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ON THE DEFINITION OF ALGEBRAIC OPERATIONS
IN FINITARY ALGEBRAS

BY
J. SCHMIDT (KOLN)

1. Let A be a (empty or non-empty (*)) set. We deal with finitary (2)
operations f in A, i. e. with one-valued mappings from some A* into 4,
A* being the set of all k-tuples (wy,...,#;) of elements x,cA4. The
natural number %k is called the type of the operation (3). Like many
authors (4), we allow % to assume the value 0; as there is one and
only one O-tuple (namely the empty set), the operations of type 0,
which may be called constants (°), are in a natural one-one correspon-
dence with the elements of 4.

There are two methods of compounding such finitary operations in
A to new omes. A very well-known method is that one which might be
called direct composition or composition on equal arguments. Let g be an
operation of type % and let hy, ..., h; be operations of type I; then by

) Gy ) @15 s @) = (@ ey @), ey (@, - @)

we get an operation g'(hy,..., k) () of type I in A4; thus, ¢ may be
congidered as an operation of type k in the set

004 — 4«H

(*) Some authors prefer to exclude the empty set ag a fundamental set of a ge-
neral algebra. This will unavoidably lead to difficulties in the theory of subalgebras
of algebraic systems: in many cases, one is unavoidably foreed to consider the empty
subset as a subalgebra.

(?) Birkhoff [2], p. 312; [3], p. vii.

() Birkhoff [1], p. 439, index of the operation.

(4) Cf. e.g. Birkhoff [2], p.311.

(%) These constants occur very often in algebra and its applications.

(%) Most frequent notation: g(hy, ..., bg). Marczewski [6], p. 47, introduces
the symbol § to make a distinction between the operation g in 4 and the operation
induced by ¢ in O®(4); he allows the sign ~ to be omitted if no confusion can
arise.
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of all operations of type I in A. By identifying operations of type 0 and
elements of the fundamental set, definition (1) will get the form

F@yy.ym) =g

in the case & = 0. (The reader is asked to discuss the special case & = 0
for himself at all forthcoming similar occasions.)

Another method not so frequently used is that one which might
be called tensorial composition or composition on different arguments.
Let g be an operation of type & in A and let Ay, ..., by be operations of
the (not necessarily equal) types I,,..., I; respectively; then by

(2) (g ooy Ba)(@ugs oeesy By ooy Baay ooy Bagy)

= g(hl (115 0oy .mlll)a ooy Pty - -’l"klk)) ("),
we get an operation g*(hy,..., k) of type I =1;-4-...4+1 in 4; thus,

¢ may be regarded as an operation of type %k in the set

0(4) =

ICe

o (4)

T

o

of all finitary operations in A4.
There are some especially important operations of type I = 1: the
trivial or identity operations (8)

. !
(3) 61 (®1y .oy @) =,

(A=1,...,1); let EY be the set of these operations. Then EY consists
of the identical mapping

(4) e =é

of A into itself only. From this simplesﬁ operation, the set

o0
E=\JE®

1wl

of all identity operations can be derived by means of a further method
of generating new operations, namely the method of general transformation
of variables.

() Cf. Sierpinski [8], p. 169; Birkhof{ [3], p. viii, (3).
(*) Marczewski [6], p.46; in [5], p.732, as in MeKinsey-Tarski [7], p. 160,
Birkhoff [2], p. 821: identity functions.
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Let I be any operation of type % in A4, ! a natural number and o
a one-valued mapping from the set {1, 2, ..., k} into the set {1, 2, ..., [} (%),
then by

(8) Tigp (@yy veey @) = B{@oys -« s Bagy) ()5

we get an operation %,; of type I in A. One might say that ¢ induces
a mapping from 0™ (4) into OY(A4). There are three important special
cases (11) of this general transformation of variables:

1. ¢ injective (one-one), but not projective (onto), therefore neces-
sarily 7 > k: then the transition from % to k,; (eventually for isotone
o only) is called introduction of new variables;

2. o bijective, i.e. injective and projective, therefore necessarily
U = k: permutation of variables;

3. o projective, but not injective, therefore necessarily I < k: then
the transition from % to h,; (eventually for isotone o only) is called iden-
tification of variables.

Now we have the easy

THEOREM 1. The sct E of all identity operations is the smallest set
H' CO(A) such that

ceH',
if heH', then h,yeH' (?).
The most simple proof is obtained at once by means of the equation
(6) (€)sr = €uge
and its special case k = x =1,
(M) Cd=eu
where o(1) = A

. 2. Let (f;)iz be a family of operations of types k; in 4 ; then we call
(4,(f)ia) an algebra of type (k;)iz (**), the operations f; being called the
primitive or fundamental operations () of this algebra. Let F be the set

(*) In the case k = 0, o is the empty mapping, ! an arbitrary natural number
> 0, whereas in the case k > 1 one has necessarily 1 > 1.

(1) Cf. Marczewski [6], § 1.2, (viii) ((iv)— (vii) as special cases).

(1) Cf. Marczewski [4], § 4; [51, § 1, (ii)— (iv); [6], § 1.2, (iv), (V). Permutation
and identification of variables are also used by Sierpifski [8].

(1) Here it will be sufficient to regard strictly isotone transformations o (in-
troduction of new variables) only.

(*%) Birkhoff [1], p. 439: algebra of species (Ki)ier.

(1) Marczewski [4]: primitive; [5], [6]: fundamental.
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of these operations. The subject of this note is to give different equivalent

definitions of the so-called algebraic operations derived from F by the .

methods desceribed above. We start with
THEOREM 2. The smallest set H' C O(4) such that

IleeH’,
if feF and hyy ..., byeH', then f°(hyy ..., by) el
is equal to the smallest set H' C O(A) such that
IIIFu{e}gH’,
if gy hyy ooy e, then ¢ (hyy ..oy by) e H' (19).

Proof. Let Hy, Hy; be the smallest H' having the properties I or
IT respectively. Due to the implication IT - X, we have II C IIy. We
shall show that H' = H; has properties II. First, because of

(8) f':foo(e;-":e)

k times

(k = type of f), any fundamental operation f belongs to H;: H; has the
first of the two properties I1. We prove the second by “induction on ¢”,
namely by the inductive method connected with the definition of H (*°).
Because of

® : ¢°(h) = b,

the identity operation ¢ is one of these ¢’s. Assume ¢y, ..., g, (of types
1, ..., Iy respectively) to be such ¢'s; we show g = f*(hy, ..., k), where
feF (of type k), also to be such g. For this purpose, let hyy,y ..., by, ooy
hiyy ooy Iy e’ = Hy. By inductive assumption, h, = g3 (b, ..., hy)
(» =1,...,%) belongs to H;; therefore

(10) g% (haxy oy hllly ooy By ony Tayy,) =y ooy b))

also belongs to H.
We write Hy = Hy; = H, and call the operations heH, the algebraic
operations (of algebra (4, (f),r)) in the narrower sense. The definition

(**) For the gake of simplicity conditions of this kind will he understood to hold
as far ag the conclusion males sense; thus, f is tacitly understood to be of type & here.

(1) There seems to be no logical or practical need of introducing numbers of
“rank”, “degree”, or “order” (as has been done by several authors, e. g. Birkhoff
[1], p.489; [2], p.812; [3], p. viii; MeKingey-Tarski [7], p. 162; Marczewski [6],
p. 47 £) in order to reduce this “algebraic” induction to ordinary complete induction
on the rank numbers (besides, complete induction on natural numbers is a special
cage of general “algebraic” induction ouly).

" iom
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H, = H; might be interpreted: I, is the subalgebra generated by E®
of algebra (0(4), (f¥)is) (of the same type (%;)is as the original algebra
(4, (fi)iz))- In particular, all fundamental operations f belong to H,.
One notices that

(1) if the types of all fundamental operations are >0, then so are
all heHy; )

(ii) if the types of all fundamental operations are > 1, then so are
the heH,, h + ¢;

(iii) in general, any operation heH,, h = ¢, may be represented in
the form A

b=y, .5 i) ~

such that feF, hy, ..., hpeH,.

For H', congisting of all operations heO(4) of type >0, or of e
and all operations heO(4) of type >1, or of ¢ and all operations
F(hy,y ooy by) such that feF, hy, ..., bz <H, respectively, has properties I
of the theorem. Therefore, if all fundamental operations are of type > 1,
then

(i) there is no heH, of type 0;

(ii) there is precisely one heH, of type 1, namely e;

(iii) the operations heH, of types I > 2 are just those of the form

b= f*(hyy «eey P

such that feF, hy, ..., bpeH,, of types I, ..., < L.

Thus, in this special case we are able to prove theorems on algebraic
operations in the narrower sense by ordinary induction on their type
numbers (*7). For instance, let there be one primitive operation f only,
the type of f being 2. Then in general, there are 2 algebraic operations
in the narrower sense of type 3, namely

I2UFy e): (@1 @ay @) —*f(f(mu @) 35'3);
(e, 1) (81 @ay @3) “’f(muf(wu m3))

In a similar manner, the operations heH{Y, i. e. the heH, of type I,
correspond (possibly one-one) roughly speaking to the "different ways
of bracketing the “product” of ! different arguments. Per definitionem,
(4,f) is a semigroup if HY) consists of one element only. The general
assoctative low might be given as an application of the above notions
in the following manner: in a semigroup, for any I >1, H{® consists
of precisely omne element; the proof will be obtained by induction on-
the type 1.

(**) This induction on the type numbers being possible also in other cases.
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3. In general algebra, one makes frequent use of a wider class of
operatiens, as described in

THEOREM 3. The following sets of operations are pqaml
the smallest set H' C O(A) suoch thot

lE_C_H’,
ml B

if feF and hy, ..., hee H'y then f(hy, ..., by)eH';

the smallest set II' C O(A) suoh that
{F vECH,

i gy Pogy ey el then o (hy,y ..., hy) e

the smatlest set H' C O(A) such that

65H',
Viif feF and hy, ...,
if heH',

hyeH', then f'(hy, ...
then hgyeH';

y ) eI’

the smallest set H' C O(A4) such thal
Fof{epCI,
VILif g, Ry, ..oy heeH, then g'(hy, ...,
if hell', then hy eH';

By e,

the smallest set H' C O(A) such that

e,
VILVif feF and hy, ..., hyeH', then f(hy, ..., hy)ell,
if WeH', then hy,<H';

the smallest set H' C O(A) such that

Fol{eCH,
VIIL{if g, hy, ..., heell’,
if heHl,

then g™ (hyy ...,
then b, e’

hy) eI,

Proof. First we show, for any H’ Co(4),
(*) IV & VI «» VIIL -» V « VII — III,

icm
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The implication VIII — VII (as well as VI -V, IV - III) is trivial.
V - IIT and VI - IV are immediate consequences of theorem 1.1V — VI
is a consequence of the equation

(11) hey = hl(ei(x); ey 3¢lr(k))
(k = type of ). The equivalences V « VII and VI « VIIT will be imme-
diate consequences of the following

LemmA, Let G, H' be sels of operations, H' being closed with respect

to the general tramsformation of variables. Then the following closure pro-
perties are equivalent:

(8) if geG and hq, ..., hyeH', then gt(hy, ..., ) eH';

(b) if geG and hy, ..., b eH', then g=°(hy, ..., hy)eH'.

Proof of the lemma. (a) — (b): Let ge G (of type k), and let
iy .oy heeH' (of types 1y,...,%). By hypothesis, (k). <H’, where

l_ll+ A+ and o,(4) _z,+ +l,,_1+z (% =1,...,
therefore,

(12) g (s ooy ) = g{(Bdoys <5
belongs to H' too.

(b) — (a): Let ge G (of type k) and leb hy, ..., hyeH' (of equal type ).
By hypothesis, 9°(hy, ..., Iy} belongs to H'; therefore,
(13) Gty ooy i) = (g% (s oo Ba)os
where o((x—1):1+24) =24 (x=1,...,k; A =1,...,1) belongs to H' too.

Thus the lemma is proved, and we go on with the

Proof of theorem 3. We obtain V « VII and VI « VIII by
setting G =F and G = H' respectively, completing the proof of ().
Now, let H, be the smallest set H' C O(4) such that the properties o
hold (¢ = III, IV, V, VI, VII, VIII). From (x) we get

Hyy; CHy = Hyy C Hyy = Hyy = Hypy-

‘We shall have finished when we show that H’ = H;; has proper-
ties IV. Because of

{14) =1, d)

(k = type of j), any fundamental operation f belongs to Hyy: Hiy has
the first of the two properties IV. We prove the second by “induction
on ¢g”, namely by the inductive method connected with the definition
of Hyyy. Because of

(15) () (Byy -

k3 a=1,...,5);

(h'k.)ok,l)

)hk)zhxb
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(I = common type of the h,’s), any identity operation ¢ is one of those
g’s. Assume gy, ..., 0. (of type 1) to Dbe sueh ¢’s; we thow g=
= fhy, ..., bz), where feF (of type k), to be such g too. For this
purpose, let hy,...,H (of type m) belong to H' = H;;. By inductive
assumption, hy = g7 (hy,..., k) (¢ = 1,..., %) belongs to Hyy; therefore,

(16) G (hyy vovy ) = f" (BT, ..., BE)

belongs to Hyy; too, completing the proof of theorem 3.

We write Hyy = Hyy = Hy = Hyp = Hyyp = Hyyp = H and  call
the operations heH the algebraic operations (**) (of algebra (A (fi)w).
The definition H = Hyy; might be interpreted: %, the set of all algebraic
operations of typel, is tho subalgebra generated by EY of algebra
(0D(A4), (fi)ia) () (of the same type (k)i as the orviginal algebra
(4, (fi)ier)). Because of VIL - I (VIII — II), all algebraic operations in
the narrower sense, especially all fundamental operations, belong to H.
More precisely: one gets H from H, by closing I, with respect to the
general transformation of variables. That this can be done in the most
simple fashion, will be gshown in

TrmorEM 4. The algebraic operations (in the general sense) are procisely
those operations which can be oblained from suitable algebraic operations
in the narrower sense h by suitable transformations of variables:

H={h;|heH 0,1}

Proof. Owing to H, C H and to the definition of H, we have gy e H
for any heH,. We show that the set of operations oy, where heH,, has
properties ITT. Tt has the first property: for, because of ¢ < and accord-
ing to (7), any identity operation e} is such an by It hag the second pro-
perty: for, if feF (of type &) and if Ay, ..., hyell, (of types Iy, ..., k),

(*%) Marczewski [5], [6]; cf. also MeKingey-Tarski [7], p. 161, whoro in the spe-
cial case of closure algebras these operations are called closure-algebraic functions.
In these papers, the definition H = Iy has been used. Marczowslki [4] egnentially
uses either H = Hyy or H = Hyryyy, leaving open the question in which sense “guper-
position” should be understood theve. This coincidoes with tho fact that, in general,
the term “superposition” has been used in different meanings in literature; o. g. in
Sierpingki [8], “superposition” seems to include transformation of variables, whoroas
in Marezewski [4] it does not. The result of Sierpinski [8] might be stated as follows:
it F = O®(4), then, for any 13> 2 (even > 11), 00 (4) CH (in the caso 4 is infi-
nite, Sierpifski even shows O (d4) C H,). Whether the “compound” operations of
Birkhotf [2], p. 312 (cf. also p. 321, (11)), are our algebraic operations in the wider
or in the narrower sense (or even something between the two) seems not to be per-
feetly clear.

(**) McKinsey-Tarski, loe, cit.

icm
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then for given transformations o, (x =1, ..., %) and for a given natural
number m, every (h,),m, (. =1,...,k) is such an h,; but because
of fw(hlf coey ) eHy,

(17) fm((hl)al,m; ey (hk)ak,m) = (fw(hls ey hk))a,m’

where o(l;+...+1_1+4) =0,4) (x=1,...,k; A=1,...
such an hgy.

, L), 18 also
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