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HEREDITY OF THE GENERALIZED THEOREM
ON THREE CONTINUA

BY
R. KAPALA axp A. LELEK (WROCLAW)

The theorem proved as a “théoréme sur trois continus” by C. Kura-
towski (1929) has subsequently been studied by E. Cech (1931), S. Eilen-
berg (1936), R. H. Bing (1946) and C. Kuratowski (1949).

Let us denote by F* the Euclidean plane and by §* the 2-dimensional
sphere.

‘We say that the subset A of the space X separates the points p and ¢
in X if the set X —A is not connected between p and g, i. e., there exists
a decomposition X—4 = MUN such that peM, ge¥ and HA~N
=0=Mn N (ct. [6], p. 89). ’

We say that the subset 4 of the space X cuts X between the points p
and g of X if p, geX—A and, for every connected closed set 0CX (Y
such that p, geC, we have 0 ~ 4 # 0 (cf. [6], p. 129).

Evidently, if A separates p and ¢ in X, then A cuts X between p
and ¢, but not inversely.

The theorem originally proved by Kuratowski [4] follows:

TarorEM 1 (Kuratowski). If Cy, Cs, Os are connecied closed subsets
of the plane B such that Oy ~ Cz ~ Cy 7 0 and no set C; v C; ouis F bet-
ween the poinis D, qeB (i,j =1,2,8; i #]), then the set 0y v Oy~ Oy
does not cut F* between p and q.

This theorem hags later been generalized by Cech [2] and Eilenberg [3]
as follows:

TrmorEM 2 (Cech-Eilenberg). If Oy, Ca, Cs are conveoted subsels
of the sphere 8% such that G, ~ O3~ O, 5= 0 and no set 0 C; outs 8 between

(1) The connected closed sets are sometimes called continua, whence the name
of Kuratowski’s Theorem is derived. But we do not use here the term “continua”,
reserving it for comnected compact sets, according to the terminology noted in the
paper [6].
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the points p, eS8 (4,5 =1,2,8; i £ 3), then the set Civ Oy Cy does
not cut S* between p and q.

The question of Theorem 2 being in connection with the topological
characterization of the sphere §* has recently been raised by B. Knaster.
In view of our Theorem 6, the validity of Theorem 2 at any rate is not
sufficient condition for a space to be topologically §*. Namely, Theorem 2
constitutes a hereditary property of the space, for some class of spaces
(see p. T7). .

It may easily be proved by induction that Theorem 2, as well as
Theorem 1, also holds for an arbitrary finite number of sets Ciy oy Oy
instead of sets Oy, €y, 05. Theorem 1 in that form has been generalized,
in another direction, by Bing [1] as follows:

TaroreMm 3 (Bing). If Oy, ..., 0, are connected subsels of the plane E*
such that Oy~ ...~ Oy £ 0, all but at most two of seis Cy, <oy Oy are bounded
and no set Oy Oy outs B between the points p,qeB (i,j =1,...,n;
@ 3£ §), then the set Oy v ... w O, does not separate p and q in B, If, moreover,
all sets Oy, ..., C, are bounded, then the set Oy ... C, does mot out E
between p and q. '

Remark that Bing’s proof of Theorem 3 can also be used, with a few
inesgential changes, as a short proof that Theorem 1 implies Theorem 2.

Theorem 2 is a particular case (for # = 3) of the following theorem
proved by Kuratowski [5] (all indices being reduced modn):

TerorEM 4 (Kuratowski). If A, ..., A, , are subsets of the sphere
8 (n=3) such that each set Oy =Aiav ... wdy s i connected,
Corn voonCy_y #0 and no set Ao oo Ay cuts §° between the poinis
PygeS (i=10, ...,n—1), then the set A,o...wAdn_, does not cut S
between p and q.

‘We shall show that Theorem 4 (thus also Theorem 1 and 2) may be
more strongly formulated in such a way that a junction from p to ¢
(i. e. a connected closed set eontaining p and q), which lies outside the
set 4yu... v 4, ,, may already be found in the union of n of junctions
from p to ¢, lying outside the sets A YV Ag L,y respectively,
and being given by the hypotheses.

More precisely, denote by 7,(X) the theorem obtained from Theo-
rem 4 by putting X instead of §* and establishing an integer n > 3, for
an arbitrary topological metrizable space X. Hence T3(8%) or T,(8%
is Theorem 2 or 4, respectively.

Our result is the following (all indices, except the index = of T,.(X),
being reduced mod n):

TeEOREM 5. Let X be a connected, locally connected and unicoherent
space such that T,(X) holds for an integer n > 3, and let Ay, ..., A,
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and Ky, ..., K, _, be subsets of X, satisfying the following five condiitons:

(i) C;=Ad;j v v A, , i a connected set for = 0,...,n—1,
(11) C(()ﬁ cee M Uy # 07

(i) K; 48 a connected closed set for i = 0,..., n—1,

(iv) K;C X_(*4i+1 Mo uAi—;—n-l) for i =0,...,n—1,

(V) pygeKon ... K, ;.
Then there exists a connected closed set
KC(Kygw...vuK, )—(dgu...vd, )

such that p, qgeK.

Proof. We assume that all indices in the sequel, except the index »
of T,,(X) and the indices being Greek letters, are redueced modn. According
to (iv), we have K;~ 4; = 0 for ¢ # j, whence

A, CX—(Eyyo.nov Koyl

for i = 0, ..., n—1. Denote by {Ri}, where ieA’, the collection of com-
ponents of the set
X_(K'H»I R VKi+n-1):

wivich .intersect “the set 4., and pnt

G =U Rﬁ
sedl
for 4 = 0, ..., n—1. Therefore
(1) 4, CEHCX— (K v .. .Y Kin)
for 4 = 0,..., n—1. Since the space X iz locally connected, it follows

from (iii) that

Fr(6) C U Fr(B) C Fr[X—(Kiyy v - v Kign1)]
(2) sedt
= F!'(K,;_H . U_Ki+n_1) CKi+1 Ve K.;+u_1
(see [6], p. 168-169), and that each R is an open set (see [6], p. 163).
Thus, each G; is an open sef, whence

(3) X—(Gyv ... v @, ;) is a closed set.
Moreover, the set
Dy =GV ..V Gins

is a union of conmected sets R:, each of whose intersects the set
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fO,:, :jmd O(J’iCDi, by (i) and (1). Therefore D; is, by (i), a connected set
or ¢=0,...,n—1 (see [6], p.82). Furthermore, it follows fr i
(ii) and (1) that ’ . " om0

0#C~n...n0,, CDy~...AD,_,

’

and @; ~ K; =0 for 7 . Hence
KiCX—-‘(G,;_’_I\J...UG“_"_I)

for i = 0, ..., n—1. Therefore, by (iii) and (v), no
. sum Gy .., :
cuts X between p and ¢ (4 7= 0,...,n—1), ’ " < Guan
Now applying T,(X) for 4; = @; and C; = Diyi=10,...,n—1, we
conclude that there exists a comnected closed set H such that ’

(4) PygeHC X—(Gyv... VG, y).
‘Write shortly
K,=Kyu..vE,_,

and denote by {R,}, where AcA, the collection of components of the set
X—K,. Let

Ay ={4: Aed, HAR, #0}, A, =A—4,

and consider the sets
U=Hv {JR,

Aed)
V=K, v R,
Ae.
We obviously have .

(8) UvV=X and UnV=HAnK,.

’ The set U is evidently connected (see [6], p.82) and the sets R,
are open a8 components of the set X —K, which, according to (iii), is
open (see [6], p.163). Therefore none of the sets 7

UR, UZR

AgAy Aedy

cont@s a limit point of the other. It follows (see [6], p. 83) that the
set V 1s’eonneeted and closed, because the space X is connected and the
set K, is conmected and closed, according to (iii) and (v)
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By (), X = U v V is thus a decomposition of the space into two
connected closed subsets. Since the space X is umicoherent (see [6],
p. 104), their common part

KE=UnV

is a connected closed set and p, geK, according to (v) and (4).
Now, let Aied,. Since we have

0#%#HARCR—(Ggv... v n1)s
by (4), and

Ry~ Fr(Gpu... v Gy 1) C Ry [Fr(@y) v ... v Fr(6, ;)]
CR,~n(Eyw...v K, ) =E,~K, =0,
by (2), we get (see [6], p. 80) the inclusion
RCX—(Gyu...wGyy).
It follows, according to (4), that
UCX—(Gou...™ Gr),

whence we infer, by (1) and (3), that

| ECUCX—(Gyv...v G ) CX—(4dyv...vdu,).

Finally, since H is a closed set and the space X is locally connected,
we have

UJ=Ho R vF(JR)CUv UFr(R)CUvFr(X—K,)
Aedy Aedy Aedy
= UvFr(K,)CUVE,,

according to (iii) (see [6], pp. 168-169). Hence we conclude, by (5), that
E=U0AVC(UVvE)ATV=(TnV)v(H,T)
=HAE)V(EANAVICE, =Kyv...v K, 1,
and Theorem 3 is thus proved.
Tt immediately implies

THEOREM 6. If # >3 is an integer, X is a connected, locally connected
and wnicoherent space such that T,(X) holds, and A C X, then T, (4) holds.
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ON COMPACTIFICATIONS OF SOME SUBSETS
OF EUCLIDEAN SPACES
BY
A. LELEK (WROCEAW)

Let 8, be the unit sphere, i. e. the sphere with centre 0 and radius 1
in the (n-+1)-dimensional Euclidean space E"*'. I say that a set X C 8§,
is densely connected in 8, if the set R~ X is connected for every connect-
ed open subset R of §,. Obviously, each set in S, (where n =0,1,...)
that is non-degenerate (i. e. containing at least two distinet points) and
densely connected in S, is denge in S,, but not inversely.

THEOREM. If a non-degenerate set X C S, is densely connected in S,
(n=0,1,...), Y 4s a compact metric space and h: X — Y is a homeo-
morphism such that Aim[Y—h(X)] <0, then n < dim Y.

Proof. Let p,geX and p # ¢. Since the sphere §, is -topologically
homogeneous, we can agsume that p, g are the poles py (north) and ps
(south) of S,, respectively. The set ¥ —h(X) being empty or 0-dimen-
sional, there exigts (see [3], p.164) an open neighbourhood @ of h(p)
in Y such that

1) Fr(G) Ch(X)
and h(g)e¥Y—@ (1). Then neither h(p) nor h(g) belongs to Fr(@) and

80 there are such sufficiently small open neighbourhoods P and @ of p
and g in §,, respectively, that

(2) Fr(@) C Y—[h(P~ X) uh(Q ~ X)].

The theorem being evidently true for » = 0, let us assume that
n >0 and denote by r the projection of 8,—{py,ps} onto the equator
8,_, of 8, along the meridians of S,. Since # is a continuous mapping

1) @ and Fr (6) denote the closure and the boundary of G in ¥, respectively.
The notation from [3] and [4] is used throughout in this proof.
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