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ON OPEN THEORIES
BY

R. SIKORSKI (WARSAW)

The first part of this paper confains a topological characterization
of open theories. This characterization was announced, without proofs,
in 777]. The seeond part contains a topological proof of the Herbrand [1]
theorem for open theories in the most general form. The proof is based
on an idea from my earlier paper [57.

§ 1. Let & be a two-valued first-order predicate calculus containing
the following primitive symbols: an infinite set ¥ of free individual
variables denoted by the letters x, y (with indices), an infinite set (dis-
joint from V) of bound individual variables denoted by the letters &, 7,
a set of functors, a non-empty set of predicates, the logical eonnectives
v (or), ~ (and), — (if... then...), — (not), and the existential and uni-
versal quantifiers |_J and (7). The cardinals of the sets of variables, fune-
tors and predicates are arbitrary.

The sets of all terms and formulas in % will be denoted by T and F
regpectively. Terms are denoted by the letter 7, and formulas — by
a, By ¥, 0.

Let 7 be a formalized theory based on %, o denoting an assumed
set of axioms for 7.

The symbol L(7) will denote the Lindenbaum algebra of the theory
7, i. e. the Boolean algebra obtained from F by identification of for-
mulag ¢, § if and only if both a —» § and B — a are theorems in J.
For every formula o in F, the symbol |a|s will denote the corresponding
element in L(Z). We recall that the join, meet and complement in L (")
are defined by the equalities

(1) ldsrvifly =lauplyr, ldsnlflyr =lanplyy, —las=|—alsr,

and
2) lals < |Bls if and only if @ —» § is a theorem in 7,
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where < is the Boolean partial ordering in L(Z7). We recall also that, for
every formula a(z),

(3) lUea(Olr = Urezla@ls,  [Neally = Neerla(n)ls,

where «(é) and a(r) denote respectively the result of substitution of
a bound individual variable & and a term v for the free individual variable
2 in a(w), respectively.

By a Q-filter in L(7") we shall understand any prime filter f in L(7)
such that for every formula o(x) .

[Usa(&)|ef implies that |a(v)ef for a term .

The symbol £(J) will denote the set of all Q-filters in L(J). For

every formula a, let ||lalls be the seb
lells = {fe2(7): |alref}.

By definition, for every formula « and every fe Zs
(4) fellals if and only if |alsef.

(i) The mapping Hg defined by the formule

Hy(lal7) = llolls

s a Boolean homomorphism from L(J) into the Boolean algebra of ol

subsets of L(T), 4. e.,

lev Blls = lldls v Iflrs  lla~ Bl = llels ~ By, —llalls = [|—alis.

The homomorphism Hg preserves also all the infinite joins and meets
(3) corresponding to logical quantifiers, 4. e. for every formula a(x)

(5) IUea(Ollr = Userlla(dlls, 1N ealdlly = Neerlal@)ls,

where .o and (..o denote respectively the set-theoretical wniom and
™ intersection.
For the proof, cf. Sikorski [6], theorem 24.6.
We assume the following notation:

L(7) = {lalr: acF},
Ly(7) = {llelz: aeF is an open formula}.

By (i), Hs it & homomorphism from L(J) onto L(7).

The set £(J) of all Q-filters in L () will always be considered as
& topological space, the class Ly(7) being assumed as the basis debermin-
ing the topology in (7). By definition, every set Syely(J7) is clopen,
i, e. both open and closed. A set §C .£(7) is open (cloged) if and only
if it is the union (intersection) of some sets SoeLy(T)
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It the set s of axioms for J is empty, then the theory J is the pre-
dicate caleculus &. In that case we shall write simply %, L, L, H, |a|,
llell instead of £, Ly, Ly, He, lals, |alls.

The following theorem is another formulation of Godel’s comple-
teness theorem for the predicate caleulus & (see Rasiowa and Sikorski [2]):

(ii). The mapping H is an isomorphism from L onto L.

Rieger [3, 4] has proved that

(iii) The topological space £ is compact and totally disconmected.

Moreover, % is homeomorphic with a Cantor discontinuum, viz.
with the product of m replicas of a two-element Hausdorff space where
m is the cardinal o1 the set of all open formulas in &. However, this fact
will not play any essential part in our investigations.

If 7 is a theory based on the piedicate caleulus &, then s will de-
nobe the class of all sets |la| C % where a is a theorem in . It is easy
to verify that

(iv) Vs is a filter in L such that, for every formula o(z),
(6) if lla(@)le Vs, then |Ma(&)le Vs

More precisely, Vo is the smallest filter having property (6) and ocon-
taining all ||d|] where a is in the set £ of axioms of 7.

(v) L(7) is isomorphic to L|Vs, the isomorphism being defined by
the formula

T (Jals) = lal/7s-

In the last equality, [of/Vs denotes the element in L/ps, which is
determined by the element |af| eL.

For every formula a, the symbol o will denote the closure of a, i. e.
the formula obtained from a by binding all free individual variables in
a by universal quantifiers. .

Let o' (7) denote the intersection of all sets ||la|eFs. By definition
and (iv),

(vi) AH°(F) is the imtersection of oll sets |[all, where a is any formula in
the set o7 of axioms of 7. .

(vii) For every Q-filter f in (") there exists exactly one point p e A (T
such that

(7) f = {lalz: pellafl}.

Conversely, for every pe A (7)) formula (7) defines a Q-filter in & (7).

Viz., for a given filter fe £5, the Q-filter pe ¥ composed of all |q|
such that |a|s f satisfies (7). This proves the first part of (vii). The second
part follows immediately from (7).
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The set o 5 will always be considered as a topological space with the
topology induced by the topology in 2.
Let

K(T) = {la| ~ #(T): ael},
Ky(T) = {|la]| ~ #(T): ael is an open formula}.

By definition, the elass K,(7) is a basis for the topology in (7).
The clagses K(7) and K,(Z) are Boolean algebras of subsets of (7).
Theorem (vil) defines a natural one-fo-one mapping

(8) fr(p) = §
from A (J) onto Z(7).

(viii) The mapping (8) is & homeomorphism of Ay onto Ly . The map-
ping which, to every |la|ls <L(T") assigns the set f~'(||alls) = |lal| ~ X (T) e K(T)
is an isomorphism from L(JT) onto K(Z"). This isomorphism maps L,(7)
onto Ky(T).

' The proof is by an easy verification.

Since the space % is totally disconnected (see (iii)), so is ity subspace
A (T). Congequently, by the first part of (viii),

(ix) The space L(T") is totally discomnected.

Theorem (ix) can also be easily proved directly.

By definition of 4 (7), for every formula o

it |la|e Vs, then o (I)C |al.
(x) The mapping Hy (see (1)) 48 an isomorphism from L(T7) onto
L(7) if and only if, for every formula a,
(9) AT )YC |lof| implies |lafje Vs .
Condition (9) can also be formmulated in the following equivalent
form.:
(9') A (T) C o)l if-and only if |lalle Vs

By (v) and the second part of (viii), the mapping Hy is an isomor-
phism if and only if the homomorphism Hjy defined by the equality

Hy (llal /Vs) = llall ~ o# ()

is an isomorphisym from L/Vs onto K(7). Hy iz an isomorphism if and
only if condition (9) holds. The proof of the last statement is similar to
the proof of theorem 28.1 in Sikorski [6].

A theory 7 is said to be open provided it has a set o of axioms
which are open formulas.

(aed)
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(xi) If 7 is an open theory, then A (T) is o closed subset of &. If T
is open and consistent, then A (F) is closed and non-empty.

The first part follows immediately from (vi) since if « is an open
formula, then [[af is closed by (5) as the intersection of clopen sets. The

~ second part of (xi) also follows from (vi) sinee if 7 iy consistent, then no

conjunetion a; ~ ... ~ a,, Where o,...,a, are open axioms in the set =7,
is refutable, i. e.

A al #0.

Thus the class of closed sets [, where aesZ, has the finite inter-
section property. By (iii), the intersection 2 (Z) of all those sets is not
empty.

(xii) Let I be am open theory such that the sets of all terms and of all
free individual variables have the same power. If a, is a formula trrefutable
i I, then there ewists a point peA (F) such that pelay|.

Without any restrietion we can assume that o, is in the normal pre-
nex form

loall A von A llaall = flay ~ -

AU .. NUB(®, Brynay -5 By Ma)s

B0y Ek Mk

where @, §;, v, are abbreviations:

T = (D, .0y B),
gi=(£il"'-7f1’an,-)7 'ﬂi=(7li17-'-y77in,;) for i=1,...,k;
M, (M are abbreviations for
&
i1 simy i1 nin;

respectively, f(x,...) does not contain any quantifier, and , ..., 2,
are all free individual variables in «,.

Let &’ be the predicate calculus obtained from % by adding some
new individual constants

Cyanny O
and some (m,-...-+ m;)-argument functors
(27} (j“—‘l,...,’ﬂi,’b‘=1,...,k)-
Let y, be the formula in &’
Ble, @1y @y(@s), -y Xpy @iy, ...
where the following abbreviations are used:

¢ = (¢,

vy Op)y By = (Dyg, ..., Timg)  (2=1,...
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where all z; ave distinet from one another, and distinet from @, ..., @,;
Pil®yy ey By) = ((p‘fl(‘mld oy B)y ey (P'iﬂw[(w17 crey wi)),
where
(p'if(mlﬂ s m’i) = ‘)%'7‘(9”111 (] mlml, sy Bigy eeey wﬂlmi)

for j=1,....,mand i =1,...,k

Let 77 be the open theory based on &’ whose set of axioms is com-
posed of the formula y, and all axioms of 7. By a known theorem, the
hypothesis that a, is irrefutable in Z implies that the open theory 7
is consistent. By (xi), there exists a Q-filter p'e 4" (7).

Tt is easy to see that the set ' of all terms in 9 has the same power
as the set V of all individual variables. Thus there exists a one-to-one
mapping g from V onto I'. Moreover, we may assume that

(10) gla) =¢ for j=1,...,m.

If o is a formula in ¥ and ¥y, ..., ¥, are all free individual variables
appearing in «, let «' denote the formula

a(g(yx), N g(yn))

yl! "“7:’/71-

i. e. the result of the indicated substitution in a. Clearly «' is a formula
in &

It is easy to see that the mapping which assigns |a'|s to |a| is a ho-
momorphism from L into L($’). It follows from the hypothesis that g
maps V onto 7" and that this mapping preserves algo infinite joins and
meets corresponding to logical quantifiers. Hence it follows that the set

p = {lo|:aeF and |o'|@ed’}
is a Q-filter in & = L (&), i.e. pe&. By definition,
Pella if and only if b’ ella’||s,

where |[a’||_9;, = {{eZ(F):|c | ef}, according to the definition on
p. 172.

For every closed formula « in &, the formula o coincides with a.
Taking as a the clogure of any axiom in 7, we infer that pe# () since
p e (T).

Since p’eljy|le, where y is any substitution of y,, we have (see (5))

' ellaglls
where ¢, is the formula

ﬂU ﬂU 5(07217"117 "'7Ek7nk)'

Em Er Nk
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Hence, by (10),
Pellagll.

This completes the proof of (xii). .

(xiil) If T is an open theory such that ¥ = T, then eondition (9) holds.

Suppose that « is a formula such that [a||¢Fs. Then the negation
ay of o is irrefutable. By (xii) there exists a point pe# (J7) such that
Pellaglly 1. e. p¢llal. Thus A (7)) C ||e|. This proves that (9) holds.

(xiv) Suppose V = T. In order that the theory T be open it is necessary
and sufficient that o () be a closed subset of & and that condition (9)
hold.

The necessity (under the additional hypothesis that ¥ = T') follows
from (xi) and (xiii).

Suppose that # () is closed and that (9) holds. Let «7' be the set of -
all open formulas such that o (7) C |af, and let I’ be the open theory
with «7" as the set of axioms. By definition, o#"(J) C # (7). On the other
hand, if p¢o#(7), there exists an open formula B such that pej|f|| and
A (7) is disjoint from ||| (this follows from the fact that o (7) is closed
and from the fact that sets [|8]|, where 8 is an open formula, form a basis
for #). The negation a of 8 has the properties: o' (7)) C |||, and p¢|laf|.
This implies that p¢ £ (). Consequently

(11) HNT') = A(T).

Since the theory is open, it satisfies also condition (9) (i.e. (9')) by
the part of (xiii) which has just been proved. In other words, by (11),

a formula o is a theorem in ' if and only if #°(7) C ||al.

Since 7 satisfies condition (9),

a formula « is a theorem in J if and only if #(7)C |«|.

This proves that J and ' have the same gets of theorems, i.e.
" is identical with the open theory .'. Thus J is open.

(xv) Suppose that V =T. In order that the theory I be open it 1is
necessary and sufficient that the space £ (J) be compact and the homo-
morphism Hg be an isomorphism.

This immediately follows from (xiii) on account of (iii), (viii)
and (x).

§ 2. Let a be a formula in . Without any restriction of generality
we can suppose that o« is in the prenex form

UM - UM B(®os Bry iy oo iy i),

g EBm

(12)
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where f(x,, ...) is an open formula. We use here the same abbreviations

as in the proof of (xiii). In particular,
Ty = (Tory vy Don),

Zon are all free individual variables appearing in «, and

i=1,...,k

where %, ...
Ei= (&ixy-oos Eimg)y M= (Gins ooy biny)  fOT
In the sequel we shall use the notation
Ry = (igy -y Bing)
where z; are any free individual variables, and
Ty = (Tigg <o oy Timy)

where 1y are any terms (4 =1,..., k).
Denote by Z, the set composed of the formula o only. For

r=1,...,k let Z, be the set of all formulas
(13) un..u mﬁ(w:"'nwla---7"r:wr)gr+l7'ﬂr+1,--"Elu"lls)-
Erifrsr Br Mk
In particular, Z, is the set of all open formulas of the form.
(14) B2y, Tyy ®yyo-ny Try Lp)-

Let Z be the union of the sets Zy, Z4, ..., Z;.
By a Herbrand disjunction for a we shall understand any disjunction

(15) [ SR

v Oy

where a, ..., o; are distinet formulas in Z.
Let (15) be a Herbrand disjunction for a. Suppose that o is of the
form (13). Let «; be the formula

(16) Uun ... uUng@, v, ...,

Er nr Er Nk

Ty Lty Gey ey ooy Biey Mi) -

If o; is not identical with one of the formulas ay,...
..y 0z, then the disjunction
(17) apw ...

is said to be a direct derivative of (15). If of coincides with one of the for-
mulas o, ..., &_y, @1y ..., 07, then the disjunction

(18) Oy ene

is said to be a direct derivative of (15). Note that each direct derivative
of (16) is a Herbrand disjunction for a.

s O 1g Qg1

Ul O G e O

[N IRRVR: T RPN
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A formula 6 is said to be a derivative of a Herbrand disjunction (15)
for « if there exists a sequence 0y, ..., 6, of formulas such that §; is iden-
tical with (15), 8, is identical with &, and ¢&;,, is a direct derivative of
8 (j=1,...,¢—1). Then § is also a Herbrand disjunction for a.

A Herbrand disjunetion (15) for ¢ is said to be reducible if there
exists an integer j such that o; is of form (13) with » > 1, and

a) all the individual variable z,,...,a,,, are distinct from one
another,

b) all the individual variables are distinet from all the individual
variables x; where j =1,...,7n; and i=0,...,7—1, and are distinet
from all the individual variables appearing in all the formulas

Yooy Gty Gigny -0y 0y ADA tErms 7y, ..., T

(xvi) Suppose that y is a closed formulm, & is & reducible Herbrand
disjunction for a, and y — 8 is a tautology. Then there ewists a direct deri-
vative &' of § such that y — &' is also o tautology.

Suppose that & is of form (15) and that o; satisfies conditions a) and
b). It follows from a) and b) and from the rule of introduction of the
universal quantifiers that the following formula is a tautology:

12
Yo (0 U U G VO U G e 0

where o is the formula

NU N UNB@m,a,...

Nr41 Er..).l N4t Bk Mk

y Tr13 Lp_15 Ty Ny EH—]’ Nrp1yeeny gk: Ne)-

Since the implication «] — a, where af is defined by (16), is & tauto-
logy, the implication
y — 0,

where 4’ is the divect derivative (17) or (18) of 4, is also a tautology.

A Herbrand disjunction ¢ for a is said to be hereditarily reducible
if 8 and each of its derivatives are reducible or coincide with a.

(xvil) Suppose that y is a closed formula, 8 is a hereditarily reducible
Herbrand disjunction for a, and y — & is a tatuology. Then the implication
y = a s also a tautology.

By (xvi) we can define, by induection, a sequence (J,) of Herbrand
digjunetions for o such that &, is identical with 8, &, is a direct deri-
vative of 6, and y — ¢, is a tautology (¢ = 1,2,...). We can always
define §,,, provided J, is not identical with o. On the other hand, every
sequence (6,) such that 8,,; is a direct derivative of J, must be finite.
Therefore our inductive definition has to stop at an integer, say ¢,. Hence
it follows that &y, is identical with «. Thus y — « is a tautology.
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A Herbrand disjunction (15) for « is said to be proper provided. (15)
is hereditarily reducible and all the formulag a,..., @, are open (i e.
they are in Z,).

(xviil) If & is a proper Herbrand disjunction for o, then & — a is o tou-
tology, 8 denoting the closure of 6.

(xviii) follows immediately from (xvii) where  is the closed formula 6.

For any set A and an integer m, A" will denote the Cartesian pro-
duct 4 x ... X A m-times. By definition (see p. 178)

eV (G =0,1,...,k), =eI™ (i=1,...,k).
The letter &; (¥f) will denote the set of all mappings
fi from T™ x ... x I™ into V"i (into T™) (i =1,..., k).

By definition, &;C &}.

Let
(19) fie®: (G=1,...,k
be given functions. By a Herbrand (fi, ..., fi)-disjunction for "a we ghall
understand any disjunction of a finite number of formulas of the form

(20) ﬁ(wo, Ty F1(T0)y Tay FalTay Tady ooy Taey flay -

(xix) Let I be an open theory such that V = T. If u is & theorem
in T, then for given functions (19) there ewists a Herbrand (fy, ..., fr)-
disjunction which is o theorem in J .

Since « is a theorem in J, we have

AT C llall.

] "ln)) .

By (5) and the distributive laws for sets,

flal = U N U (Y 1B (®ay 71y 01y +- ey Try o)
X T gy 12 g 1M gy e T
= N - N U o U By vay Ji(m1), Tay falTay )y
fltlﬂf ]Iﬁsdi;: 'rleTml Tk

oy Ty fr(Ts oe ey "lc))“'
Hence it follows that, for the funetions f,,..., fr mentioned in (xix),
(21) (7). U U ||ﬁ($07"1af1('c:)a'faafa(."’i;"'a)’---

o e 7™ T o™ .
! ) ceey T ’Ile("cl:-""‘k))“-

Since () is a closed subset of the compact space .2 (see (xi)) and all
the sets [|f(a,, ...)|| are clopen, #'(7) is contained in a finite union of
sets on the right side of inclusion (21). In other words, there exists a Her-
brand (fy, ..., fi)-disjunction & such that o#°(77) C||8]. This implies by
(xiii) that ¢ is -a theorem in 7,
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(xx) If the sets V of all free individual variables and T of all terms
have the same cardinal, then there exists fumctions (19) such that every Her-
brand (fiy ..., fu)-disjunction for a is proper.

Let m be the common cardinal of T and V. Let Vi (p =1, ..., %35
i=1,...,%) be disjoint subsets of the set V—{Zo, ..., %m,} each of
which has the cardinal m. Let << be a well-ordering relation in ¥ such
that the ordinal of (V, <) is the smallest ordinal of the power m.
By transfinite induction we define a one-to-one mapping f;, from
T™Mx ... xT™ into Vy, such that, for all =, ..., 7;, the free individual
variable fi;(%y,...,%;) is greater (in the ordering <) than all free in-
dividual variables appearing in =, ..., 7.

The mappings

filvy, ooy m) = (fil(""l) oo
(where 4 =1,...,%) have the required property. In fact, f; maps

I™x ... xT™ into V™. Since every derivative of a Herbrand (fi, ..., fr)-
disjunction is a disjunction

7Ti)) ""fin."(‘cl’ ceer Ti))

(22) Ay v e gy

where each of the formulas ay,..., ¢; is of the form

(23) U n..u ﬂﬁ(mo, LI G TR Y AT SN

Errimrrr Bk Mk
Er-;.u Nrily =oey Er» ”]k):

in order to complete the proof it suffices to show that every disjunction
(22) of formulas of form (23) is reducible (except the case where (22) is
composed only of the formula o). Consider the set of all free individual
variables which appear in z; in formulas (23) in disjunction (22). Take
the greatest element in this set, say ». From all the formulas of (23) (in
disjunetion (22)) which contain # in some terms r;, take one, with a pos-
sibly great 7. Let o; be this formula and let (23) be the representation. of
a;. Let fo(vr, .oy o) = (@B1s ooy Ben,)y 1€ By = frp(Tyy ..., 7). It fol-
lows directly from the definition of f;, that the formula ¢; and the variab-
les @1, ..., %, satisfy conditions a) and b) on p.179.

(xxi) Let J be an open theory. If a is a theorem in T, then a proper
Herbrand disjunction for a is also a theorem im 7.

Consider first the case where the set of all terms and the set of all
individual variables are countable. Let (19) be some funections such that
every Herbrand (fy, ..., fu)-disjunction is proper (see (xx)). Apply theo-
rem (xix) to these fumnctions fi, ..., fx. By (xix) there exists a Herbrand
(f1y .-+, fx)-disjunction which is a theorem in 7. This disjunction has all
the required properties,
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Suppose now that the cardinalsy of V and 7' are arbitrary. If « is
a theorem in 7, there exists an open subthcory 77, of 7 such that « is
a theorem in 7 ,, and the sets of all terms and individual variables in
T, are countable. By the part of (xxi) which has just been proved, there
exists a proper Herbrand disjunction é for « such that 6 is a theorem in
T ,. Since I, is a subtheory of 7, 6 is also a theorem in 7.

(xxii). Let 7 be an open theory. A formule o i8 a theorem in I if and
only if a proper Herbrand disjunction for a is a theorem in 7.

This follows immediately from (xviii) and (xxi). .

(xxiii). In order that & theory T be open it is necessary omd suffiotent
that, for every formula o (in the prenew form (12)), a be a theorem in 7 if
and only if & proper Herbrand disjunction for a is o theorem in 7.

The necessity follows from (xxii). To prove the sufficiency let us
agsociate with every theorem o in & a proper Herbrand disjunction 4,
which is also a theorem in-7". By (xviii) the implication §, - a is a tauto-
logy. This proves that the set of all open formulas 8, is a set of axioms
for . Thus 7 is open.
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A KIND OF CATEGORICITY
BY

A. GRZEGORCZYK (WARSAW)

The notion of categoricity has been introduced in order to charac-
terize theories which intentionally have only one model. However, the
most elaborated formalization of this notion (eategoricity in power in-
troduced by Xos [2] and Vaught [4]) does not correspond to these in-
tuitions. The arithmetic of natural numbers intentionally related to one
model is not categoriecal in any power. The same can be said about the
complete theory of real numbers. The aim of this paper is to define a no-
tion of categoricity according to which the classical elementary theories
of arithmetics and geometry (and not too many others) would be cate-
gorical.

1. DEFINITIONS

Let Cn(X) be the notion of consequence based on the first order
functional calculus. Let {4,} and {G,} be two sequences of constants
indexed by the formulas. We define the Skolem forms of a set X (skl(X))
of formulas in the normal prenex form.

If ¢ is a formula in the normal prenex form, then

Y(Ag) if @ has the shape \/ 2,¥(w,),

Nuys vooy 5, P (G a(@rys ..., @) if D has the shape
/\wkl, ceey By, V @, ¥ (20)

skl (@) =

@ in other cases.

§kl(®) = sk1(P) for such n that skl™(P) = skl™+(d),
= the set of skl(®) for PeX.
Let X be a set of sentences (formulas without free variables) with

extralogical constants: O,,..., 0, (individual constants), P,,..., P,
(predicates) and F,, ..., I, (function-constants).

sk1(.X)
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