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whence

f L2l >

L4
f ngm)l dm = oppTH2.
T

and finally

Thig clearly implies (1.8).
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ACTA ARITHMETICA
VII (1862)

On the zeros of Hecke’s L-functions Il
by
E. FoerELs (Riga)

Introduction

1. In the first paper (see [1]) it has been proved in particular that
the Hecke-Landau function {(s, y) of the field K of degree n > 1 with
a complex character y modulo f has no zero in a rectangle

1—A4,flogD < o<1, Jtj<D?

{where D = |[4|Nf>=D,>1, 4 denotes the discriminant of the field
and A,> 0 depends only on n). For at most one real y in that rectangle
may be a simple zero B’ = 1—06 of Z(s, y); it is real and, if D, is large
enough, then

50} 8> DT,

B, if it exists, is called the “exceptional” zero. The corresponding character
% =z and funetion (s, ') also are called the ‘“‘exceptional” ones. Con-
gider, that y’ is a real character, not necessarily different from the principal
one.
" In this paper we shall prove the following
THEOREM. There is an absolute comstant A > 0 (which depends only
on n) such that for

s _|? # 0<AflogD,
" | AflogD  otherwise ,
Alog(s IA €[4, $log D]
in the rectangle (1— AoflogD < o < 1, |t| < D) there is no zero of the ]‘unotwn

Z(s H L(s, x) with at most one emceptwn B

We may suppose that the exceptional zero exists. If it does not
then this theorem (with &, = 4,/logD) is a simple consequence of that
proved in [1]. And so it is (with 6, = }4,/log D) if 8, [} 4o/log D, A,log D]
Hence, in what follows we suppose that

< A logD.
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The method used in this paper is on the whole that employed by
Rodosskil for I-functions of Dirichlet (cf. [8], X § 3). He has based his
proof on a transformation of the funetlon L'/L(s, x), although it is more
convenient to deal directly with the function itself (cf. Liemma 2 of this
paper and [3], X, Lemmas 3.4-3.9 or X, Lemmas 2.4-2.9).

2. The notation (and the convention 7 < 1) remains generally the
same as that used in [1]. The constant A, keeps its meaning throughout
this paper. We shall need the following estimates

(2) Zlogp<m. (x> 0),
pEXT
(3) Dlogp/p =loga+0(1) (@>1),
PEL
(4) Zl/p =loglogw+¢ +O0(1/loga) (w—o0),
N N
(5) []a—1p)yt = cloga+0(1) (a->c0),
PET

where p runs through all primes (see, for example, [3], I, Satz 3.1, 4.1).
Other quotations from [3] and [1] will follow dwing the proofs.

Two general lemmas

3. Lemma 1. Let 4,4, B, a,y,, y denote parameters such that A > 1
may increase indefinitely, 0 <c <A< 3d, 1< B <1,

(6) a=MNA, ALy, <ed, y=min(1l,eYd).

Let further 8 be some set of points ¢ = p-+iv in the strip } < o < 1. If there

ig a point gy = Po+itge S in the region (1—a<o<1,[t]<yg), then
there is also a “‘convenient’ point ¢ = B, +iv, € 8 such that f, = By, |vi— 7ol
< BBy and in the region
(7) L+UBEA<S o<1, |[t—7<by
there i8 mo point g e 8.

Proof. If there is no point ¢ ¢ § in the region By(fy+ 1B A < o = 1,

[t—7o| < By), then g, is a ‘“convenient’’ point and we have nothl‘ng 0
prove. If there are points ¢ in R,, then there is at least one point g, == fy
+iry (say) in R, having the maximal B,. And if in the corresponding
region Ry(f,+1/BA< o<1, |t—7| <By) there is no o, then g, is
a ‘“‘convenient’’ point, ete. Repea,mng this argument we get the ‘“con-
venient” point g, in less than B4 steps (since there are no points ¢ on
the right of the line ¢ =1).
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4. LEMMA 2. Let the function F(s) be meromorphic in o> —} and
satisfy the following conditions.

(i) The only singularities of F(s) in ¢> —}% are simple poles o on
the left of the line o =1 with residues m, > 1, such that

(8) D my<rd
le—1~—it|<r
for YA <r <2, [t| < e
(i) In the notation of Lemma 1, there is a pole o, of F(8) in the rectangle
(1—a< o<1, [t <) and we have in the region 1—a <o <4, |i—7]
<148y

(9) Pls)— Y Mo <4
ts—e|<18 e
(i) In o> 1
o0
(10) F(s)= D amm=, ap< peidlogp,
m=1

and the terms of the expansion (10) with m # p consiitute a series which is
absolutely and uniformly convergent in ¢ >1—a having the sum -< 1.

Write
log(1+4
(11) Z = exp {/1 2%%;72} ,
(12) Fys) = D ap—, = Dap— (o>1)
Z<p<M p=M

where M > %4 is a fived number < oo.

Under these circumstances either (1) there is a point s, = ay+it, Wn
(13) RBi(l—a<
satisfying

<1+43a, |t—7| < 4a)

|F1(31)| =4
v (II) there is a point s, = oy-+it, in

Ru(l+ia<o<1+ia, t—u|<a)

such that
(14) |Fa(85)| > Aexp(—cpd) .
Proof. Let us introduce the point 84 = g, + 3/F A4 at which, by (9),
(18) reF(s) > tBA—cA.
Writing
(16) 2 amm=o+ Y ayp=2, Fyfs) =F(s)—1(s)

<z
maév
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we have in 0 >1—a

(1 fls) = 4,
by (10), (11), (6), (3). Hence, by (15),

|Fysq)| > 24
{provided that E is large encugh). This implies the inequality

(18) [By(s5)] + | Falss)| > 24,
since
(19) Tys) = Fa(s) 4 Fa(8)

by (10), (12), (16) (in the first instance in o> 1 and further by analytic
continuation).
Now suppose that (I) does not hold. Then we have for all & ¢ Ry

{20) |i(s)| < 4

and hence, by (18), |[Fuss)| > 4 (since $; € By).
Let C; be the cmcle passing through the point 83 and having its centre
at 1+ a-iry; then ity radiug is
(21) . ory=1+4a—(f+8/BA).
Write
My = max |Fys)|.
8€(y

If 2; denotes that point of €, (or one of such points) where |[Fy(s)| takes
its maximal value, then

(22) [Fo(zy)| = My > A.
Denoting ¢, = p+1/8 4,
\ Mg _ Mg
re 2’ S_Q—P(s), 1o ﬁQ(s
la=q|<1 js—el<1
P<do p>a

we have in Ry
(23)
by (9).

Let v(u) = v(u,t) (for u >y, |t < e4) denote the sum 2 m, over
the points ¢ = f-+iv in the rectangle By defmed by 6, <P L, jr—t| <.
Since R, can be covered by < u: (A/4) circles of radius 24/.4 having

their centres on the line ¢ =1, by (8) »(u) < ud. Hence, by (13), (7)
and [1] (6), if s e By and y < 1,

el (s) = P(s)+Q(s) +0(4),

1
(24) Q(s) <‘a(f%%)du+'u(l)) <.
kd
{If y =1, then @ =0 as an empty sum.)
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Let now s, s* be any two points in the region
ft2/BA<Lo<1+8a, |t—7<4a

< 1/EA. If s replaced by s* then the term
m,  Te(s—p)

s—e ¢ Js—op

of P(s) changes into k,P,, where

satisfying |s—s*|

P,=re

re(s**g |s—o]?
* ™ Te(s—o) Is* 9|55[7(74]

Hence the 1atio P(s):P(s*) remains in the segment [}, 4]. From this
and (23), (24), (16), (17), (19), (20), (22) we deduce that for all & in
the circle COy(|s—z| <r,7r =1/EA)
P(s) < 4P(2;) < 4[reF(2,)|+ 64 < 4 |F(2)) |+ 04 < 4 |Fy(2y) |+ 054
< 4| Fy(2)| + 4 |[Fofen) |+ 054 < 4 [Fof)| 40,4 < e M .
Hence, by the same formulae, in C,
|redy(s)| < cgM, .

Now by the theorem of Borel-Carathéodory (see, for example, [3],
A, Satz 4.2) in all points of the circle

(25) Oif[s—2| <7, ' =1/E*A)
we have

[Fys) = Pafen)| < 2 {max fre (o) —reFya) < M,
seC)

provided that F is large enough. Hence, by (22), at that point s = s’ (say)
of the circle Cy|1+ o+ dz,—s| < 1,) with
(26) Py =1y—7,
where O, touches Cg, we have
|Fo(s)| > .M,

and thus .

27y m‘mx|If‘2 o= My> 3 M,.
8¢Cy

‘Writing

Oyl +atin—s| <), 73=4%a

we have, by (27), (21), (26), (25), (22) and Hadamard’s three circle theorem
(see, for example, [3], A, Satz 9.2)

My > MglOE rafra)logriry M(BIOK mirg)flogrifry

My = max|Fys)|,
8€0;

> MIQ—(lozn-losrs)/lozl:(rslrx) > dexp(—

whence (14) follows.
Acta Arithmetica VII 10
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Proof of the inequality (28) for g, # 1’
5, LumMA 3. There are positive absolute constamts Ay, A, such that if
8 < AyflogD

and o = f+iv # B is a zero in [t| < D of any function [(s, x) with a char-
acter modf, then
A, ed,

~iogD “85TogD

(28) f<1—

The proof of this lemma will be the object of the following para-
graphs 6-16.
Let go = Bo-+ 17 be a zero of £(s, x) such that [z < D, f >

(29) Bo=1—AlogD .
Since, by (1),

0; write

ed,
log = 3oz D < ¢logD,

if Bo< & or A %logD, then (28) holds (with f, instead of 8) for any
A, < 2e;". Hence it remains to prove the lemma for A < %log.D.

6. We shall begin the proof by verifying that the function

ClE(a, )+ s =8, 22') H g =xe#E g,
(30) F(s)={0/C(s, x)+L ks +0, 21) H  x# 2% 2,
&'E(s, x) it x#Fge=2

satisfies the conditions of Lemma 2 with
(31) A=1logD, Ae[dy,$logD], 9,=D, M =Din,

Congider that for y =y, 5 3’ the pole of I'/L(8, xo) at § =1 (with
residue —1) is cancelled out by the pole at ¢ = 1 (with residue 1) of
L'fe(s—6, z'). And for g+ x, %y’ the same remark applies to the pole
at s = f' (with residue —1) of {'/Z(s+ 8, %) and the corresponding pole
of £'[C(s, x") with residue 1. In the other cases there are no poles of {'/f
with negative residues.

We have (8) in a consequence of (81) and [1] (43), [1] (36).

(9) holds for yy=D, 4 =logD, by [1] (41), sinco |v;| < D¥ (cf.
Lemma 1).

The condition (i) of Lemma 2 results from (30) and [1] (11).

7. Since any prime p in the field K is a product of at most n prime

ideals p with Np = p, in the exposition (10) for any of the functions (30)
we have, by [1] (11),

(32) |ap| < (14 p%logp .

icm
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y (2), [1] (6),
%ﬁ—% <efard®  (a>0,5>1).
PRT

(since 6 < 44/6logD, a = AyflogD, by (31) and §1)
we deduce that there is an absolute constant A > 8n such that

5] \legp
2 p1+ﬂa/z <2n Z pi+em <
p>D4 p>D4

for ¢, defined by (14).
Since, by (11), (31),

(33) } exp(—¢pd)log D

7 — ples(+ai(e+23)
we have, by (4),
‘1 01 L 4N
DA 7 < D*a(loglog D*»—loglog Z +1) < exp(cad) ,

dmnd
Z<p<Din

lon] _ logp
Trap < 2n ? p1+a18
D"'<p<DA Dm<zz<DA

Hence, if B < 1 is large enough,

< c;e~™MlogD .

-
(34) ¢—B1 Z ll_a < 1/12n2,
‘ z<p<1>mp
, \ a,
(35) ) p’l ‘ol < pexp(—o)logD.
Din<p< D4
If there is a positive number ¢ < D4 guch that either 1—g¢~3 > ¢—54
or ¢®—1 > ¢~B* then we have respectively
6B > i > 1 > 1
1—exp(—dlogq) ~ 1—exp(—.AdlogD) ™ AdlogD
(since 1/(1—e~%) = 1/x for « > 0) or
B> 1 > 1 > 1 7
exp(dlog q)— exp(AdlogD)—1 " cy(A)dlogD

wherce

A> Bog —— A )MogD
From this and (29) we deduce (28) (with g, instead of p). Hence, we may
suppose that

1—Np—¢

(36) Foo1

}<e—m it Np<D4.

10+
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8. In the following paragraphs 8-11 we shall consider the first and
second case of (30), namely that of y, # x'. Then the coefficients a, with

indices p = Np in (10) satisfy
| Z {1+ 7/(p) Np®ylog Np i =0,
—a Nowp
» = .
D ap) A +7(p) Np=2tog Ny if g # g,
P
Np=p

Let p in this paragraph denote prime ideals such that Np = p, ptf.
If in Lemma 2 the alternative (I) holds, then we have, by (13), (12), (31),

T 1+y(p)Np-
Z e 10ng logD,
Z<No<Dhn
Tesp., .
3 ’
2 %mgl\ﬁp >logD,
Z<N3<D¢"
whence
2 l+X/(p)ij> 1/4dn
N’pl—u i ’
Z<N£<Dm
resp.,
Y Npd
S ‘p—%—% > 1/4n
Z<Np<DI
and thus, by (36), (34),
(37) ) N,—pll—_—u > 1/24% .
. Z<Np<Din
2(®)=1

Let us distribute the ideals p of the last swmn nto sets 8y, ..., 8,
the set §; containing all the p satisfying

2 log D*™ < log Np < 2" log D™, =1
For at least one set §; =

y oy ¥5 9 € log(24-24) .
S (Aay) we have, by (37),

D > allog(2:4+21).

pelS

Raising to the power 2’ and dividing through by 27t D¥ < exp(ed) we
get the inequality

(38) >

Din<Nu<psn
where u denotes ideals of which all the prime divisors are the p having
2'(p) =1, Np> Z.

1/Nu > exp(~eyd) ,

- ©
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If in Lemma 2 the alternative (IT) holds, then, by (14), (369, (35), (33)

N7 logNp ) - log Np

4 2 Wm > exp(—cpd)log D— e~ W

Dine sy : Din<Np<Da
PPt 2 (P)=-1
7 (1 Npd)logN;
L ~—Np“-’;17,2-g——”- > jexp(—cod)log D,
P
Np>DA

whence
(39) D Nu> exp(—ad),

D4"<1]v"u<DA
u being defined as in (38). Consider that (39), being a weaker inequality
than (38), (since 4 > 8n) may be used in the former case as well.
9, In this and the following paragraph a and b denote ideals, prime

to f, such that every prime divisor of b is in norm less than Z, whereas
those of a have the norms «(Z, D*]. Hence (a, b) =0 and if

=Dy

bjc

then, by [1] § 22,

g(ab) = g(a)g(b) < v(a)g(b),
whence
9(5 g(6) \17(0) 90)
11 (1—1/Np)™ .;Nb N>2Nc
NbeDin Z<Np<DI® Nb<DAn Ne<D#
or
\ ! - g(c)
A 2n
(40) Z - ) s o144 Y e
No<Din Ne<Din
by (B), (11), (31). Defining u as in (39) we have (since g(u) > 1
9(b) ! \7 9(b) vog) o gL
(41) 24 Nu ~ ND Zuz Nu - Nc¢*©
Nb<Di" D4"<Nu<DA NHDIn DincNu< D4 DA< Neg DA+

10. Writing

T

N C>D“

Z g9l {exp DNo—

N |:<D¢z

D™N¢)—exp(— DN},

U, xp(—D™*No)},

I
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where &> 2n+1,b > a-+1, woe have
\ g(C) —b — —b
U, = Z —ﬁzexp(w]) Ne)[1—exp {—(D™"— D7) Nc}]
Nc>':-D¢
< 7 c
3 feneemei 3 42
D¢<1\;c<D’7 .D‘”‘<.I\';c<DD

By the arguments of [1], § 22
U+ U, = (b—a) plog D + O (D*—elognti D)),

and U,>0 exceeds the absolute wvalue of the
0 (D1-elog»+1 D). Hence

remaining

V!l

- Ne*
DA< NessDP
Taking ¢ = 4n, b = 4n+ 4 we have, by (41), (40

(b—a)ulogD > %

) (39),

¢ NN Tgb) N\ 1
49 s gl G g\b) 2
2 w>ep 2 5 “logh £i N ¥u
D Ne DAnt4 N D mn<13u<m
2)-en \ g(e) _ exp(—0h) '\ g(c)
10g1)(1+ ymexp(— W~ TogD e -
.Nchm Nc‘.ED"'

11. Now we take in [1] (B) y = D% =g, (s) = ¢(s ,x N, x0)
and move the contour of integration to the hne o = %. By [1] (4), [1] (32)
and the theorem of residues o

(43) Zg (¢) NC_F’6~VNC =D*™I(Q)u+R, R <D B gmD

Since g(c) 0 and (o) =1, the principal term on the right-hand slde
exceeds twice the modulus of the remaining term. For N¢ < D we have,
N < 1 whence

2 g(c) N g=uNe 2 glc )Ncﬁ e < g, 2 gle)

3 N¢
oo o o

Since each of these sums exceeds 1 and

P

¢
Ne>Din

p=4 xRS L8, 30)

term,
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for D> D,, we have

Soorerewn<o 35

Ntél}‘"
Hence, by (43), (42)
.tl_ | exp(—0gl) gle)
Z > ubd > o =5ion slogD - N
NcsD‘" Ne<DAn
whence ) )
exp (—¢q 1 0y
1> w500 0 2> 518 510D -

From this and (29) we get (28) for x' # x.

Proof of (28) for yo=x"+1%

12. In the following paragraphs 12-15 we shall consider the case
of y # o=z to which in (30) corresponds the function

2 z(p™)log Np

F(s) = S

(e>1).

P»m

Suppose firgt that in Lemma, 2 the alternative (I) holds. Then

logp > 1 logD,
pl-—a n
Z<p<Din
(p=Np,p1f)
whence
1
(44) P
Z<p<Din
(p=Np,p41)

Distribute the primes p of the last sum into sets 8y,...,8,, the set §

containing all the p satisfying
<27ogD™ (i =1, .., v v <log(2+22)).
For at least one set §; = 8 (say) we have, by (44),

277 log D' < logp <

1
Zpl > gflog(2+24) .
pes

Raising to the power 2% and dividing through by 271 D% < exp(cd) we
get the inequality

\' oL exp (— Cyh
(45) w«%mf p(—ad)
where u denotes integers all the prime divisors of which are p = Np
> Z(p+f).
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Tf in Lemma 2 the alternative (II) holds, then

8 1
S e om-

P
Np=p>Din

ceA)logD ,

whence, by (33), for a sufficiently large 4 > 8n

logp
Z pitas =

D"‘<p-va<DA

2

»
DAL p=Np< DA

% exp (—cod)log.D

or

OX]) (- Col)

Hence for a suitable ¢, in both cases (I), (II) of Lemma 2

! 1
(46) 2 W > exp(— el)
DAncy< DA
the numbers # having the same meaning as in (48).
13. Writing
=t@[Ja-po= 3 moo>1), @) L, wa®,
o| Nt M=l
(m, Nf)=1
we have
\7 1 _ \gim)
£(8y xo) = Lu(8) @ Z pror i Z —ZW’
D=1 m = =l
where
g(m) = 2 Ya
djm

for (m, Nf) = 1 is the number of ideals of K having the norm = m, and = 0
otherwise. This is a multiplicative function = 0. Let during this and the
following para,graph @ and b denote natural numbers prime 1o NF such
that any prime dividing b is < Z, whereas the primes dividing e natinly
the inequalities Z < p < D*. Since (a, b) = 1, we have

g(ab) = g(a)g(b) < du(a)g(b)
where the numbers dn(a) are defined by the expansion

o= S dem)

me
M=1
(m, Nf)=1

(e>1)

icm®
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(cf. [2], Hilfssatz 1). Hence
g(d) 1\ g(d) dn(a)
250 ] (157 = 25 D
b<Din Z<p<Din b< DA a
From this and (5) we deduce that

Pt NF
(47) 2-"—@>051+A>‘”2%@.
b Din m< DA

Since g(u) >1,

Din<uy< D4 b DAR Din<y<D4 DincmgDint4

m<Dan

14, Now we use the identity

Ml

(cf. [1](8)) with y = D™*, D™**4. Moving the contour of integration to
the line ¢ = } and subtracting we get, by the arguments of § 10,

2+ico

~w=-1,52_[w el (s—1)2(s, wds  (y>0)

1 g(m)
§

DAR<m DintA

< ApglogD+0(D™Y),  u, = Resl(s, z) = DD (D—>o0)
8=1

(cf. [1] (13)), whence for D large enough
Apglog D> g—(";’f‘;) :
Ditcm<Dint4

(47) we deduce

logDZg 2 i

D‘"<u<DA
Y‘ glm) glm
ngM m logD 2
15. Using in [1]1(8) w =B, y = D%, f(s) = £(s, %0) 29 )ym—=

(¢ >1) and moving the contour of integration to the line o=}, we
obtain by [1] (4), [1](32) and the theorem of residues

Comparing this with (48), (46),

O 2 g(m)
(49)  #o> logD m
Dincm DIn+A

1 gD (14 A)~mexp(—cud)-

24100

[ wr=eris—g)i6, was
2—1c0

(50) D glmymem = =

=y l(®)uy+R, R<D™.
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Sinee y=0> 1, uo> D78, I'(6) > 1/26 > log D for D > D,, the principal
term on the right-hand side exceeds twice the modulus of the remaining
term. For m < D# we have m? < 1, whence

E M e—Um — }1 g(__/'_n»)m,dg—mn < €y ! {1_{_”’1) A
e

m<DAn m DA meDin

Since g(1) =1, each of these sums exceed 1 and for D > D,

I 2 g(m)m—Fe-vn— R | <%,

m>Dar
Hence
) QU
Z g(mym=Fe=vm— R < ¢ \glm)
hd T
m meDin

and, by (50), (49)
g(m) exp(—al) \1g(m)
2 w Cratho/6 > ('Jmm-— Z el
m<Din meDin

exp (—cph) 1 C1a
gD ' 75 %8 log D

From this and (29) we get the lemma for yx s xo = %

whence

1> 04

Proof of (28) for x =y, =y’

16. In this cage we suppose the existence of a zero gy = fy--iv, % §'
of £(8, %) In $ <o<1, [{| <D (otherwise there is mothing to prove).
By the arguments of § 3 we get the ‘‘convenient” zero g, = f, + iz, having
the property that there are no zeros of (s, x,) in o> p,-+1/HlogD,
[t—7| < By <B. If || > 7, then we use Lemma 2 with F(s) = LN (8, %),
4 =1logD, y,= D and get the required result arguing ag in §§12-15. (¥

Let us suppose |ry] < 7. Since there are no zeros of ¢(s) in the region
R(o> —}, [t| <14) (see [4], TL§12, XV §1), the function '

G(8) =L(s, y)/bls) , ZLi(s) =£(s) n(l_.p-o)

IVt

where

is regular in R (cf. [1](12)). Write
(51) f(8) = (s, xo)lal(s + ) G(s—0) .

This function is regular in R, since the poles s = 1 of £(8, %) and 8= f
of {,(s +6) are cancelled out by the zeros at the same points of the function

” |(1) 18?(;9 ilf;lhthe I;roof of Lemma 2 the condition my>0 is used only in the strip
—7|< Y, the pole at s=1 (with residue —1) of ¢’
doosrst in e oo ) of {'fL(s, Xo) in the present case

icm
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G(s—8) and Z(s, z,), respectively. Let § be the set of zeros. s B’ of £(s, x)
in B. The set of zeros of the function f(s) in the same region consists of §
and its displacement by 6 in the direction of the positive real axis. Hence
by the same displacement we get the ‘‘convenient’ zero of f(s) from
that of £(s, o). The arguments used in § 6 prove that for F(s) = f/f(s),
when 4, 4, yo, M defined by (31) and |rn| < 7, the conditions of Lemma 2
are satisfied.

During the rest of this paragraph let p and p demote, respectively,
primes and prime ideals not dividing Nf, and %(p) be the number of
different prime ideals in K having the norm p[0 < %(p) < n]. Further

let &(s), Dy(s), ... denote Dirichlet’s series 2 cgq® with g ==p2, p*, ...,
q

absolutelly convergent in ¢ > %.
By (B1), [1](9), we have in 0> 1

G(s) = [Ta=mp=:[[a-p™7,
P P

G . \1p~tlogp  \VNp—tlogN _ \7[1—k(p)]logp

&) “..JE 1—p—* 1—Np— g o0,
¢ —k(p)logp & logp .
Tl = e, = 5’ EL o),

Py S1—k(pjlogp  \Tp~llogp [1—k(p)]p*logyp
o= 2 =5 ;’ = +Zp,’ ~HELP0ED 1 0yt

1%?1 = k(D)1 4?) +p?—p=¢} + Bo(s) .

P
Hence tor the ccefficients in (10) we have
(52) —ap = {k(p)(1+p%)+p~*—p}logp .
A, A, B being defined as in §§ 5,7 we may suppose

1—p~

(53) e

}<e—Bl it p< D4

Let us suppose first that in Lemma 2 the alternative (I) holds. Then

a
Z 1';&!;>10gD,

3
Z< Np=p<Din

~
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whence, by (82), (53),

logp 1 1 1 .
Z '1-)-1':‘; > ﬂlOgD , Z pl—-a = 1/12’71:2 .

» »
Z<p=Np<Din Z<p=Np<Di»

By the arguments used in §12 we get the inequality

(54) D 1ju>exp(—ad),
DAn<y< DB
where % denotes integers all the prime divisors of which are p = Np > Z,
prime to Nf.
If the alternative (II) of Lemma 2 holds, then

a,
2 #;'/—2 > exp(—ol)log D .
p-N;?>DW
Hence, by (82), (53) and the analogous of (383),
-\ logp _ 1
Z W> @exp(-—col)log.b,
D"‘<r-5Vv<D4

if 4 > 8n is large enough (cf. §8), whence

\7 1 1
Z §> mexp(—-col).
Dl"<p—pr<DA

Comparing with (84) we deduce that in both cases (I), (I1) of Lemmay 2

1w > eip(— 64) ,
Dit<y<D4
the integers % being defined as in (54). We complete the proof by argu-
ments used in §§ 13-15.

Proof of the theorem
17. By § 1 there is a ¢,> 0 such that in the region
(55) . E(l—alogD < o<1, || < D)

there is at most one ze}"o 0= f' of Z(s). If §’ is not in R, then the theorew
holds for A = ¢,. If §’ e R, then 6 < ¢,/logD and taking .4 = ¢, we have
o= &. By Lemma 3 there is no zero g % § of Z(s) in the region o> oy,
[t| < D, if

Ay 6A
i N P PP
logD 8 FlogD "

1—o0y=

e ©
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This is
> A 1 eA
gD & 5log D
it A=¢ < min(4,, 4,), which can be taken for granted (otherwise
replace ¢, in (55) by a smaller constant).
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