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p. 452; the first two lines of Lemma 2.4 should read: I @y (@) s s Gy () ave fixed
(modv), then one can find for each ¢ (1 <14 < k) exactly one j(i) < & such that
@(m+p) < 8 is equivalent”.

p. 452, line 6 from bottom should start with “= e b {..7.

p. 453, line 9 should have at the end *‘(take a4, =1 and » = 1)”.

p. 454, line 4 from bottom should read

- (A
Amm < ;‘EA'IVL+M g —n + Ok

p. 460, lines 2,3 from bottom should read “Z7 i over k from 1 to iy () but
includes only those k with kg, < N)".

. 464, formula (3.18) should be:. 2@ 1
@) (0u(®) + gua(®))

L=}

p- 464, line 2 from bottom (), ..., Gy(®) ghould be ay(m), ..., tye(ie).
. 466, line 3 A(n)exp(— (m—p)y) should be A(n)exp (- (m—p)B(n)).
; , ¢ [t
P- 469', line 7 GslogN should be _GElogN .
p. 469, formula (3.31). The sum over m should run from m = 2p 1o m = (r—¢)log N,

This requires corresponding changes on p. 470.
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ACTA ARITHMETICA
VII (1962)

Binomial coefficients in an algebraic number field *

by

L. CarLIrz (Durham, N. )

1. Let K = R(0) denote an algebraic number field of degree n
over the rationals. Let p be a prime ideal of K and let p be the rational
prime divisible by p. Let K, denote the set of numbers of K that are
integral (modp). Put

(;l) _ a(a—l)..;y(f-—m—i-l)

‘We shall prove the following result.
TaEOREM 1. The binomial coefficients (;) are integral (modp) for

all a e Ky and all m =1 if and only if p is a prime ideal of the first degree
and moreover p does not divide the discriminant of K.

Proof. To prove the necessity of the stated conditions suppose
first that p is of degree 7 > 1. Then the residue class ring K,/p is a finite
field of order p’. Since f > 1 there exists a number a e K, sueh that

azEr(modp) (r=0,1,..,p—1).

Therefore the binomial coefficient (;) is not integral (modp).

Next let p be of the first degree but let p divide the discriminant
of K. Then by Dedekind’s theorem on diseriminantal divisors, p2jp. Also
there exists an integer o of K such that ([3], p. 97, Theorem 74]

(1.1) (a,p) = p .
Since p is of the first degree, the numbers
a,a—1,. ..,a—p+1

constitute a complete residue system (modp). Clearly only the first of
these numbers is divisible by p. Therefore by (1.1) the product

ala—1)...{(a—p+1)

* Supported in part by National Science Foundation grant G 16485.
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is divisible by p but not by p2. It follows that (;) is not integral (modp).

This completes the proof of the necessity.

To prove the sufficiency, assume that p is of the first degree and
that p2+p. Then for r>>1 the numbers

0717 2" ~-<7p"“1

form a complete residue system (modpr). For if two are congruent (modpr)
we should have p’|t, where 1 < ¢ < p" If p* is the highest power of p
dividing ? it follows that pr|p; since p2+p we get 7 - s which is evidently
impossible.

If « is an arbitrary number of K, it follows from the above that the

numbers
a,c—1, ..., a—p"+1

constitute a complete residue system (modp’). Thus in the sequencé
a,a—1,..,a—m+1

there are [m/p] multiples of p, [m/p?] multiples of p?, and so own. Therefore

the ploduct
= a(a—1)..(a—mn+1)
is divisible by p*, where

o=l

Since m! is divisible by exactly p* and therefore by exactly pv, it follows
that (:1) is integral (modp).
As a corollary of Theorem 1 we have _
THEOREM 2. Let p be a rational prime and let K, denote the set of
numbers of K that are integral (modp). Then the binomial coefficients (;)
are integral (modp) for all a e K, and oll m > 1 if and only if
1.2) (D) = PaPs- P
where the p; are distinct prime ideals (of the first degree) of K.
To prove the theorem let
(1.3) (p) = pi*..p7
be the prime ideal decomposition of (p) in K, where the p; are distinet
prime ideals. Then by Theorem 1, (:‘n) is integral (modp;) for all ae Ky
and all m > 1 if and only if p; is of the first degree and ¢; = 1. Since Ky
. is the intersection of all Ky, it follows that (m) ig integral for all ce K,
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and all m > 1 if and only if all p; are of the first degree and all ¢; = 1.
Thus (1.3) reduces to (1.2).

For a special case of Theorem 2 see [1], p. 586, Lemma.

2. As in Theorem 1 let p be a prime ideal of the first degree such
that p+p. We shall determine the residue (modp) of (;‘l) Since, as we
have seen above, the numbers

0,1,2,..,p¥—1

constitute a complete residue system (modp¥) we may put

(2.1) @ = g+ 6P+ o+ ey-1 PV (od p)
where the ¢; are rational integers, 0 < ¢; < p. Put
(2.2) ¢ = C+op+..+evapht,

so that by (2.1)

(2.3) a=c¢+6, p¥id.

It follows from (2.3) that
(2.4) a(e—1)...(a—m+1) =¢(¢—1)...(c—m+1) (modp¥},
where m is an arbitrary integer > 1. Put

m o= My+mP + .o+ mptt (0 < my < p)
m m m
m) = |— —|+... — |
vom) [2’]+ [p"] * Lp"l]
Then (2.4) implies

(2.5) (:Z) = (7‘;) (mod p¥—»m)

We now suppose that N > »(m) and recall the theorem due to Lucas
([2], p. 271) that, in the present notation,

2o (o) = () ) = i) (o

It should be observed that if in (2.1) N is replaced by N 41, the coef-
ficients ¢y, ¢y, ..., cy—1 40 not change. We therefore get from (2.5) and (2.6)

e () =20 1) - )
We may state .

THEOREM 3, Let p be a prime ideal of the first degree such that p*+p. If

(2.8) M= My My P+ Fmeap™t (0 < my < p)
and we put
(2.9) a= g+ P+ + o pr (modpr) (06 <p),
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where o is an arbitrary number € Ky, then (2.7) holds. In particular (;)
is prime to P if and only if
(2.10) mp<e (f=0,1,.,7r—1).

As a corollary we have the following result supplementary to Theo-
rem 2.

TueEoREM 4. Let
(p) = P1P2- Py

where the Py, are distinct prime ideals of the first degree of K. Also let
(9.11) @ = g + G F o F Gt (M0APE) (0 xSy << p).
Then (:L) is prime to p if and only if
my<mine; (j=01,..,r—1}),
1<k<n
where
m =My + Mg + oo F M P (0Smy <)

3. It is evident from the proof of Theorem 3 that if o == f(modp?)
then

B
(3.1) (i) =(£) moar)
provided m < p”. To get a more general result we require the following
Lemva. Let a, b be rational integers such that

a=b(modps) (r=l,sz=0).
Then

(3.2) ; (;:b) = (WZ) (modpstl) (1< m < p).
Proof. Put ¢ = b-¢ and congider
' Qe = (14+a)’(1+a).
Clearly (3.2) is an immediate consequence of

(3.3) (;") = 0 (modp*) (1<% m - pr).
Since
(o) = 1z )

% = 0 (modp**+') (1L =m < p"),

and

(3.3) follows at once.
Now let a, f e K, where p is of the first degree and p2+p. Then we
may put
a=ay+ap+...+ay_pVt (modpV),
B =1bo+bp+...+by_1p¥* (modp¥),

icm°®
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where 0 < a; <P, 0 <Dy <p and N is at our disposal. We assume that
(3.4) a = ff (modp"+s)
and take N > 7 +s. It follows that

a=b (0<j<rts).

Put

o = ao+a1p+...+aﬂ_1pN—1 ,

b =by+bp+..+byap¥ 1,

C= Qg+ ayp-+ ...+ Gppgyptel,
go that
(3:5) az=a, f=>(modpV),
(3.6) a = b = ¢ (modprt+s).
For sufficiently large N, it follows from (3.5) that

b
.1 () = () () = (o) omodzey
On the other hand, it follows from (3.6) and the Lemma that
b ;

(38) (;) = (’)11,) (1n0dps+1) .

Combining (3.7) and (3.8) we get
a - ﬁ &1
(m) = (m‘) (modp**1).
This proves .

TaEorREM 5. Let p be a prime ideal of the first degree such that p*1p.
Let a, B be numbers of K, such that

a = f (modp"*?),

)= ) ot

m m,

where v =1, s = 0. Then

for all m < p'.
THEOREM 6. Let
(p) = PiPoPn
where the p; are distinet prime ideals of the first degree of K. Let «, f be
wambers of I, such that
o = f (modp+*),
where v =1, s = 0. Then

() = )t

for all m < pr.
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4; If again p is of the first degree and p*rp we can determine the
highest power of p dividing ( :;) in tile following way. Put
m = mg+myp+ ..+ p ™t (0 < my << p)
and let a = a (modp¥), where
a=aq+mp+t..tayap¥ Tt (04 <p).
For N sufficiently large it is clear that (:1) and (Z) are divisible by the same

powers of p; moreover for (::) this is the same as the highest power of p

dividing (:1 .
Now by Kummer’s rule ([2], p. 270) the highest power of p dividing
(bj“) (b=0,c30),

where
b=by+bp+..+bpt (0<b;<p),

€= C+6p+..+Cp® 0<e<p),
is determined as follows. Let

byt = g+ &P
bi+ote=a+ep,
(4.1) T
Ds—1+Csm1+ €52 = @y 1+ 617 ,
bs+ st e5-1 = a5+ 6P ,
where each e = 0 or 1. Then (b;:c> s divisible by exactly p¢, where

6= eyt e 4.t
‘We now put
(4.2) a® = ggtayp+ .. +aypt (k=0,1,2,..),
so that
a = a® (modp*+!),
and apply Kummer’s rule to
(k)
(4.3) (“ ) (k=rp+1,..).

m

We assume that m < a®. It follows that all the binomial coefficients
(4.3) are divisible by exactly the same power of p, for clearly there is no
additional “‘earrying” when % > r.

This proves

THEOREM 7. Let p be a prime ideal of the first degree such that p*4p
and let

M= Mg+ My P+ M9 (0 my < ),
a=ay+ ap-+..+ap (modp™l) (0 < a;<p).
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Moreover assume that
Mmoo a = a0+a1p 4 +(L:~pr ,

Then the highest power of p dividing (;ln) s the same as the highest power
of p dividing (:;) The latter power can be found by means of Kummer's
rule (4.1).
TurorREM 8. Let
(p) = P1Ps... P,y
where the p; are distinct prime ideals of the first degree. Let
W= g4 P+ s+ e P (0 Smy < ),
@=Cp= Ot Cup + o+ G (modprTy (0K <p; k=1,...,1).
Let pee denote the highest power of p dividing (;’;) and assume that
m < min (¢, ..., Cx).
Then the binomial coefficient (:1) is divisible by exactly p¢, where
e=min (e, ..., ).
Remark. The hypothesis m < @ occurring in Theorem 7 is necessary

for the application of Kummer’s rule. A like remark applies to the
hypothesis
m < min (e, ..., Gy)
in Theorem 8.
As a corollary of the last two theorems we have
TurRoREM 9. Let p be a prime ideal of the first degree such that p*p
and let m < p*. Then if

a = f = a (modp"*?),
where

a=a+ap+..+ap"  (0<a<p)
and in addition m < a it follows that (:7) and (Z) are divisible by exactly
the same power of p.
If moreover
(p) = PiPs-Pu s
where the p; are distinet prime ideals of the first degree, then (;) and (ﬁ)
are divisible by exactly the same power of p.

Remark. As in Theorems 7 and 8 the condition m < e is necessary
for Kummer’s rule.
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ACTA ARITHMETICA
VII (1962)

Solvability of certain equations in a finite field *
by
L. Carnrrz (Durham, N. C.)

1. Let ¢ = p", where p is a prime, and let GF(q) denote the finite
field of order q. Schwarz [4] has given an elegant proof of the following
theorem. If k|p—1, if ay, ..., & are non-zero numbers of GF{q) and a is
an arbitrary number of the field, then the equation

3 k
Oy 4 ...+ O = @

has at least one solution in the field.
TUsing the same method, the writer [2] has proved the following
theorems. .
THEOREM 1. Let klp—1 and let ay, .., @ be non-zero numbers
of GF(q). Let g(w,, ..., 2) be an arbitrary polynomial with coefficients n

GF(q) of degree less than k. Then the equation

i+ ot 0 = Gy, ey B)
has at least one solution in the field.

THEOREM 2. If f(®%,..., %) 9 homogeneous of degree k while
G(@y, ..., 2x) s arbitrary of degree less than k, and

(1.1) D U@y w0,
Byeensly € GE(Q)
then the equation

(1.2) Fl@ery vy T) = g{@1y ooy Ti)
has at least one solution in the field. Alternatively the cendition (1.1) may
be replaced by the equivalent staiement that the number of solutions of the
equation
(1.3) F@y, vy 1) = 0
i mot divisible by p. .

By the degree of g(xy, ..., @) is understood the total degree.

* Supported in part by National Science Foundation grant G 16485.
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