References

[1] L. Carlitz, Some arithmetic properties of a special sequence of polynomials, Duke Math. Journ. 26 (1959), pp. 583-590.

[2] L. E. Dickson, History of the theory of numbers, vol. 1, Washington 1919,

[3] E. Hecke, Theorie der algebraischen Zahlen, Leipzig 1923.

Recu par la Rédaction le 12. 2. 1962

Solvability of certain equations in a finite field*

by

L. CARLITZ (Durham, N. C.)

1. Let $q=p^n$, where p is a prime, and let GF(q) denote the finite field of order q. Schwarz [4] has given an elegant proof of the following theorem. If k|p-1, if $a_1, ..., a_k$ are non-zero numbers of GF(q) and a is an arbitrary number of the field, then the equation

$$a_1 x_1^k + \ldots + a_k x_k^k = a$$

has at least one solution in the field.

Using the same method, the writer [2] has proved the following theorems.

THEOREM 1. Let $k \mid p-1$ and let $a_1, ..., a_k$ be non-zero numbers of GF(q). Let $g(x_1, ..., x_k)$ be an arbitrary polynomial with coefficients in GF(q) of degree less than k. Then the equation

$$a_1x_1^k + ... + a_kx_k^k = g(x_1, ..., x_k)$$

has at least one solution in the field.

THEOREM 2. If $f(x_1, ..., x_k)$ is homogeneous of degree k while $g(x_1, ..., x_k)$ is arbitrary of degree less than k, and

(1.1)
$$\sum_{x_1,...,x_k \in GF(q)} \{f(x_1,...,x_k)\}^{q-1} \neq 0 ,$$

then the equation

$$f(x_1, ..., x_k) = g(x_1, ..., x_k)$$

has at least one solution in the field. Alternatively the condition (1.1) may be replaced by the equivalent statement that the number of solutions of the equation

$$f(x_1, ..., x_k) = 0$$

is not divisible by p.

By the degree of $g(x_1, ..., x_k)$ is understood the total degree.

^{*} Supported in part by National Science Foundation grant G 16485.

In Theorems 1 and 2 it is possible that only the trivial solution (0, ..., 0) occurs. We may however state the following theorem which supplements Theorem 2.

THEOREM 3. Let $f(x_1, ..., x_k)$ be homogeneous of degree k while $g(x_1, ..., x_k)$ is arbitrary of degree less than k and g(0, ..., 0) = 0. Also let

$$\sum_{x_1,\dots,x_k \in GF(q)} \{f(x_1,\dots,x_k)\}^{q-1} = 0$$

(so that the number of solutions of (1.3) is divisible by p). Then the number of solutions of (1.2) is divisible by p. It follows that (1.2) has at least p-1 non-trivial solutions.

This result may be compared with Warnung's refinement [5] of Chevalley's theorem on systems of equations in a finite field [3].

The proof of Theorem 3 is very simple. If the theorem is false then

(1.5)
$$\sum_{x_1,\dots,x_k \in GF(q)} \{f(x_1,\dots,x_k) - g(x_1,\dots,x_k)\}^{q-1} \neq 0 .$$

Put

$$\{f(x_1,\ldots,x_k)-g(x_1,\ldots,x_k)\}^{q-1}=f^{q-1}(x_1,\ldots,x_k)+F(x_1,\ldots,x_k),$$

so that

(1.6)
$$\deg F(x_1, ..., x_k) < k(q-1).$$

Now it is familiar that for $m \ge 1$

$$\sum_{x \in GF(q)} x^m = \begin{cases} -1 & (q-1|m), \\ 0 & (\text{otherwise}). \end{cases}$$

It follows that for any polynomial that satisfies (1.6) we have

$$\sum_{x_1,\ldots,x_k\in GF(q)} F(x_1,\ldots,x_k) = 0.$$

Hence (1.5) becomes

$$\sum_{x_1,...,x_k \in GF(q)} \left\{ f(x_1, ..., x_k) \right\}^{q-1} \neq 0,$$

which contradicts (1.4). Hence the number of solutions of (1.2) is a multiple of p; since the trivial solution is certainly present, there must be at least p-1 non-trivial solutions.

2. Theorem 3 can be extended to system of equations as follows. THEOREM 4. Let $f_j(x_1, ..., x_k)$ be homogeneous of degree k_j while $g_j(x_1, ..., x_k)$ is arbitrary of degree less than k_j (j = 1, ..., r) and let

$$g_j(0,...,0) = 0$$
 $(j = 1,...,r)$.

Also let

(2.1)
$$\sum_{x_1,\dots,x_k \in GF(q)} \prod_{j=1}^r \{f_j(x_1,\dots,x_k)\}^{q-1} = 0.$$

Then if

$$(2.2) \sum_{j=1}^r k_j = k,$$

the number of solutions of the system

$$(2.3) f_j(x_1, \ldots, x_k) = g_j(x_1, \ldots, x_k) (j = 1, \ldots, r)$$

is divisible by p. It follows that (2.2) has at least p-1 non-trivial solutions. Proof. Clearly the product

$$\prod_{j=1}^{r} \left\{ 1 - \left(f_j(x_1, \ldots, x_k) - g_j(x_1, \ldots, x_k) \right)^{q-1} \right\}$$

is equal to 1 or 0 accordingly as $(x_1, ..., x_k)$ is or is not a solution of (2.3). Hence if the theorem is false we have

(2.4)
$$\sum_{x_1,\ldots,x_k} \prod_{j=1}^r \left\{1 - \left(f_j(x_1,\ldots,x_k) - g_j(x_1,\ldots,x_k)\right)^{q-1}\right\} \neq 0.$$

Expanding the summand it is evident that

$$egin{aligned} &\prod_{j=1}^r \left\{ 1 - \left(f_j(x_1,\,...,\,x_k) - g_j(x_1,\,...,\,x_k)
ight)^{q-1}
ight\} \ &= (-1)^r \prod_{j=1}^r \left(f_j(x_1,\,...,\,x_k)
ight)^{q-1} + F(x_1,\,...,\,x_k) \;, \end{aligned}$$

where

$$\deg F(x_1, ..., x_k) < k(q-1)$$
.

It follows as in the proof of Theorem 3 that

$$\sum_{x_1,\ldots,x_k} F(x_1,\ldots,x_k) = 0.$$

Thus (2.4) becomes

$$(-1)^r \sum_{x_1,...,x_k} \prod_{j=1}^r (f_j(x_1,...,x_k))^{q-1} = 0$$
,

which contradicts (2.1). This completes the proof of the theorem.

The condition (2.1) is equivalent to the statement that the number of solutions of the system

$$(2.5) f_j(x_1, ..., x_k) = 0 (j = 1, ..., r)$$

is divisible by p. We observe that we have made no essential use of the homogeneity of the $f_i(x_1, ..., x_k)$ but merely of the fact that

$$\operatorname{deg} f_j(x_1, \ldots, x_k) \leqslant k_j \quad (j = 1, \ldots, r).$$

However for the last sentence in the statement of Theorem 4 we do require the fact that the system (2.5) possesses the trivial solution (0, ..., 0).

We may accordingly replace Theorem 4 by the following slightly more general result.

Theorem 5. Let $f_j(x_1, ..., x_k)$ be of degree $\leqslant k_j$ while $g_j(x_1, ..., x_k)$ is of degree $< k_j$ (j = 1, ..., r) and let

$$f_j(0, ..., 0) = g_j(0, ..., 0) = 0$$
 $(j = 1, ..., r)$.

Also assume that the number of solutions of the system

$$f_j(x_1, ..., x_k) = 0$$
 $(j = 1, ..., r)$

is divisible by p. Then if

$$\sum_{j=1}^r \, k_j = \, k \; , \qquad$$

the number of solutions of the system

$$(2.6) f_j(x_1, \ldots, x_k) = g_j(x_1, \ldots, x_k) (j = 1, \ldots, r)$$

is divisible by p. It follows that the system (2.6) has at least p-1 non-trivial solutions.

3. In place of (2.1) we may assume that

(3.1)
$$\sum_{x_1,\dots,x_k} \prod_{i=1}^r \left\{1 - \left(f_i(x_1,\dots,x_k)\right)^{q-1}\right\} \neq 0,$$

which is equivalent to the assumption that the number of solutions of the system

$$f_i(x_1, ..., x_k) = 0 (j = 1, ..., r)$$

is not divisible by p. We now get

THEOREM 6. Let $f_j(x_1, ..., x_k)$ be of degree $\leq k_j$ while $g_j(x_1, ..., x_k)$ is of degree $< k_j$ (j = 1, ..., r) and assume that the number of solutions of the system (3.2) is not divisible by p. Then if

$$\sum_{j=1}^r k_j = k ,$$

the number of solutions of

$$(3.3) f_j(x_1, \ldots, x_k) = g_j(x_1, \ldots, x_k) (j = 1, \ldots, r)$$

is not divisible by p. It follows that (3.3) has at least one solution.

 $\sum_{x_1,\dots,x_k} \prod_{j=1}^r \left\{ 1 - \left(f_j(x_1,\dots,x_k) - g_j(x_1,\dots,x_k) \right)^{q-1} \right\} = 0.$

Expanding the left member we get

$$\sum_{x_1,\ldots,x_k} \prod_{j=1}^r \left\{ 1 - \left(f_j(x_1,\,\ldots,\,x_k) \right)^{q-1} \right\} = 0 ,$$

which contradicts the assumption concerning the number of solutions of (3.2).

As we have seen in the proof of Theorem 4,

(3.4)
$$\sum_{x_1,\ldots,x_k} \prod_{j=1}^r \left\{ 1 - \left(f_j(x_1,\ldots,x_k) \right)^{q-1} \right\} \equiv N_0 \pmod{p} ,$$

where N_0 denotes the number of solutions of the system (3.2). Similarly

$$\sum_{x_1,\ldots,x_k} \prod_{j=1}^r \left\{ 1 - \left(f_j(x_1,\,\ldots,\,x_k) - g_j(x_1,\,\ldots,\,x_k) \right)^{q-1} \right\} \equiv N \; (\bmod \, p) \; ,$$

where N denotes the number of solutions of the system (3.3).

We have therefore the following

THEOREM 7. Let $f_j(x_1, ..., x_k)$ be of degree $\leq k_j$ while $g_j(x_1, ..., x_k)$ is of degree $\leq k_j$, where

$$\sum_{i=1}^r k_i = k.$$

Let N_0 denote the number of solutions of (3.2) and N the number of solutions of (3.3). Then

$$(3.5) N \equiv N_0 \pmod{p}.$$

If the f_i are polynomials in k-1 or fewer indeterminates it is evident that (3.4) becomes

$$N_0 \equiv 0 \pmod{p}$$
.

We accordingly get the following corollary of Theorem 7.

THEOREM 8. Let the f_i in Theorem 7 be polynomials in at most k-1 indeterminates. Then the number of solutions of (3.3) is divisible by p. In particular if

$$f_{j}(0,...,0)-g_{j}(0,...,0)=0 \quad (j=1,...,r),$$

then the system (3.3) has at least p-1 non-trivial solutions.

4. We shall now discuss a few special cases. To begin with let

(4.1)
$$y_{j} = \sum_{s=1}^{k} a_{js} x_{s} \quad (a_{js} \in GF(q), \ j = 1, ..., s)$$

be n linear forms with coefficients in GF(q) and put

(4.2)
$$f_j(x_1, \ldots, x_k) = \prod_{s=k_j+1}^{k_{j+1}} y_s \quad (j = 1, \ldots, r),$$

where

$$k_0 = 0, k_1 > 0, ..., k_r > 0, \qquad \sum_{j=1}^r k_j = k.$$

Now assume that the y_i are linearly independent. Then the number of solutions of the system

$$f_j(x_1,\ldots,x_k)=0$$

is equal to

To prove this we observe that since the y_i are linearly independent one may, by means of the linear transformation (4.1), define the f_i by

$$f_j(x_1, ..., x_k) = \prod_{s=k_j+1}^{k_{j+1}} x_s \quad (j = 1, ..., r).$$

Thus it suffices to show that the number of solutions of

$$(4.5) x_1 x_2 \dots x_k = 0$$

is equal to

$$q^k - (q-1)^k.$$

This follows at once from the fact that number of solutions of (4.5) is equal to q^k minus the number of solutions of

$$x_1x_2...x_k \neq 0$$
.

If in the next place the y_j are linearly dependent it follows (compare Theorem 8) that the number of solutions of (4.3) is divisible by p. We may state

THEOREM 9. Let $f_i(x_1, ..., x_k)$ be defined by (4.1) and (4.2) and let $g_i(x_1, ..., x_k)$ be arbitrary polynomials of degree $< k_i$. Also let N denote the number of solutions of the system

$$f_j(x_1, \ldots, x_k) = g_j(x_1, \ldots, x_k) \quad (j = 1, \ldots, r).$$

Then if the yi are linearly independent,

$$(4.7) N \equiv (-1)^{r+k} \pmod{p},$$

while if the yi are linearly dependent,

$$(4.8) N \equiv 0 \pmod{p}.$$

In the latter case, if also

$$g_j(0,\ldots,0)=0 \quad (j=1,\ldots,r) ,$$

it follows that (4.6) has at least p-1 non-trivial solutions.

Returning to (4.1) and (4.2), another case of interest is that in which the a_{js} lie in some $GF(q^t)$ but the coefficients of f_j are in GF(q). For some properties of such factorable polynomials see [1]. We shall however consider only the following special case. Let θ denote a primitive number of $GF(q^n)$ and put

$$f(x_1, ..., x_n) = \prod_{j=0}^{n-1} (x_1 + \theta^{q^j} x_2 + ... + \theta^{(n-1)q^j} x_n);$$

f is called a norm-form. It follows that the only solution (in GF(q)) of

$$f(x_1,\ldots,x_n)=0$$

is the trivial solution.

We now define the f_j as follows: f_1 is a norm-form in $x_1, ..., x_{k_1}, f_2$ is a norm-form in $x_{k_1+1}, ..., x_{k_2}$ and so on. It follows that the only solution of the system

$$f_j(x_{k_j+1}, \ldots, x_{k_{j+1}}) = 0 \quad (j = 1, \ldots, r)$$

is the trivial solution.

We may state

THEOREM 10. Let $f_j(x_{k_j+1}, ..., x_{k_{j+1}})$ denote norm-forms in the indicated indeterminates and let $g_j(x_1, ..., x_k)$ be arbitrary polynomials of degree $< k_j$. Then the number of solutions of the system

(4.9)
$$f_j(x_{k_j+1}, \ldots, x_{k_{j+1}}) = g_j(x_1, \ldots, x_k)$$
 $(j = 1, \ldots, r)$ satisfies

$$N \equiv 1 \pmod{p}$$
.

If at least one g_i has a non-zero constant term, then the system (4.9) has at least one (non-trivial) solution.

We remark that when q is odd the form

$$ax^2 + 2bxy + cy^2 ,$$

where $b^2 - ac$ is a non-square of GF(q), is a constant multiple of a normform.

$$f_j(x_1, \ldots, x_k) = 0 \quad (j = 1, \ldots, r)$$

has a single solution, then the number of solutions N of the system

$$f_i(x_1, ..., x_k) = g_i(x_1, ..., x_k) \quad (j = 1, ..., r)$$

satisfies

$$N \equiv 1 \pmod{p}$$
.

Compare also Theorem 10. It is however quite possible that N > 1.

We shall illustrate this in a very special case. Let q be odd and β a non-square of GF(q). Then the equation

$$x^2 - \beta y^2 = 0$$

has only the solution (0,0). On the other hand, the equation

(5.1)
$$x^{2} - \beta y^{2} = 2ax - 2\beta by \quad (a, b \in GF(q)),$$

where a, b are not both zero, has q-1 solutions. Indeed (5.1) is equivalent to

$$(5.2) (x-a)^2 - \beta (y-b)^2 = a^2 - \beta b^2.$$

Since $a^2 - \beta b^2 \neq 0$ it follows from a familiar result that the number of solutions of (5.2) is q+1.

Note that the equation

$$x^2 - \beta y^2 = 2ax - 2\beta by - c ,$$

where $c = a^2 - \beta b^2$, has a single solution.

The result concerning (5.1) does not seem to generalize in an obvious way. For example if Q(x, y) is a binary quadratic form with discriminant equal to a non-square of GF(q) then the system

(5.3)
$$\begin{cases} z^2 = Q(x, y), \\ w^2 = cQ(x, y), \end{cases}$$

where c is some fixed non-square of GF(q), has only the trivial solution. Indeed (5.3) implies

$$w^z - cz^z = 0$$
, $w = z = 0$

and therefore x = y = 0. If L is an arbitrary linear form in z, w, the system

$$\begin{cases} z^2 = Q(x, y) + L(z, w), \\ w^2 = cQ(x, y) + cL(z, w) \end{cases}$$

has only the trivial solution; the proof is exactly the same as that for (5.3).

References

- [1] L. Carlitz, On factorable polynomials in several indeterminates, Duke Math. Joun. 2 (1936), pp. 660-670.
- [2] Solvability of certain equations in a finite field, Quart. Journ. Math. Oxford (2), 7 (1956), pp. 3-4.
- [3] C. Chevalley, Démonstration d'une hypothèse de M. Artin, Abhandl. Math. Sem. der Hansischen Univ. 11 (1936), pp. 73-75.
- [4] St. Schwarz, On the equation $a_1x_1^k + ... + a_kx^k + b = 0$ in finite fields, Quart. Journ. Math., Oxford, 19 (1948), pp. 160-163.
- [5] E. Warnung, Bemerkungen zur vorstehenden Arbeit von Herrn Chevalley, Abhandl. Math. Sem. der Hansischen Univ. 11 (1936), pp. 76-83.

Reçu par la Rédaction le 12. 2. 1962