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1. Introduction. In his monograph [8] of 1943, Wintner develo-
ped a Fourier theory of almost periodic arithmetical functions; a little
later (1945) the same subject was treated undependently by Delsarte [4].
Although the investigations of both authors were brief, and on the surface
quite simple, they were in fact based mpon the Besicovitch theory of
almost periodic functions. In view of their essential dependence upon
real function theory, both may be described as non-arithmetical in nature.

In the Wintner and Delsarte theories, a central part was played by
the trigonometric sum of Ramanujan. More generally, the additivity
of the integers appeared prominetly, in spite of the fact that the functions
treated were all defined on the multiplicative semigroup J* of the positive
integers. It seems natural to ask if a purely arithmetical theory might
be developed, which at the same time makes no appeal to additive cha-
racters or periodicity concepts. In attempting to generalize his theory
to algebraic number fields, Delsarte surmised the need of some such
development, asking ‘“Quelle est la propriété remplagant la presque-
périodicité ... quand 1’idéal 4 n’est pas principal?”

It is the aim of this paper to indicate an answer to Delsarte’s question
by initiating the rudiments of a Fourier theory of arithmetical functions
which is of a transparently arithmetical character and which makes no
use of additivity properties or periodicity notions. In place of the positive
integers, the domain of the investigation will be the multiplicative semi-
group X of the finite abelian groups. This is to stress the multiplicative
nature of the theory; in X additive characters are not available for an
investigation of the Wintner-Delsarte type. Moreover, the arguments
required for a Fourier theory in X are only relatively more complicated
than those needed in the subsemigroup J of the completely reducible
groups of X, equivalently ([2], § 1) the semigroup J*. A corresponding
discussion for J* is therefore omitted.
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‘With respect to Delsarte’s question, the notion of almost periodicity
is replaced by that of “almost parity”. The precise definition of an almost
even function (@), G ¢ X, is given in § 4. This class of functions extends
the class of even functions (modH), H ¢ X, studied in [3] and charac-
terized by the property, f(&, H) =]‘((G,H),H), where (G, H) denotes
the greatest common direet factor of G and H in X. The concept of even
function (mod H) helps to fill a vacuum created by the absence of a periodi-
city property in X.

The réle played by the Ramanujan sum ¢(n,7) in the theory of
Wintner and Delsarte is assumed by a multiplicatively defined analogue
of ¢(n,r) in X. This function is the uniquely defined function ¢(@, H)
= ¢(@, H), satisfying the relation ([3], § 3),

_ [ olH) it HI|G,
e m=ne,m={ 0 T
where ¢(H) is the order of H and the summation is over all direct factors D
in X of H. In [3], § 4, it was proved that a function (G, H) is even (mod H)
if and only if it possesses an empansion of the form,

(t2) 16, ') = D,ZHM,H)O(G:D%

This result suggests a means for extending the concept of even function
(mod H) to that of almost even function. The representation (1.2) is,
in fact, the Fourier series of f(¢, H) in the sense of § 4 (see Theorem 4.1);
this is a consequence of the orthogonality property of ¢(@, H) proved
in Theorem 3.1.

In § 5 we determine Fourier expansions for a wide class of almost
even functions. The convergence of some of these expansions is investi-
gated in § 6. Application is made to generalized divisor functions; for
example, it is proved (s =1 in (6.4)) that

?O) _ 75 ¥1el6, )

2@~ 7 2, "ty

where ¢(@) denotes the sum of the orders of the direct factors of & in X,
and Z(s) is the zeta-function of X ([2], § 2). This result is the abelian
analogue of a classical result of Ramanujan ([6], Theorem 293) on the
sum o(n) of the divisors of x. ‘

In § 7 we introduce an important subclass of the almost even fune-
tions which itself contains ag a subelass the primitive functions (mod H)
of [3]. A convergence criterion is proved in Theorem '7.3.

Finally, we mention that Theorems 5.1 and 6.1 (b) are analogues,
respectively of the two principal results in Wintner’s theory ([8], Theo-
Yems XVI and XVIII). The convergence criteria contained in Theorem
6.1 (a) and Theorem 7.3 seem to be of a new type.

(11)

(1.3)
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2. Preliminaries. We recall some known results. The function defined
by (1.1) has the evaluation ([3], (3.2))

oG, H) = D o(D)u(B),

DE-H
D@
where u(H) is the Mébius function of X ([2], § 2). We note that ¢(I, H)
== w(H), where I is the identity of X. The function ¢p(H) = ¢(H, H) is
the “order totient” of X ([3], § 3). The functions u(H), p(H), and ¢(q, H)
are multiplicative functions of H; by (1.1)

(2.1)

1 (@\E=1),
2.2 ! D) =e(H) =
(2.2) S = et {0 i
while by virtue of (2.1)
(2.3) PH) = 3 o(D)u(®).

It can be easily verified that ¢(H) > 0 for all H ¢ X. We note that u(H)
has the value 0 for inseparable groups H of X and has the value (—1)*
if H is separable with % (distinet) indecomposable factors.

Let {(s) denote the Riemann -funection; the function Z(s) has the
expansion, Z(s) = [[Z(4s), s > 1. With a = Z(2)/(2), we recall the fol-

i=1

lowing estimate of Erdos and Szekeres [5] for the number A (z) of groups
in X of order < «:
(2.4)

It is assumed here, and throughout the paper, that z > 1.

A(®) = an+O(Yz) .

3. Orthogonality. For a complex-valued function f(@&), we define the
average or mean value M(f) = M (f(G’)) of f(G), by

1
M(f) =lim — @,
=11 «;
provided this limit exists.
We consider now the ayerage behavior of ¢(G, H). We shall need the
following simple extension of (2.2), whose proof is the same as the corre-
sponding result in J* [1, Lemma 4].

LemMmA 3.1. .
. pH) if HE,
D) =
(3-1) (51%;1#( ) { 0 otherwise .

Remark 3.1. In the following, vacuous sums will be assumed to
have the value 0. i
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LemMA. 3.2. Let D and H denote groups of X, H fived; then

ap(H)x (I/T) .
+0(1/ —=) it HID,
(3.2) ICE: o) Y (D)
e 0(]/ E(_wﬁ)) if HiD .

Proof. Denoting the left member of (3.2) by 2p, it follows from (2.1)
that

Zp= ) o(DB,H)= D o(Dyu(B,)
o DE)<z e(Dye(E)sz Dll)Ef=H
= Z DI ATEAED) Z o(4Dy) u(By)
(B)S —55 DlEl_H B K2 ADlF; 33

(D) D-—AD D1=AD,
(D', D)=I, D{E

so that from (2.4) and the hypothesis on H

(33) Zp= 29(4) 2 o(Di)u(En) 4 ((DD')) EI”J’O(V%)’

!"D’ o, D=1
D= B=DiE’

4D'=D DiE,=H/4
AlH (D{,ID')=I
where
2= 3 ola) Z w8y
e AD,’—D DxE;
Ad'=H (D}, D)= l
Appealing to Lemma 3.1, one obtains .
= (4 2 wa;
2D DZ:Z, W) =51y 2, LA
44’=H, A\’
hence by (2.3)
ap(H)z .
if D
(34) Zp=y elD) 21D,
0 if H+D.

The lemma results from (3.3) and (3.4).
Remgrk 3.2..In applying Lemma 3.2 to prove our next result,
the quantity D will assume values in a finite set so that the O-terms

of (3.2) can be replaced by 0()/a). The complete form of the lemma will,
however, be required for a later application (Theorem 5.1).

TeworEM 3.1. For fiwed groups H,, H, of X,

3.5) Zo(a,ﬂl)c<G,H2>={

oGz

ap(H)z+O0Wa) if H,=H,,
0(/a) if  H +H,.

icm®
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Proof. Denoting the left side of (3.5) by §, it follows from (2.1) that
D e(D)u(B) D) o(@, Hy;

e <z D. g [——;;H, D g(gfagm
hence by Lemma 3.2 and Remark 3.2, § = & + 0(Yz), where
H)z B) i H|H
8’ = ap(Hy) 2 w(B) =‘ ap (H,) D‘E=ZE‘I,/HI'“( ) 11 Ha
Dggg' 0 it  H,+H,,
(D=H3 D’

and the theorem results on application of (2.2).

The theorem yields the following result on the mean value of
(G, Hy)o(G, Hy).

COorROLLARY 3.1.1.

(36) lm g D) o(@, Ho(@, Hy) ={

ool d=z

(Hy) ":f H, = H, ’
0 if H,#H,.

Proof. Apply (2.4) in connection with (3.5).

The weaker form (3.6) of the orthogonality property contained
in (3.5) is sufficient for the application considered in the next section.

4. Basic concepts. First we introduce the convention that a series
Y a(@) summed over all @ ¢ X denotes the series,

D a@,

b(n), b(n) =

n=1 o@=n

and that its k-th partial sum is Z b(n). We shall also use the notatlon,

) = hmsupA(w) D' i6).

o<z

DEFINITION 4.1. A function f,(G) will be called an even function of
order mot exceeding & if fi(@) is representable as a sum of even functions
(mod H), o(H) <k

DEFINITION 4.2. A function (@)
if there exists a sequence of even functions f(&) of order <
such that
(4.1) llcl;llloﬂ(lf(G)—fk(G) =0

will be said to be almost even (B)
E(k=1,2,..)

DEFINITION 4.3. Let f(§) be an arbitrary function; if Mxu(f)

= M({(@)c(G, H)) exists for each H e X, then
M)
(.2) G (H)
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is defined to be the Fourier coefficient of f(@)
the expansion

(4.3)

corresponding to H, and

16~ D) me(6, H)
HeX
the Fourier series of f(@).

These definitions are justified by the following theorem. .

TororEM 4.1. Let H denote an arbitrary fized group of X and let
F(G, H) be an even function (modH). Then (G, H) is almost even (B)
and the expansion ocouring in its representation (1.2) is its Fourier series.

Proof. Since ¢(@, H) is even (mod H), the k-th partial sum fi(@, H)
of the finite series in (1.2) is an even function of order < k. By [3, Theo-
rem 4.2] one is assured that 7(&, H) has a representation (1.2). Moreover,
(6, H)—fx(@, H) =0 for k> o(H), and therefore f(@,H) is almost
even (B), by (4.1).

For a fixed E in X, multiply (1.2) by ¢(&, H) and sum over all ¢
of order < z, to obtain

D' (@, Hye(6, B) Za(D,H) D o(@, Dye(&, B).
@<z E AG<z

By Corollary 3.1.1, it follows on dividing by A(z) and letting ©— oo, that

Hye(B,H) i BH,
ME(f(G,H))={¢( )al ) |

0 it BtH.
This completes the proof.

5. Fourier expansions. We prove first
LevmA 5.1. Let g(n) denote a function of the integral variable n, and

suppose that > g(n)jn converges. Then
1

T(z) = 2%%) =o{/a).

Proof. Let § denote the sum of the series, so that S(x
= f+o0(1). By partial summation,

29(%

B1  T@ =Y sma—vaF)+8@VE 1 = S+ 5,

n<
let us say. Moreover, (cf. [7], p. 77),

21=Zsm)ﬂ(_l+o(l))=_1 *z/_”+0<1>

‘”Zf (Z

n<z

) 0@y
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hence by a well-known elementary estimate,

(5.2) L =—pVz+oly/a).
Fuarthermore, T/
(5.3) L, =8@Va(l+o ) =pya+o(/a) .

The lemma is a consequence of (5.1), (5.2), and (5.3).

We obtain now the Fourier expansions for a broad class of almost
even functions (B).

THEOREM 5.1. Let f'(@) denote the Mobius image of the function (@),
(5.4) & = D1,

D|G¢
IF@)1 N gin)
% e(@) ‘gT (-"(”)

converges. Then f(@) is almost even (B) with Fourier expansion,

. . _ @
1) Igaacce, )= D
H|G

and suppose that

(5.5) = Z 1@ l)

e(@®=n

(5.6)

Remark 5.1. That f(@) is representable in the form (5.4) is a con-
sequence of ([2], Theorem 2.6).

Proof. The function %(@, H) defined by (1.1) is clearly an even
funetion of @ (modH). Moreover, for fixed H ¢ X

1
lim e ) a(l, H) =lm g D) o)

)<z o)<z
H|L

(e(H))

Z f'(D)n(G, D)
T ey

e(D)<k

M(n(¢, H) =
so that by (2.4)

M(n(@, B ) =1im 8F) 4

(5.7) oo A ()

M(n(@, H)) =

We may write, on the basis of (5.4),
@) = Z / (D (G D)

evidently, fu(@

(5.8)
< k. It follows that

2 f’(Dea(yl()G D) )

e(D)>k

) iy even of order

o= 91(17(6)—fu@) =3 (
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Moreover, by (5.7) and the convergence of (5.5),

_ \f'(D w(G D) (D) | 3 (6, D))
My<M
* (a(D)>k 9<D>Z>:’° @
ey g(D) 0 as

"This proves that f(&) is almost even (B).
We next consider Mz(f) for a fixed H in X. By (5.4)

M(m) D @) (¢, H) = Y YD), H)

oDy<z E(G)sm DIH
so that
M) = D (D) D o6, H).

D)<z Q(G)fx

Application of Lemma 3.2 yields

1(D) /(D)
M(z) = ap(H)w +0{Va D)) -
“ e%?fﬁz (&2 ( (D(D)<%QI<D))

By Lemma 5.1, the O-term becomes, using the notation of (5.5)

P2 )

n<r

and therefore, by the convergence of the series in (5.5),

M(z) = ap(H)x fQ(D>+ o(x )‘
H[G
Finally, using (2.4),
(5.9) My(f) = lim %%) =) D) z@l—zg—; -
GeX
H|G

This proves the theorem.

6. Convergence criteria. In this section we determine certain suffi-
cient conditions for the convergence of the Fourier series in (5.6). Let
7(#) denote the number of direct factors of G in X.

THEOREM 6.1. Let f(G) be defined by (5.4). In case either (a) the series

in (5.5) converges and f'(@) is completely multiplicative, or in case (b) the
series

6.1 . A ()]
©1 g @

©

173
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converges, then the Fourier series (5.6) of f(G) comverges absolutely  and
represents (@) for every @ e X,

(6.2) fl&) = ZGHG(G,H% am = Z%%
X

GeX Ge
H|G

Proof. (a) Disregarding convergence questions, in this case one
obtains from (5.6) and (2.1),

z= Yoo, )= M STE) 3 ooy

HeX HeX H|L
- ['(HB) f(DEB)
‘D]de D)}gll( ., o(HE) 2 (D) EEZXME)Z «(DFB)’
8o that
(6.3) 7(1) "(Ef( ) NTAB)
1%; EsX BeX Q(B)

Applying Dirichlet multiplication in connection with (2.2), the hypo-
thesis of complete multiplicativity yields

D ane(@, H) = D f(D) Z”“E )

Gex DG

—Zf D>ZQ(H 2 &) = Zf(D)—f(G

The formal steps of the proof are justified by the convergence of (5.5),
and hence (a) is proved.

(b) In this case we again proceed formally. Appealing to (1.1) one
obtains by (5.6),

D ano(@, H) = ) ol@, H)L%; f?ﬁ%
HIL

HeX HeX
ZLEZ (@, H) ——-2}“(13) =H&
X HIL LG

To justify the steps, we prove the double series absolutely convergent.

By (2.1),
H)|< D o(D) =
@
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Therefore, for fixed G in X,

|£”(G’H)g%’<a(a)2’2%l

HeX 'H|L
<o@ S DD _ g S DID)
HeX HI|L e LeX e )

By the hypothesis of case (6), the double series is therefore absolutely
convergent and the proof is complete.

Defining for real s,
(@) 1
(G 2 (D)’

D¢

we have the following corollary of Theorem 5.1 (a).

CorOLLARY 5.1.1. If 3> 0, then oo(@)/¢%&) is almost even (B), and
18 represented for all G ¢ X by its (absolutely convergent) Fourier ewpamsion,

ol(G) ¢(G, H)
©4) o(@ ~ 7D >

7. Almost primitive functions over X. Let y(@) denote the separable
(square-free) factor of ¢ in X of maximal order. As in [3], a function
H@) is called separable if f(G)=7(y(@) for all & in X. We shall say
that f(G) is simple if f(G) = 0 for all inseparable G ¢ X. We recall the
following result.

Lemva 7.1. ([3], Lemma 3.3). The function f(G) is separable if and
only if its Mabius image is simple. .

We also recall [3] that a function F(@, H) is defined to be primitive
(mod H) if {(G, H) = f(y(G, H), H} for all @ ¢ X. This clags of functions
was characterized as follows.

Remark 7.1. (cf. [3], Theorem 5.2). A function (G, H) is primitive
(mod H) if and only 4f it is even (mod H) with a representation (1.2) such
that (D, H) =0 provided D is inseparable.

We can extend the class of primitive functions (mod H) just as the
even functions (mod H) were extended in § 4. Let us call a function fulG)
primitive of order <k if (@) is representable as a sum of primitive fune-
ﬁons (mod H), o(H) < k. A function (@) will be termed almost primitive (B)
if there exists a sequence {f()} of primitive functions of order <% such
.tha.t (41) holds. Evidently, the class of almogt primitive functions (B)
is a subset of the class of almost even functions (B).

e ©
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We have the following analogue of Theorem 4.1.

THEOREM 7.1. If f(&, H) is primitive (mod H) then f(G, H) is almost
primitive (B) with Fourier series (1.2).

This is a consequence of Remark 7.1. Analogous to Theorem 5.1,
one obtains

THEOREM 7.2. If f(@) is separable with Mobius image f(G) and
if (5.5) converges, then f(@) is almost primitive (B) with Fourier expansion
determined by (5.6).

The first part of the theorem is proved just like the corresponding
part of Theorem 5.1, if it is observed by Remark 7.1 that /(&) is simple
and hence that the functions fi(@) in (5.8) are primitive of order <k.

We now prove a convergence criterion which complements the one
proved in Theorem 6.1 (a). First we prove a preliminary lemma. Let ’
indicate summations restricted to separable groups, and define

1'(D) &)
(7.1) k(G)=%Q(—D), 01=GEZX'9—(G7’
if the series converges.

LeMMA 7.2. Let {(G) be a separable function with Mobius image f'(G),
such that (@) is multiplicative, f'(P) % — o(P) for all indecomposable
P e X, and such that (5.5) converges. If k(G) and Cy are defined by (7.1),
then O, # 0 and k(@) 5= 0 for all separable G in X; moreover, k(G) is multi-
plicative, and if H is a separable group of X,

wDf(D) _ 1 W@ _ 1
(7.2) gﬂ:ew)kw) TEE) GEX (G G
and . .
1 _ 6 ' W(G)f(6) _ k(H)
73 g o(@ TR’ g G
(GJ;)=I (@ H)=I

the series im (7.2) being absolutely convergent.

Proof. The multiplicativity of %(G) is a consequence of the multi-
plicativity of f'(&), (ef. [3], Lemma 2.1). By Lemma 7.1, f'(¢) is simple,
and hence

(7.4) (&) =l|g] <1+§—§;), olzl;](l-}»{)/—g%),

the first product being extended over the indecomposable factors of &
and the second over all indecomposable groups P ¢ X (cf. [6], §17.4).
Since f'(P) # — ¢(P) for all P, k(@) 0 for all separable ¢ in X. Also,
since Y f'(P)/o(P) converges absolutely, it must follow that O, = 0.

Acta Arithmetica VII 22
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The absolute convergence of the product on the right of (7.4) justifies
the following steps:

oy : #2)
s S HBEE =[] (b = L] o)

( (P%ff)’u’)): 1f’(P> =’011;
‘ I1(+5)

thus the series in (7.2) converges absolutely to 1/C;. The proof of the
first formula in (7.2) is similar except that no econvergence questions arise.
We also have by (7.4),

o8- 11 bS] 8-

The proof of the second formula in (7.3) proceeds similarly, by virtue of
(7.5) and (7.2).

THEOREM 7.3. Let f(G) and f(G) be defined as in Lemma 7.2. Then
F(@) is almost primitive (B) and is represented for all G ¢ X by its (absolutely
convergent) Fourier series (6.2).

Proof. The primitivity of 7(G) is a consequence of Theorem 7.2.
Just as in the proof of Theorem 6.1(a), we obtain (in place of (6.3)), now
using Theorem 7.2 in connection with the multiplicativity and simplicity
of f(@),

(7.6) Zch(G,H)=ZIf’(D) 2 ﬁ%’%@ 2 f@g;’

X D@ EeX BeX
He ! EDeI B DE)=I

the omitted steps being justified by the convergence of (5.5). By Lemma 7.2,
it now results from (7.6) that

E § "1(D) § w(B(E) N,
age(@, H) = 0, D) o BB = § (D),
D fex e

HeX
(B, D)y=I

which is f(@). The theorem is proved.
We apply the above results to the generalized totient,

?(6) _ N7 p(D)
elG) 2 e*(D) "

Di@

In particular, it is easily verified on the basis of Theorem 7.3 that

e ©
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QOROLLARY 731, If 5> 0, then of@)os(G) is almost primitive (B)
and is represented by the absolutely convergent Fourier ewpansion,

¥ ‘ Pl6) _ 1 u(H)
a0 A8 =7 7T 2 () 1

Finally, we note that the expansions (6.4) and (7.7) can also be de-
duced from Theorem 6.1(b), if one appeals to the order property, v(&)
= 0(e(@)) for all s> 0.
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