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Existence of Lyapunov functions
by J. DueUNDJI * (Los Angeles, Calif.)

1. Introduction. We consider here the stability of the solutions
of a non-autonomous system of differential equations # = X (z, t), where (%)
X is continuous on H xJ,, HC E™ being a connected open set. There
is no loss of generality to assume that the solution whose stability is
being considered is @ =0, so that X(0,f) =0. We moreover assume
throughout this article: for each (u, %) e H xJ, there exists a unique
solution @ = ®(t; %, %) in H which depends continuously on (%, o)y
equals @, for t =1,, and is defined for all ¢>>0; thus, we can take H = b i
with no loss in generality.

The definition of uniform stability of =0 can be stated in the
following (normalized (2)) way [1]: For each cylinder Oy = 8(0,1/n) X
X J°1_1,,,,, n=1,2, .., there exists a Cm, m > n, such that every trajectory
entering C, remains thereafter in Cyn; this type of stability is charac-
terized by special properties of a Lyapunov function on E" xJ,, that is,
a non-negative continuous real-valued function on E" xdJ, vanishing on
0 xJ,, bounded positively below outside each Ok, and having a con-
tinuous non-positive trajectory derivative (*) on E" xdJ,. Now, if instead
of eylinders, one is given a sequence {Un} of connected open sets in B X J,
with 0 xJ; = () Un, then, replacing Cn by Us in each of the above state-

n

* The author was partially supported by the National Science Foundation, under
contract G-5251, during the period that this work ias done.

(1) Throughout this article, * denotes Euclidean n-space, and Jo c E* the subspace
{t]t = a}. Vector notation is used. §(x, ) is the spherical neighborhood (nbd) of x
with radius &; 4 — boundary of A; 4 = interior of A; ¢4 = complement of 4; (v 4)
= (xe CA).

(*) The normalization consists in having the cylinders pineh down on 03x .J; rather
than on some other 0X Ja.

(®) For each (z,, &) « E"X J,. the trajectory derivative V*(x,, £,) is the derivative
%V[m (t: @o. 1), 1] evaluated at ¢==1,. We call a Lyapunov function proper (or simply

“Lyapunov funetion”) if ¥’ (i, f) is continuous on B J,; itis called “split” if V'(z,, &)
is continuous only on € (0% Jy).
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ments, one is led to the more general notions of uniform {Us}-stability,
and {Us}-Lyapunov function. It is evident that # = 0 can be uniformly
{Un}-stable—in fact, there is always at least one such choice—without
being uniformly stable, i.e., uniformly {Cp}-stable. The question arises:
For a given sequence {Un} of connected open sets expressing 0 xJ; as
a @, does there exist a {Un}-Lyapunov function and, if so, to what extent
does it characterize the wuniform {Uy}-stability of @ = 0?

In part I, a condition which is necessary and sufficient for the ex-
istenee of a {Us}-Lyapunov function is obtained (Theorem 6.2), which
clarifies the relation between the sets {Ux} and the geometry of the tra-
jectories. §§ 2-4 arve primarily terminological.

In part II, a necessary and sufficient condition for the uniform
{Ua}-stability of # = 0 is obtained; for U, = Cn this gives a slight gener-
alization of Kurzweil’s theorem [4], in that the continuity of the trajectory
derivative only on C(0xd,), and not on the entire E™XJ, appears to
be relevant. An application to ordinary stability is also given.

The approach is based on the technique of rectifying the flow associ-
ated with the given differential equation, which has been presented in
a joint paper with H. Antosiewicz.

Part 1

2. Rectitying homeomorphisms. Because of the standing
hypotheses, the solutions of # = X(x,?) can be regarded geometrically
a8 the trajectories of a flow F on BE"™ associated with the differential
equation. In fact, defining f: B x Jo—E" by f(2, to), 7] = [#(r+1;
@gy b), T+1] one verifies that f is continuous and that for each
P = (2, ) e B™*" one has f(p, 0) = p and f[f(p,?), 7] = H(p, t+7); f de-
termines the associated flow F'. F can be transformed to a standard form,
wherein each trajectory corresponds to a straight line parallel to the
t-axis intersecting B™ x 0 at the same point that the corresponding trajec-
tory does:

2.1. TEEOREM. There ewists a homeomorphism h of E" X J, onto itself
which keeps EB" X 0 pointwise fized and such that

hlm(t; @y, t), 1] = [2(0; @y 1), 1] -

Proof. h(w,t) = [2(0; #,t),t] is the desired map, since it iy con-
tinuous (because of the standing assumptions) and has the continuous
map g(&, ) = [=(r; &, 0), 7] as inverge.

k ig called a rectifying homeomorphism, and plays a key role in this
discussion (see §4).
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3. Positive definite functions.

3.1. DEFINITION. Let ¥ be an arbitrary space, and M C ¥ a closed G
with a given representation () M = M\ Up, Unt1C Un. A continuous
n

real-valued function f: ¥—J, is called positive definite rel {Ua} if (1)
f40) =M and (2) for each U, there is a real u(Us)>0 such that
f(y) = p(Ux) for y € Un.

In general M has many G, representations and, unless M is compact,
a given f can be positive definite rel one representation but not rel another.

Note that if f: ¥—J, satisfies f7*(0) = M and if for each 1> 0 one
defines Q(1) = {z|f(®) < A}, then for any sequence i,—0 the open sets
{9 (1n)} satisfy (1) QQ(An)= M, (2) if A< 2 then @(2)C@(4) and (3)

f is positive definite rel {Q(4s)}. This observation leads to & simple eriterion
for positive definiteness. One first makes

3.2. DEFINITION. Let M = (M Us = [\ Wax be two @, representations
n

n
of M. {Uy} cushions {W,} if for each W there exists a Ua C Wi If {Ua},
{Wx} cushion each other, the representations are called interlacing.
and then one has the simple

3.3. THEOREM. Let f: Y —>d, satisfy f~(0) = M. Then [ is positive
definite rel {Un} if and only if {Q(1a)} cushions {Un} for some one (hence all)
sequence Ap—0.

Proof. Assume j positive definite rel {Us}. For each Upn let
An = 34(TUn); then Q(As) C Un since if y & Un then fy) > p(Un) > An 50
Yy €Q(A,) either. For the converse, given Un select @(A,) C Uy and define
H(Un) = }“‘n‘

4. L-functions. Certain functions on E"XxJ, play an important
role in the approach given here.
4.1, DEFINITION. Let 0 xJy=(\ U, be a Gs representation. A con-
n

tinuous real-valued function v(z,t) on E™xdJ, with the ‘properties (1)
»is positive definite rel {Un}, (2) v(z,1) <1 on B"xJ,, and (3) n(#, 1) < 0
and is continuous on €(0 X Jy), will be called a “split” L-function rel {Un};
if v; is continuous on E"xJ, it is termed ‘proper” ().

The relation between L-functions and Lyapunov functions for flows
is the following: Recall [1] that a Lyapunov function for 0 X Jyon aflow F
in' B"xJ, is a continuous real-valued function V on B"xJ, which is
positive definite rel {8(0, 1/n) X J1_1a} and has a continuous non-positive

(9 A sequence of open sets {Un}, with Titac Us for each index 4, will be called
descending. We take all Gy representations to be descending; since the applications
are all to metrio spaces ¥, this involves no loss in generality.
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trajectory derivative (3). Under the rectifying homeomorphism & of § 2,
the eylinders {8(0, 1/n) X J1_ys} transform to open sets {Un} giving a Gy
representation of 0 XJ;.

Assume now that v is an L-function rel {U,}, and define V(z, 1)
= vh(z, t) = v[x(0; %,1),1]. Due to the standing hypotheses stated in
the introduction, ¥ will be a Lyapunov function for F': only the existence ()
" and continuity of V'(2,%,) needs to be verified, and this follows from
the identity V[#(t; o, to), £] = v[2(0; @, ), 1] together with the assumed
existence and continuity of vy(#,, f,). This argument is clearly reversible:
If V is a Lyapunov function for F, then defining v(w,?) =Vh Yz, 1)
= V[=z(t; ©,0),] gives v as an L-function rel {U.}, the existence and
continuity of w(,,%,) coming easily from the identity v(m,?)
= V[z{t; 2 (t; %, 0), &}, 1] and the assumed existence and continuity
of V'[w(ty; @, 0), B]-

In view of this relationship, the question of the existence of a Lyapunov
*function for a flow reduces to the following question about L-functions:
Under what conditions. does an L-function rel a given representation of
0 xJ; as a Gy exist? This is answered in § 6; it should be noted that, with
this formulation of the problem, the fact that the h™(Uy,) are cylinders
is completely irrelevant to the issue at hand.

5. Sectional cylinders. In this section it will be shown that,
under certain conditions, an open set U containing 0XJ; can be “ap-
proximated’ by an open set having the graph of a continuous real-valued
function for boundary.

5.1. DEFINITION. (a) A eylindroid is a connected open set in E"xJ,
containing 0 X dJ;.

(b) A cylindroid €, “captures” for O, if for each (p,%,) € Cy, (P, o+
+17)eC, for all 72 0. If Oy = 0,, 0, is called “self-capturing”.

() A line (po,?) is ‘“ultimately in’® a given cylindroid C if there
exists a T > 0 with (p,,7) e C for all > T.

(d) A cylindroid whose boundary is the graph {(»,p(#)} of a con-
tinuous real-valued function ¢ defined on an open U C E™ is called
a ‘“gectional cylinder’; the cylindroid determined by ¢ is {(x,?)|ze U,
t> @(@)} and is evidently self-capturing.

The significance of sectional cylinders is a consequence of
5.2 Lemma. Let G, C O, be two cylindroids, where O, captures for C,.

Y

Then there ewists a self-capturing cylindroid C such that C separates B
and with ¢; C C C0,.

Proof. Let
D= U (pxdy.

(o:)eCy
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Clearly, €, C Int.D since 0 is an open set contained in D; further, D C C,
since for each (p,t) e D there is a (p,t') e C; with # <t and O, captures
for C;. We also have that D is closed. For, let (p,, 7) € D. Since (Do, 7) lies
on an open half-ray not meetmg 0, there is an %> 0 with [p, x G’J,+,,] ~
A0~ (E"XGJ,.,.,,)] = @; the first set being compact and the second
closed, there is a posmve d_lstance 8 > 0 between them, so that S(pe, d) X
X{t]0<t<r+n} provides a neighborhood of (pg,*) not meeting D.
O = Int D is therefore the required cylindroid.

The fundamental result is

5.3. THEOREM. Let O, CC,CC;C O, be four cylindroids such that
Ci C Oiy1 and C; captures for Ciyy, i =1, 2, 3. Then there ewists a sectional
cylinder 8 such that

1. ¢,C8CC,,

2. § separates B,

3. 8 passes through every ray ultimately in Cs,

4. § passes only through rays ultimately in Cy.

Proof. By 5.2, there are self-capturing cylindroids XK,, K; with
C; CK,CC, and 0;CK;CC,. We will construct a sectional cylinder with
boundary in the open set X = K,— K;. Letting = denote the projection
7(®,t) = (x, 0) the domain of definition of the required function ¢ will
be the open set D = nK,. Note that if p e D then (p,%) eE,CC, for
suitable #, and, because K, is self-capturing, (p,?) is ultimately in Cj.
Further, if (p, ) is ultimately in C, then (p,1) ¢ K, for large enough ¢
so that p € D. Now define on D

w(z) = inf{t|(z,t) € Z}, Ua)=sup{t|(@,?)e Z}.

Then u(x) < l(x) on D, otherwise the line @, X F" intersects X at a single
point, contradicling that X is open. Further, {w|u(x)< %} is open for
each %, ie.,  is upper semi-continuous. In fact, let £ e {z|u(x) < k};
then there is a point in £ with coordinates (&, u(&)+4), where 0 < d <
< k—u(£) and, since Z is open, there is a cubical nbd N of (£, u(£)+8)
lying entirely in X; then nN is a nbd of & and =N C {w|u(x) < k} since
for any o ealN, w(z')<w(f)+d6<k; this shows {z|u(s) <k} open.
Similarly {z|l(z) > &} is open, so that I is lower semi-continuous. Under
these conditions, a theorem of Dowker (5) [2] applies to give a continuous ¢
on D with %(z) < ¢(x) < l(x) for every » e D; the sectional cylinder de-
termined by ¢ is clearly the desired one.

6. Existence of L-functions. The requirement 3 of 4.1 is
the one of basic importance, since the other two can easily be satisfied
for any G, representation. Since 3 says that values do not increase along

(5) Theorem 4, p. 223. Any metrioc space is paracompact.
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any line (z, 1), the {@(4s)} of §3 for an L-function have the additional
property: if (z, t) € @ (1s) then (z, t+7) € @() for all = > 0. Thus, because
of Theorem 3.3, it is to be expected that the given {Un} should possess
some analogous property.

6.1. LEMMA. Let 0xXJy=\Un. Then a split L-function rel {Ua}

n
ewists if and only if there is a descending sequence of sectional cylinders
cushioning {Un}.

Proof. Only if: Let u= u(U,) and define @n = @(u/n); by 3.2,
{Qa} cushions {U,}. Since each @ is self-capturing and @ni1 C Qn, using
four @-cylindroids interposed (¢) in Qn—@ns1, an application of 5.3 produces
a sectional cylinder S, with Qnys C SnC @n; the {S,} interlaces {@a} and
are the required sets.

If: This part of the proof is related to work of Krasovskii, [3]. Let {8}
be a descending (%) sequence of sectional cylinders cushioning {Ua}; the
function determining Sy is pa, is defined on 78, and @841 C 7la. For
each pair S, Sp-1, interpolate an auxiliary sectional cylinder L, by the
function

zenmSp .

ln = @a(@) — 3[@n(®) — @n—a(2)],

Now let @(&) be any €% function of one real variable such that

1, £<0,
@(£) = monotone decreasing, 0<&<1,
0, =1,

We can also assume (7) that |@'(£)] < B'< oo for all & For each & define
on E™? a function
1, (.’L’, t) ELk;

@, ) = ) (1) € 8,

t— lp(@) .
[(pk(m)——lk(w) , otherwise
. ) [P I S 7 N P =
(*) That 15@[,u {n+1+5(n(n+1))}]’ =1, ..,4
() For example, noting first that the function

— 2
u(w)={exp[ cactmx] , <<,
0, otherwise
is of class O on E', we can use
[==]
J wera
@D (z) = 'Ew—‘— , wel.

J usas

—~60
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which is legitimate, since gi(2)— i) # 0 on nSk. This function is easily
seen to be continuous on B with (vg) < 0 and also continuous on B*.

Finally, choose any convergence factors {as}, say 0< an < 1/2"
and seb

(@, 1) = D, anvn(x, 1) .
n=1
This is the desired split L-function. In fact, because 0 < oi(z,?) <1,
the series converges uniformly, hence represents a continuous function
on B™* with 0 < v(w,?) < 1. Further,
a. 0(0,%) = 0 for ¢ €J; since (0, t) e 84 for all », hence all v4(0, ) = 0.
b. If (2,t) € S,, then (z,t) € 8 for all i < n, hence vy(2,3) =0, i <M,

and therefore v(2,1) < Y o
|
¢. It (#,1) €8y, then (z,8)€8; for all i>n, so that v@,t) =1
00
certainly for all ¢ 3 n-+1, showing o(z, ) > > o.
n+l

Thus, v is positive definite rel {Ss}; since {8s} cushions {Ux} it is
positive definite rel {Un} also. It remains to verify condition 3 of 4.1.
Because each (v4); < 0 and is continuous, we need only show that each
point & = (@, t) € €(0 X J,) has a nbd on which the derived series converges
uniformly. In fact, letting ¢ = % ||z > 0 then, because (1 Ln =0 X J; and

n

are descending, we must have S(&, ¢) ~ Ly = @ for all 4> some k = k(£);
in S(£, o) the derived series reduces to a finite sum of form

k
G gl t—bw)
2@ e

hence is continuous, and represents o on this nbd. The lemma is proved.

Note that the split L-function defined above “tends uniformly to
zero on {8s)”’, that is, “diam(8s)—0 as n->c0"; this is clear from (b)
above.

6.2. TEEOREM. Let 0 XJy = (\Ua. Then a split L-function rel {Un}
n

ewists if and only if there is a descending sequence of eylindroids, each capiur-
ing for its predecessor, which cushions {Un}. Further, the split L-function
can always be chosen so that it tends to zero wmiformly on the cushioning
sequence.

Proof. Necessity is clear, using Theorem 3.3. As for sufficiency,
an application of 5.3 gives, for each four successive cushioning cylindroids
Cuny -y Cings 2 sectional cylinder 8, with Cin C 85 CCunys. {Sa} thus
interlaces {Cp} and 6.1, with the final remark, gives the result.
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A {U,}-Lyapunov function for a flow F is defined formally as in
Definition 4.1, except that the “v’ in condition 3 is replaced by “traje-
ctory derivative”. Since the concept of “egpturing” is invariant under
continuous maps, and under the rectifying homeomorphism a {Uxn}-Lya-
punov funetion for F' corresponds to an L-function rel {(Ua)}, Theorem 6.2
can be stated directly in terms of {Un} and F.

Part II

7. Uniform {Un}-stability. The application _of 6.2 to uniform
stability has been indicated in the introduction.

7.1. DEFINITION. Let {Us} be a sequence of cylindroids expressing
0 xJ; as (1) a Gs. The solution # = 0 is uniformly {Un}-stable if for each Un
there is a Up, m > n, such that each trajectory entering U, remains
thereafter in Un.

This is evidently the classical definition in case Un = On = 8(0, 1/n) X
X Jy-1m- Note that, if k i§ a rectifying homeomorphism, then z =0 is
always uniformly {h™(COn)}-stable; this concept therefore has significance
only if the sequence {U,} is specified in advance.

7.2 THEOREM. © = 0 i3 uniformly {Ua}-stable if and only if there
exists a split {U,)-Lyapunov function V with diam V(Us)—>0 as n-—co,

Proof. Necessity. Under a rectifying homeomorphism for the
flow F the open sets 1 (Un) give a @ representation for 0 X J; and, by 7.1,
one can extract a descending subsequence, each capturing for its prede-
cessor. A direct application of 6.2 yields a split L-function » rel {h(U:)}
with diamo(h(Uy))—0 as i—co. V(@,1) =v(h(z,1)) is the desired split
{U,}-Lyapunov function.

Sufficiency. Since diamV (Uy) = e,—0, the sequence An = ea(1+
+1/n)—0 also, and clearly UnC @ (4s). Because V is positive definite,
3.3 says that {Q(4)} cushions {Un}. Thus, given U, select @(Am)C Un
and then U, satisfies the requirement of 7.1.

In the special case Un = Cn, 7.2 represents u slight generalization
of Kurzeweil’s theorem [4]. Specifically, it is known [1] that under the
standing hypotheses of the introduction, the existence of a proper
{Cp}-Lyapunov function implies uniform stability; for the necessity,
however, Kurzweil requires the explicit condition that X (x, f) be locally
lipschitzian, nad gives an example to show that, without this explicit
requirement, a proper {Cx}-Lyapunov function need not exist. In view
of 7.2, by allowing split Lyapunov functions, we obtain more symmetrie
necessary and sufficient conditions. ‘

A similar symmetric situation oceurs for ordinary stability:
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7.3. THEOREM. A necessary and sufficient condition that z — 0 be
stable is that there ewist a split {Cn}-Lyapunov function.

Proof. Recall that # = 0 is stable if for each &> 0 and %, eJ, there
is a (e, %) > 0 such that for all |w| < 6 one has [z(t; 2o, )] < & for all
1>1,. Let  be a rectifying homeomorphism; the definition immediately
shows that {h(Cz,)} is in fact cushioned by the actual eylinders
{8(0, 6(1/n, 0)) X J1_ym}; by 6.2, a {Cy}-Lyapunov function exists. Con-
versely, if there is a split {Ux}-Lyapunov function, {Q(4s)} cushions {Cyn};
choosing the sequence {1} 5o that @ (1) C Cp for each n, define 8(1/n, t,) = o
where 8§ ((0, %), o) C Q(4x). :

8. Continuity of the trajectory derivative.

8.1. THROREM. If a split {Un}-Lyapunov function exwists, then for any
preassigned bounded open K CJ, there exists a split {Us}-Lyapunov func-
tion Vi with (3) Vi continuous also on E*x K.

Proof. One need establish this only for L-functions. We use the
notations in the proof of “If” in Lemma 6.1. Let N = 8(0,1)x K and
define f, =inf{[t—t'||(x,t) €S A N, (x,t') € C8pa}; Ba> 0 since Sy N
is compact, does not intersect the closed CS,—; hence 0 < d(S; ~ N,
C8p-1) < Bu. Choose an = min[1/2%, fx/2"]. Since for (v, pa(#)) e N one
has |@u(®)— @n-1(2)| = P the coefficients of the derived series estimate as

on an Baj2® 1
= < =,
on(@)— ()  RHopal®)—@a-a(@)] $Bn 2
For any nbd W, (0,%) e WC N, let k(W) = sup {n|W ~ CSp = @}; then
kE(W)->o0 as diam W >0, since the {S,} are descending. Thus, if (2, t) ¢ W,
using the only possible non-vanishing terms of the derived series gives
|odw, )| < B-1/2*7Y (2,1) e W

and, since a8 (&, ts) —~(0,%,) one can assume diam W0, it follows that
04(@n, ta) =0, establishing continuity at (0, ?,) ¢ W.

(@, gn(x)) € NV .
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