luvva 2.4, Let @ be a functional in (lip o)*. Then there emists a measure
uon W with \ully = IO satisfying

(2.2) D(f) = f‘f(g)du(@)wL ]
. /

T
for all f in lipa. -

Proof. By Lemma 2.3, the linear functional v defined on the sub-
space ~ .

{f: felipa}
of 0,(W) by
’/"(.f)=@(f)v felipa,

v can be extended, by the Hahn-Banaoh

having the same norm, and thus
on W satisfying

has its norm equal to [P
theorem, to a linear functional of (W) :
by the Riesz representation theorem there is & measure s
lulfy = Pl and

(2.3)

?(f) = Iﬁdu

for all f in lipe. But (2.3) is simply another way of y’riting 42.2).
We shall denote by (lipa), the subspace of (lipa)* consisting of all
functionals @ of the form

(24) o(f) = [far, felipa,
U
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for 4 a mieasure on U. The subset of (lip«)y, consisting of all functionaly
of. the form (2.4) for 1 a meagure concentrated at a finite number of points
will Abe Qenoted by (lipa)y. Equivalently, (lip o)y i8 the linear subspace
of (lipa)* spanned by {D,: oe<R}. -
Lemma 2.5. (lipa)y, in dense in (lip«)* in its norm topology.
Proof. Let @ be a functional in (lipa)*. By Lemma 2.4 there is a
measure x on W that satisfies v

D(f) = _J-]Ed,u, felipa.
w
- Let
W, CW,C...CW,C...

b.e 8 sequence of compact subsets of W whose union is W. For each posi-
tive integer n, we define the functional @, in (lipa)* by

¢n.(f) = ffd,u, fEhI) .
W,

Because of Lemma 2.8.
lim”(bn_(b“:z = O!

80 it only remains to show that each D, is in (lpa)k. But since

win = [ fowe+ [ 1210,
U, Vaw,, lo—1]
for all f in lipa, and |o—7|* is bo y 2 iy i
el G%ef | | unded away zero on V ~ W,, this is
I;EMMfA i.ﬁ. (ipa)y 4s dense in (lipe)* sn s norm topology.
roof. Let 4 be a measure on U and @ the fur ional in (i

) . [ [ unctional in (lip a)*
ic}lef(llliled Ey §2.<%). B*y Lemma 2.5, it suffices to show that & is in the (51021139
n 1;1: (;JLI)l 0! (]Z.p a),,.. Let O U.) be the space of complex valued. continuous
o Ofs on U. Using the 'Rlesz representation theorew, we identify the
measures on U with the dual space C(UY and denote by I I

the norm on this space of me: i
d ; asurey induced by the sup norm on (T
Choose any s > 0. We shall denote by S the unit aphkm'a o

{f: felipa, iif|, <1}

](;fy hf aa;n‘; 1: Zillee?on of functions having period 1 on R that is bounded
el 431 ectci)n ;.E)uous.f Th.us by Ascoli’s theorem, § is conditionally
T ol § eagh o saehgfy o 1'1n1f(?rm convergence, so there is a finite subset
tmotion i 1 o unetion in § is uniformly within &(4:[|A*)~ of some

. 8 well known (see [1], p. 75) that the subset of the sphere

{r:ne0(T), Il < (1A%}

icm®
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consisting of measures concentrated at a finite number of points of U
is dense in this sphere in the weak* topology of € (U)*. Thus there is a mea-
sure # concentrated at a finite number of points of U7 that satisfies

Iml[* < lIAI* and
[ far— [ fam| <2, feT.
174 s

Because of the choice of 7|

| [ fai— [fan|<e, fes,
[ 174
and ag a consequence, the funetional v in (lip o)* defined by

p(f) = [fan, feliva,
U

satisties p—P| < &. Since ¢ was arbitrary and y is in (lipa)y, we have
shown that @ is in the closure of (lipa);; and the proof is complete.
COROLLARY 2.7. The mapping F — I of (lipa)** into Lipa is one-one.
Proof. Tt is clear that the mapping is linear. If F in (lip a)** is in
the kernel of the mapping, F' is the zero function, so

F(D,) = F(a) =0, ocR.
But by Lemma 2.6, linear combinations of the @, are dense in (lip a)* in
its norm topology. Thus F must be the zero functional and the mapping

is one-one as claimed.

Lumya 2.8. The mapping F — F of (lipa)*™ into Lipa is onto and
NOrM Preserving.

Proot. et b be a function in Lip«. We shall first construct a fune-
tional F in (lipa)*™ satisfying #7 = h. For each| positive integer n, the
Féjer kernel I, is defined by

2 (_sm(v.b—{—l)na) . oeR.
nt+1 ginwo
(For the properties of the Féjer kernel that we shall use, see [4], Chap. 3).
The convolution K, * b is the n-th (€, 1) partial sum of the Fourier series
of h. These (C,1) sums converge uniformly to %, so
gekR.

I, (o) =

(2.5) lim K, *h(o) = h(o),

n—>00
Moreover, it is simple to check, using the fact that each K, is positive
and satisfies

1
jK,,(a)aa =1,
0
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that .
(2.6) xRy << ([Pl

anh is a trigonometric polynomial and thus in lipu. We shall denote
by F, the functional in (lipa)** corresponding to I,k under the canoni-
cal imbedding of lipa in (lip o)**;

; 1oe.
(2.7) Fo (@) = D(K,xh), De(lipa).

Because of (2.6) and the fact that the imbedding of lipe in (lip «)** is
an isometry, ) .
(2.8) Wl < N .
We define
F(D) = lmF, (D)

for all @ in (lipa)* for which the limit exists. |

4 : sts. By (2.5) and (2.7), F(®
%msts for all @ m‘ {D,: o:eR}, and thus by linearity exists for all @ in (iip a()*?

ut by Lemma 2.6, (lip«); is dense in (lipe)* in its norm topology. Xs
a consequence, because of (2.8), F'(P) exists for all @ in (lipa)* and F is
a functional in (lipa)** satisfying

(2.9) IF(E" < b

. ‘ -
Furthermore, F =1, since for each o in R,

P(o) = F(®,) = limP,(P,) = limK, xh(s) = h(c).
N—>00 T =—>00
‘ ].Sy (2.9), IFII* <||Fla, so to complete the proof of the lemma it
remains only to demonstrate the reverse inequality. For each o in R
ol

(2.10) (Bl = |F(@)] < IFIE 8,15 < |75
Furthermore, for each o and 7 in R,

(2.11) |B(0) =B (x)] = |F(B,—B,)| < [P |B—B,|* < T |o—1|°

a =

by (2.1). (2.10) and (2.1 2 3
o & ) (2.11) together show that |||, < |F|** and the proof

Theorem 2.1 is now i i I
. immediate consequence of 2.2, Cor
o N o q of Lemma 2.2, Corollary

fica.ti§o§. O?’ig:’:;l’mnfs In (lip a)*. Our aim in. this section is the identi-

Becanse of Lo 1'6;’1136 Joints (%) of the unit sphere of the dual of lipa.

o e a 2.3 it fsufflces to consider the corresponding problem
ear space of continuous funections under the sup norm.

N ; :
(*) @ is an extreme point of a convex set

lying in the set. it it is not the mid-poin t of any segment

e ©
lm . Banaoh, spaces of Lipschitz functions 3]

Lot X be a locally compaet topological space and Uy (X) the space of
complox valued continuous funetions on X that are zero at infinity.
Suppose that 4 is a closed linear subspace of 0y(X). 4 is a Banach space
under the sup morm and we ghall denote its dual by 4*

The following result is contained in Lemma V.8.6 of [2]:

Luma 3.1, Bach emtreme point of the unit sphere of A* is of the form

(b(.(/)"——}“g(m)y .’/GA:

for some ® tn X and some complew number A with |A] = 1.

One further definition is necessary before we are able to state a partial
converse to Lemmsa 3.1. Let # be a point of X. A funection A in A is said
to peak at @ relative to A if h(x) =1 and

Rl <1, yeX,y #a,
with equality holding only for those y in X that satisfy either
g(y) = g(2), all ged,

or
gly) = —g(@), all ged.

LﬁMMA 3.2. Let © be a point of X. Suppose that there is a function
in A that peaks at @ relative to A. Then the functional @ in A* defined by

B(g) =g(®), ged,

is an emtreme point of the wunit sphere of A*.

Proof. It is clear that & is in the unit sphere of A*, Suppose that
@ = }(p,+ v,), where y, and y, are also in the unit sphere. We must
show that y, = v, = @. By the Tahn-Banach theorem, the functionals
y, and y, can be extended in a norm preserving manner to C,(X) and thus
by the Riesz representation theorem there are measures u, and u, in the
unit sphere of C,(X)* satisfying .

7l’i(g):fgd/*‘i7 ged,i=1,2.
X

Let b be a function in A that peaks at @ relative to 4. Since y, and
ug are in the unit sphere of (XY,
[haw| <suppo)l =1, i=1,2
yeX

X
Thus, because )
1= h(@) = B(k) = Hps () +pa(B)) = 3 [ hdps | Bdp,),
X X
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we must have

(3.1) [ hp, = [ hip, = 1.
X X

We define the subsets Y., Y. and ¥, of X by
Yo ={y:hy) =1} = {y:9(y) = g(w), all ged},
Yo ={y:h(y) = =1} = {y: g(y) = —g(w), all ged},
¥y ={y:lh(y)) <1} = {Wrye' Yy, ye'Vo}

Sinee (3.1) holds and the x; are in the unit sphere of ¢, (X)*, we must
have

P Ya)=p(Yo) =1, pu(¥o) =0, i=1,2.
Thus for each gin 4,
vi(g) =f9d/"'i = f!/d,“i'i* f(/d,“i,"f“ fyd/u.,;
x ¥ s ¥y

=g@)p(Ye)=—g@)ui(X-) = g(@) = D(y), i=1,2.
Ag a eohsequence, Y1 =y, =@ and @ ig extreme as claimed.

- THEOREM 3.3, A functional ® in (lipa)* is an estreme point of the unit
sphere of (Mipa)* if and only if it is either of the form

(3:2) 2(f) = M(e), felipa,

for ¢ in R and 2 « complex number with [Al = 1, or of the form

o) — 1 JO=I)

IU-"TIG ’

(3.3) felipa,

for o and v in R, 0 <7—¢ <t oand A a complew number with A = 1.

Proof. We shall use the notation established in § 2. The functionals @
described in the statement of Theorem 3.3 are precisely those of the
form

(3.4) D(f) = i (a), felipa,
for # a point of W and 1 a complex number with |4 = 1. Lemmag 2.3
and 3.1 applied to X = W and 4 — {F: felipa} show that each extreme
point of the unit sphere of (lip «)* is indeed a functional of the form (3.4).
To establish the converse, because of Lemma 3.2, it suffices to show that
for each point » of W it is possible to find some function f in. lipa with f
peaking at # relative to 4.

CaseL o= g, 0

< @ <1. By the invariance of lipa and ||- |, under
translation,

We may assume that 0 < o < 1. Let f be any function in

icm
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i istyin, =1, |f(6)| < 1if ¢— ¢ is not an injzeger, and |f(o)—

1‘15);2;?123}’ ]i—{(ﬁ?‘ for o,7eR. Then f(#) =1 and [f(y)| <1 if yeW
and y # @, 50 F peaks at @ relative to 4. ‘

Case II. & = (o,7), 0 <0 <1, 0 <r—0 <4} By the invama.nce.
of lipe and |-|., under translation, we may assume that a“= 0. Let f
be the function in lipa that satisfies f(0) =0, f(r) = -7 f(r)y=o,
and is linear in the intervals [0, =] and [v, 1]. Let 2’ be the point (1z 1+7)
of W. Then f(#) =F(@) =1 |f(y)l <1if yeW, y #a, y #a', and
§(@) = g(a') for all gelipa, 50 F peaks at # relative to A.‘ -

Case III. @ = (0,7), 0 € ¢ <1, v—o = }. By the invariance of
lipa and |-j, under translation, we may assume that (o, 7) = u(ﬁ, ?). Let
f be the function in lipa that satisties f(4) = 0, f() = — (%) ,f(;? = (:,
and ig linear in the intervals {1, 31 and [4,}]. Let &' be the pomi; 3]
of W. Then F(z) =1, f(#') = —1, [F»)| <1 if yeW, y #a,y # o', and
g@) = —g(«') for all gelipa, so F peaks at  relative to A.

This completes the proof of Theorem 3.3.

§ 4. The isometries of lipa. The ¢ be a real number and 4 a complex
number with {4 = 1. Tt is clear that the linear mappings U and V of lipa
onto itself defined by

Uf(o) = if(¢+0), ock,
and
Vf(o) = if(e—0), ok,
satisfy
JUfla = Ifly  felipa,
and

1Vfle = Ifllay  Felipa.

In this section () we estab]fsh the following result, which shows that
lipa has no further isometries: ' ,

TaEorEM 4.1. Let T be a linear isometry of lipa onto dtself. The@ ;Lhe?'e
is a real nwumber o and @ complew number i with |Al =1 so that either

Tf(o) = M(e+o), ock,

for all f in lipa, or

Tf(o) = M(e—0), ok,

for all f in lipa. )
The remainder of the gection is devoted to the proof of this theorem.
(%) This wori( was supported in part by the Society for the Preservation of
the Norm.
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We shall denote by ext S* the set of extreme points of the unit sphere
of (lipa)*. Since 7 is a linear isometry of lipa onto lipa, its adjoint 7™
i3 & linear isometry of (lipa)* onto (lipa)* and satisfies

(4.1) T*(ext 8*) = extS*.

LemmA 4.2. Let f be a function in lipa. Then f is a constant function
if and only if

(4.2) {1 (f)]: D coxt §*}

consists of at most two numbers.

Proof. If f is constant, that (4.2) has at most two elements is clear
from Theorem 3.3. For the converse, suppose that (4.2) consists of at
most two numbers. Since f is in lipa, 0 is in the closure of

[f(9)—Ff(x)

| lo—z|*

roy, TeR, 0 # r},

and thus by Theorem 3.3, 0 must be in (4.2). If there is no other element
in (4.2), by Theorem 3.3 f must be the zero function and we are finished.
So we may assume that (4.2) is {0, o} where ¢ > 0. Since felipa, there
exists an ¢ >0 so that

(o) =1 (x)]

lo—z|*
if |o— 1] < . But since (4.2) is {0, o}, becanse of Theorem 3.3, each number

o) —1(=)]

o—zf

is equal to either 0 or g. Thus f(o) = f(z) if |o— 7| < ¢ and f is constant,
Recall that for oeR, &, iy the functional in (lip a)* defined by

@,(f) = f(0), felipa.

COoROLLARY 4.3. Theré is a complex number A with |A| = 1 so that
(4.3) I*®@,: 0eR} = {iD,: ceR}.
Proof. Let g be the function in lip o satisfying

glo) =1, oeR.
By (4.1) and Lemma 4.2, Ty is also a constant funetion. Suppose that

Tg(s) =4, oaeR.

icm
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Then, because of Theorem 3.3 and (4.1),
T*D,: ce R} = T*{®: Geoxt&*, B(Ty) = 1}
= {{"P:DcextS*, D(Tg) = 1} = {I*P: T*Peext§*, T*P(g) = A}
= {p: peext§*, p(g) = 2} = {1B,: 0< B},
80 (4.3) holds. Finally, |A| = 1 since 7 is an isometry.
Levma 4.4, If 0, veR and |o—7| <}, then |O,— B = |o—[°.
Proof. By (2.1), [|0,—P,|F < lo—17|%, so0 it suffices to establish the
reverse inequality. Assume first that |o— 7| < }. By the invariance of
lipe and ||-|l, under translation, we may assume that ¢ = 0 and 0 < 7 < 1.

If f is the function constructed in Case II of Theorem 3.3, Ifl. = 1 and
[D,(f)—P.(f)! = [o—7|®. As a consequence,

(4.4) 10, —2Jfs = |o— ="

when |o—7| < §. A similer argument using the function constructed
in Case IIT of Theorem 3.3 establishes the inequality (4.4) for o—17| = %,

One further lemma is required before we are able to complete the proof
of Theorem 4.1. Let 2 be the complex number with |4] =1 satisfying
(4.3). Then one can find a real number so that T*®, = iP,. Lot ceR
satisfy |o| < . By the choice of 2, there is some reR with

(4.5) 0, = 10,

and thus & unique 7<R satisfying (4.5) and in addition p—} < 7 < o+ 1.
This unique = will be denoted by #(c). We have thus defined a mapping

t:{o:—3 < o< +3%} - R.

LevMA 4.5, The mapping t satisfies either

(46) i) = oto, —d<o<-+},
or
(4.7) (o) =0—0, —}<o< +1.

Proof. Let o satisty |of < 4. Then {t(o)— o] < }, 50 by Lemma 4.4,
[t(c)—ol* = “qjt(a)‘“éq”j = ”}ngsqa)_}@g”;k
= |T*(@;—Py)|lz = [P, —Doliz = [¢]*.
Thus
(4.8)

[t(o)—el = o], —}<o<<+4.

Furthermore, the mapping ¢ is continuons. For if g is the function in lipa
defined by
g(z) = ezﬂiry Tek,

Studla Mathematica XXI 5
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then Tg is continuous and
™ = g(1(0)) = Pye) (9)
=170, (9) = 279, (Tg) = 27Ty (o),

Tt is now clear that ¢ must satisfy either (4.6) or (4.7) since it is one-one

continuous and satisfies (4.8).
We are now able to complete the proof of Theorem 4.1. Suppose that

the mapping ¢ satisfies (4.6). Then if f is any funection in lipa,
Tf(o) = o(Tf) = (T*D,)(f)
= My (f) = lf(t(‘f)) = M(g+0),
and a§ & consequence,
Tf(0) = Af(e+a),

—i <o <-+4.

—i <o < +14,

oekR,
for all f in lipa.
Similarly, if the mapping ¢ satisfies (4.7), then
Tf(o) = A (¢—0), ock,
for all f in lipea.
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A remark on an imbedding theorem of Kondrashev type

by
P. SZEPTYCKI (Pretoria)

1. The present note may be considered as the second part of Paper
[1]. An approach developed there in order to obtain an elementary proof
of complete continuity of the imbedding of the space W5 (R2) in C(RQ)
for m large enough (see the definition below) is applied here to study the
similar property of the imbedding of WZ,(£2) into the space of functions
integrable to the power p over a sufficiently smooth variety contained
in 2, and of a dimension smaller than that of Q. An elementary proof of
the Kondrashev theorem is obtained under conditions imposed on the
variety under consideration, which differ from the original ones as pre-
sented in [4]. To prove the continuity of the imbedding mentioned, it is
natural to impose the geometric conditions I invented by Ehrling; for
its complete continuity, the more stringent conditions II seem to ‘be
necessary.

Several papers have been published recently in connection with simpli-
fications of imbedding theorems (cf. for references [2]).

In what follows 2 will denote a fixed bounded domain in N-dimen-
sional Euclidean space with points x,y,... and corresponding volume
elements dz, dy, ...; C(£2) will denote the space of functions continumous
on 2, C°(Q) the space of functions with continunous derivatives of all
orders on Q. In () we introduce the norm

Wl = (3 [ 1Duf1 da)'rr,

a 2

p>1,

where the summation is extended over all derivatives of f of order not
larger than
o°f

a an !
Omgt.. . 0wyl

m(D,,f: la| =a1—)—...—|—aN).

By completion of C*(R) in the norm || |, we obtain a Banach space
W5(2) of all functions of I”(2) whose generalised derivatives up to order
m all belong to I?(Q). In the occurrence of other norms, we shall indicate
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