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ACTA ARITHMETICA
VII (1962)

Solvability of certain equations in a finite field *
by
L. Carnrrz (Durham, N. C.)

1. Let ¢ = p", where p is a prime, and let GF(q) denote the finite
field of order q. Schwarz [4] has given an elegant proof of the following
theorem. If k|p—1, if ay, ..., & are non-zero numbers of GF{q) and a is
an arbitrary number of the field, then the equation

3 k
Oy 4 ...+ O = @

has at least one solution in the field.
TUsing the same method, the writer [2] has proved the following
theorems. .
THEOREM 1. Let klp—1 and let ay, .., @ be non-zero numbers
of GF(q). Let g(w,, ..., 2) be an arbitrary polynomial with coefficients n

GF(q) of degree less than k. Then the equation

i+ ot 0 = Gy, ey B)
has at least one solution in the field.

THEOREM 2. If f(®%,..., %) 9 homogeneous of degree k while
G(@y, ..., 2x) s arbitrary of degree less than k, and

(1.1) D U@y w0,
Byeensly € GE(Q)
then the equation

(1.2) Fl@ery vy T) = g{@1y ooy Ti)
has at least one solution in the field. Alternatively the cendition (1.1) may
be replaced by the equivalent staiement that the number of solutions of the
equation
(1.3) F@y, vy 1) = 0
i mot divisible by p. .

By the degree of g(xy, ..., @) is understood the total degree.
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In Theorems 1 and 2 it is possible that only the trivial solution
(0, ..., 0) ocours. We may however state the following theorem which
supplements Theorem 2.

TaroREM 3. Let f(w, ..., xx) be homogencous of degree % whil'g
G,y ey @) s arbitrary of degree less than k and g(0, ..., 0) = 0. Also let

(1.4) - Dl @) =0

g0, Xy € GF(Q)

(so that the number of solutions of (1.3) is divisible by p). Then the number
of solutions of (1.2) is divisible by p. Tt follows that (1.2) has at least p—1
non-trivial solutions.

This result may be compared with Warnung’s refinement [5] of
Chevalley’s theorem on systems of equations in a finite field [3).
The proof of Theorem 3 is very simple. If the theorem is false then

(1.5) N gy ey ) — (@ ey )T O

e
L15ee, T € GF(Q)
Put
{1y ooy @x) — G @1y ooy @)Y = [T @y ey D) F (1, ooy 3)
50 that
(1.6) AegF (@, ..., z1) < B(g—1) .
Now it is familiar that for m>1

mm_{ml (g=1[m),
s 0  (otherwise) .

It follows that for any polynomial that satisfies (1.6) we have

F(ay, .oyag) = 0.
Lip0e0 T € GF(Q)
Hence (1.5) becomes
{f(mn sy xk)}q_l #+ 0 ’
X100, € GF(Q)
which contradiets (1.4). Hence the number of solutions of (1.2) is a multi-

ple of p; since the trivial solution is certainly present, there must be at
least p —1 mon-trivial solutions.

2. Theorem 3 can be extended to system of equations as follows.

TeEOREM 4. Lel fy(#,, .., 4x) be homogencous of degree ¥; while
9i(@xy -y i) is arbitrary of degree less than k; (j =1, ...,7) and let

G0,y =0 (j=1,..,7).
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Also let
N
(2.1) D | 7 Ly
L1, R €GI(Q) j=1
Then f
.
(2.2) D=k,
i1

the number of solutions of the system

(2'3) ff(ivh :“Uk) = gi(wla a0y mk) (7 = 1; rery 7)

is divisible by p. It follows that (2.2) has at least p —1 non-trivial solutions.
Proof. Clearly the product
r

TTHa=(tas, oy ) =g, o, )}

J=1
is equal to 1 or 0 accordingly as (z,, ..., Zx) Is or is not a solution of (2.3).
Hence if the theorem is false we have

(2.4) 2 ]I —(fil@y; ey ) — G205 e ‘T’f))qﬁl} #0.

vl T
Expanding the summand it is evident that

»

n {1_(f.i(w17 voy Tie) — Gil@y5 s -Tk))rl}
j=1
= (vl)"n (fﬂ(xlf e 561-‘))&]”1 +F (&g oes 1) 5
i=1
where ~
deg F(zy, ..., &) < k(g—1).

It follows as in the proof of Theorem 3 that

2 F(2yy -y @) = 0.

L1y T

Thus (2.4) becomes

L

1y 3 [l 2™ =0,

LypeneTh I=1
which contradicts (2.1). This completes the proof of the theorem.
The condition (2.1) is equivalent to the statement that the number
of solutions of the system

(2.5) filery vy @) =0 (G=15.057)
27+
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is divisible by p. We observe that we have made no essential use of the
homogeneity of the fi, ..., xx) bub merely of the fact that

deg fi{@y, r ) <k (J=1,..,7).

However for the last sentence in the statement of Theorem 4 we do re-
quire the fact that the system (2.5) possesses the trivial solution (0, ..., 0),
We may accordingly replace Theorem 4 by the following slightly
more general result.
THEOREM 5. Let fy(#1, ..., @) be of degree < k; while gi(ary, ..., xy) is
of degree <k; (j=1,...,7) and let

(0, iy 0) = 30,0y 0) = 0 (j==1,..,7).
Also assume that the mnumber of solutions of the system
filty vy ) =0 (f=1,..,7)

is divisible by p. Then if

»

Zwkfv:kz

I=1
the mumber of solutions of the system
(2.6) i@y vy Br) = g1l -

is divisible by p. It jollows that the system (2.6) has at least p —1 non-trivial
solutions.

o) (f=1,.,7)

3. In place of (2.1) we may assume that

Z ﬁ{l” (Fi{@y ooy @)} £ 0,

Fppeensp F=1
which is equivalent to the assumption that the number of solutions of
the system ‘
(3.2)

(3.1)

Fil#y ooy ) = 0
is not divisible by p. We now get

R THEOREM 6. L?t fi( @1y ooy 2x) be of degree < while gy (%4, ooy B)
is of degree <Ry (j=1,..,7) and assume that the number of solutions
of the system (3.2_) is mot divisible by p. Then if

.
D=1,

1=1

(f=1,..,7)

the mumber of solutions of
(8.3) fi(a}ly ey D) = 9i{®yy ey TE) (f=1,..,7)

ig not divisible by p. It follows that (3.3) has at least one solution.

icm°®
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Proof. If the theorem is false we have

{1_ (fi(wla vy Tp) — il @1y ey wk))qﬂl} = (.
Expanding the left member we get

r
3 -
Z n{l_(fi(mla e mk))q 1} = 0)
Lyyeney®lp =1
which contradicts the assumption concerning the number of solutions
of (3.2).
As we have seen in the proof of Theorem 4,

2 n{l”— (fi(ﬁl; sy mk))q-_l} =N, (modp) y

L1yees F=1

(3.4)

where N, denotes the number of solutions of the system (3.2). Similarly

¥ (modyp) ,

Z [I {1‘ (fi(wly ety “’k)_gi(xu ey wk))q—l} =

L1000, =1

where N denotes the number of solutions of the system (3.3).
We have therefore the following
TusoREM 7. Let fi{%,, ..., @) be of degree <k; while g;(%y, ..., Tx) 18
of degree < kj;, where
r
Dhj=k.
i=1

Let N, denote the number of solutions of (8.2) and N the number of solutions
of {3.3). Then

(3.5) N = N, (modp) .

If the f; are polynomials in k—1 or fewer indeterminates it is evident
that (3.4) becomes
Ny = 0 (modp) .

We aceordingly get the following corollary of Theorem 7.

TuEoREM 8. Let the f; in Theorem T be polynomials in ai most k—1
indeterminates. Then the number of solutions of (3.3) s divisible by p. In
particular if

ff(oi"'!o)——gf(oi"'70)=0 (j=17~'77)7

then the system (3.3) has at least p—1 non-trivial solutions.
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4. We shall now discuss a few special cases. To begin with let
k

(4-1) Yi = Zaa'sms (ais € GF(Q) ’ ] = ]7 vy '5')
s=1

be n linear forms with coefficients in GF(¢) and put

kj+1
(4.2) oy oy m) = [[ve  G=1,..,7),
8=ky-+1
where

»”

Dk —k.

J=1

ko =0,k >0,..,k >0,

Now assume that the y; are linearly independent. Then the number
of solutions of the system

(4.3) fileyy ooy 2x) = O
is equal to
(4.4) n (qkj—-(q_~l)k’) .

j=1

To prove this we observe that since the y; are linearly independent one
may, by means of the linear transformation (4.1), define the f; by

g1
B, oy = [ e (G=1,.,1).
s=log+1
Thus it suffices to show that the number of solutions of
(4.5) Ly T = 0
is equal to

¢ —(g—1)".

This follows a?: once from the fact that number of solutions of (4.5) is
equal to ¢* minus the number of solutions of

Dy B 5 0 .

If'in the next place the y; are linéa,rly dependent it follows (compare

Theorem 8) that the number of soluti 1t 10l
may state utions of (4.3) is divisible by p. We

MwlTIm;R;smbm 9. b,l?tet jf(acl,l..., @) be defined by (4.1) and (4.2) and let
gidy y ory Tx) be arbitrary polynomials of degree < To;. Al
number-of solutions of the system sy ol A denae ﬂw

(4.6)

1@y ooy @) = i@y, oy aw)  (f=1,..,7).

icm
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Then if the y; are linearly independent,

(4.7) N = (=1"** (modp),

while if the y; are linearly dependent,

(4.8) N =0 (modp) .

In the latter case, if also
gj(O,... (]':1,‘..,7“),
it follows that (4.6) has at least p—1 non-trivial solutions.

Returning to (4.1) and (4.2), another case of interest is that in which
the a;s lie in some GF(g') but the coefficients of f; are in GF(q). For some
properties of such factorable polynomials see [1]. ‘We shall however con-
gider only the following special case. Let § denote a primitive number
of GF(¢") and put

,0)=0

n-1

@y oy ) = || (@t 6Fmt e+ 67 m);

j=0 .

f is called a norm-form. It follows that the only solution (in GF (q)) of
f(@1y e

zp) =0

~ig the trivial solution.

We now define the f; as follows: f; is a norm-form in @y, ..., By fa
is & norm-form in Tg1y .-, Tk, and so on. It follows that the only solution
of the system
' 1)

[i(@rgay ooy Taga) = 0 (=15

is the trivial solution.

We may state

THEOREM 10, L6t fi(Tusr1y -y Biyay) deRO%E norm-forms in the indicated
indeterminates and let g;(®y, ..., ©u) be arbitrary polynomials of degree < k.
Then the number of solutions of the system

(4.9)
satisfies

Fil@rgsts ooy Bigaa) = gi(®yy ey T) (j=1,.
N =1 (modp) .

If at least one g; has a non-2ero constamt term, then the system (4.9) has at

least one (non-trivial) solution.
We remark that when ¢ is odd the form
ax? -+ 2bxy + cy*,
is a constant multiple of a norm-

where b2 —ac is a non-square of GF(q),
form.
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5, If in Theorem 7 we assume that the system
gy ey @) =0 (F=1,..,7)
has a single solution, then the number of solutions N of the system

Fildeyy ooy @) = gil@1y oy Zr) (T =155 7)
gatisfies
N =1 (modp).

Compare also Theorem 10. It is however quite possible that N > 1.
We shall illustrate this in a very special case. Let ¢ be odd and g
a non-square of GF(g). Then the equation

at—py* = 0
has only the solution (0, 0). On the other hand, the equation
(5.1) o —By* = 2az-2pby  (a,b e GF(q),

where a,b are not both zero, has ¢—1 solutions. Indeed (5.1) is equiva-
lent to
(5.2) (@—a)—Bly—bp = at— b2 .
Since a*— fb? 5= 0 it follows from a familiar result that the number of
solutions of (5.2) is ¢-+1.
Note that the equation
22— By? = 2ax—2pby —¢ ,

where ¢ = a®— fb%, has a single solution.

The result concerning (5.1) does not seem to generalize in an obvious
way. For example if @ (z, y) is a binary quadratic form with diseriminant
equal to a non-square of GF(g) then the system

(5.3) { 2 =Q(z,y),
w* = 0Q (@, y),

where ¢ is some fixed non-square of GF(g), has only the trivial solution.
Indeed (5.3) implies
wW—et=0, w=z=0
and therefore ¥ =y = 0. If L is an arbitrary linear form in z, w, the
system
{ 2 =Qw, y)+Liz, w),
w? = ¢Q(z, y)+ oL (2, w)

has only the trivial solution; the proof is exactly the same as that for (5.3).

2
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