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A fixed point theorem for the hyperspace of a snake-like
continuum

by
J. Segal (Seattle, Wash.)

Introduction. If X iy a metric continuum, ¢(X) denotes the space
of subcontinua of X with the finite topology. As a partial answer to
(uestion 186 (due to B. Knaster 4/29/52) of the New Scottish Book it
is shown that C(X) has fixed point property if X is a snake-like con-
tinuum. Thig is done by showing that 0(X) is a quasi-complex and since
C(X) is acyclic (see [9]) it has fixed point property by the Lefschetz
Fixed Point Theorem. -

DEFINITION 1. If G i a finite collection of open sets of X lot Q(G)
denote {K e O(X) | K ~ g = @ for each g ¢ @ and KC UG(g)}. The finite

€
topology on C(X) is the one generated by open sets gf the form 2(G.)
(See [8], pp. 183.) If U is a finite open covering of X define U* to be
{2(@) | 6 is a finite subset of T).
Levwa 1. If U is a finite open covering of X, then U* is a finite
open covering of CO(X).

- Proof. The elements of U* are open by the definition of the finite
topology, and sinece U is finite, so is U* If A ¢ 0(X), there is a subeol-
lection @ of U which irreducibly covers 4, so 4 € 2(6). Hence U* covers
o(X). o

Leuma 2. If Uis a findte collection of open sets, then mesh U* < mesh U.

Proof. Suppose that @ is a subcollection of U and K and L are
elements of 2(@). If » € K, there is an element g, of G containing #. Given
LAg,#O and diamg, < meshU, there is a point y of L such that
d(w, L) < mesh U. Hence for each » in K, d(w,L) < mesh ,U' Thereforg .
gince d'(K, L) = max (xﬁagd(w,L), rﬁ;‘xd(y, K)), &(E,L)< mesh U, and
hence diam @ < mesh U, O

LeMMA 3. If {U.} is a cofinal sequence of open eoverings of X, then {U*}
8 & cofinal sequence of open coverings of C(X).

Proof. A sequence {U.} of open coverings of a compact space X is
cofinal (in the set of all open coverings of X) if and only if mesh U,—0.
By Lemma 2 if mesh U,—0 then megh U%->0.
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DEerNItioN 2. A finite collection of open subsets of X » which covers X
such that U’ intersects U7 if and only if 4 = § y §—1, or 741 is called a chain
covering X. If each element of the chain is of diameter less than &, the
chain iy called an e-chain. A continuum is called snake-like if for
positive number & it can be covered by an e-chain.

In the remainder of this paper, X will be assumed to be snake-like
and {U.} will denote a sequence of ¢hains covering X such that mesh Ua—0
~and such that for each a, (1) the closure of each element of Uy lios in
an element of U. and each element of U, contains an clement of Uata
and (2) every two mou-adjacent elements of U, have disjoint  closures.
(It is shown in [1], p. 684, that every wnake-like continuum hasg . guch
a sequence of coverings.)

Suppose that U = (Ui, .., Uy) is a chain covering X. For each
ordered pair (7,4) of integers such that I<i<<ji<sm, lot Ui, 4)
= (Ui, .., Uy) and let V(i,j) = (U, 7)) € U% Two elements V (iy, §,)
and V(i jo) of U* are said to be A-related provided [4;—4,] <1 and
l—da] <1.

Lmya 4. (1) U* = {(V(i,) |1 <i <j<n).

(2) If V C U*, then NV # G if and only if every two elements of V
are A-related.

(3) No five elements of U* have a common point.

Proof. (1) If @C U, then Q(@) = @ implies that @ is a subchain
of U;ie. G= U(4,4) for some (4, 7).
] (2) (g) Suppose that evéry two elements of V arve d-velated. Let
fmin = Mmin {z:[ for some §, V (4, §) € V}, imax = max {£| for some §, V' (i, j) e V3,
Imin = min{j] for some 4, Vi, eV} and fmex = max {j | for some j,
Vs, y.) eV} Since every two elements of V are A-related, fmax— tmm < 1
and Jmux—fmin < 1. We need to show that there iy & subecontinuum K
of X such that K C U, mae & o0 2 Uy and K intersects each Uy otn? 9 U,

Let 4 = U1 v U2 Vv (Ur—-(Ur; ~ U(-H)) and B = (Uj-—*(Uj N Uj—-1)
uUﬁ.l v o wUy) where 41 > 4. Since 4 is a closed subget of the open
set Uy Y w Uy, there is an open set A’ containing 4 such that 4’ C U,
Y o wU;. Similarly, there is an open set B’ containing B such that
B'CUju ... v Uy. There is a subcontinwum K of X irveducible from A’
to B’ and so K intersects Uin Uiy and U; A Uj.y for 4§ and con-
se?quently eac.h‘_ Uy i<r<j. Then K' =K — (K ~ A’) is connected.
Since X — (.A,'/'\ U.‘..}_l) =4 v (Ui+1"’ (A'(\ U‘H‘l)) v ( Ul'+2 Vo U Un) =4 v 0,
where ,A and C arve closed and disjoint amd K’ ~ ¢ # @, it follows
t]lla,t. K’ C (. Hence since K = K WECQ and consequently K ~ 4 = @.
Similarly K ~ B = ¢. Hence KCUgy w.. 0Uy;. Since the above
holds for any 4, , it holds for tmax A0, Frin - ’

oach
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It V(i,4) eV, then ¢ < ipy and J = fmm 80 Uimax U U U,mmC U;
U w Uy and henee K CU;u ... uU;. Also, 2 fmpm and § < jmax 80
the sequence Uj, ..., U; is a subsequence of Uiginr +++1 U,-mx and hence K
» Uj. Hence K eQ(U(i,]) =V(i,4).

(b) Suppose that V¥ contains two eclements V (i, §,) and V(is, ja)
which ave not A-related. Then either |~y = 2 or [§,—ja| = 2. Tf &< 4,—2
then Uy, ... v Uy, does not intersect Uy and hence no continuum lying
in Uy o ... v Uy can intersect Uy; consequently no element of V(iy, j,)
belongs to V (4, ). The other cases are similar.

(8) Suppose VCU* and MV #£@. Lot 4 = min{i| for some 4,
V(i,§) eV} and lot jo=min{j |V (4, ) eV} Then if V(i,j) eV, i =1,
or ip-+1 and § = jy or jo-+1, so the only possible elements of V are V (4y, fo),
V(ioy Jo-+1); V{io+1,40) and V(iy+1, jo-+1).

DeriNITION 3. The nerve of a finite collection U of sets (denoted by
N(U)) is an abstract complex C whose vertices are in 1-1 correspondence
with the elements of U and which is such that a subset of the vertices
of ¢ is the set of vertices of a simplex of C if and only if the intersection
of the corresponding elements of U is non-empty.

Remark. Let B denote the set of all lattice points of the plane
lying in the region bounded by the lines # = 1, ¥ = ®, ¥ = n; two points
of B will be said to be Ad-relited if neither their ordinates nor their ab-
scissas differ Dy morve than 1.

If U is a chain covering X with n clements, a 1-1 correspondence
between the elements of U* and the points of R is obtained by letting
the element V (4, j) of U* correspond to the point (¢,4) of R. Hence R
may be considered as the set of vertices {a}} of N(U*).

A subset B’ of B has the property that every two of its elements
are A-related if and only if B’ is a subset of the vertices of a unit square
in the plane; hence a “topological realization” of N (U*) can be obtained
by adjoining to B the solid, triangle bounded by the lines # =1, ¥y = o
and y = n together with a collection G of “topological tetrahedrons”
(i.e. closed 3-cells) given that cach element of G containg a solid unit
square with vertices in B and every such gquare ig contained in an element
of @, and such that no two eloments of @ have a point in common not in
the ay-plane.

The following is a special case of the Mayer-Vietoris Theoren.

LemmaA 5. ([3], p. 39) If K, A, and B are simplicial complewes such
that X = A w B and A, B, A ~ B are acyclic, then K is acyclic.

TuEOREM 1. N (U*) is acyclic.

Proof. If U has one element N (U) is acyeclic being just one vertex.
Assume that the theorem is true for ¥ which has % elements. Suppose

Fundamenta Mathematicae, T. L (1961) 17

intersects ecach of Uy, ..
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that U has k-1 elements, Then N(U*) = N(V*) u M where M ig the
simplicial complex composed of those simplexes added to N (V*) to obtain
N(U*). So M is composed of & — 1 tetrahedrons and one triangle each joined
to the next along one edge. So |M]| is contractible and hence M is acyelic.
|N(U*) ~ M| is the union of k—1 segments and is homeomorphic to an
are and 8o N(U*) ~n M is acyclic Applying Lemma 5 we have N (T*)
ig acyeclic.

DEFINITION OF 4 QUASI-COMPLEX. The following definition is in [6],
p. 322.

Let X be a compact space, {Us] ¢ € M} a cofinal set of open coverings
of X. For each pair 4,7 of elements of M such that >4 let my
N(TU)-+N(Uy) be one of the projections induced by the inclugion re-
lations associated with the refinement of U; by Us.

Further for each j € M there exists an ¢ ¢ M and one or more chain
mappings wgy: N(U;) >N (Uy), called antiprojections, such that

(8) wumiyz~1,

(0) if wiy, wy ave antiprojections, then so is wywpy,

(¢) if wy and wy are antiprojections, then Wp ~ D

If o5 is a simplex of N (T,), let [o;] denote the kernel of oy, that is,
the intersection of the sets of Uy corresponding to vertices of o;. Further,
if ¢# i & chain of N(Uy), let [c®] denote the union of the kernels of gim-
plexes in the carrier of ¢p.

(d) all indices being wnderstood in M. , for every 4 there is a j, j > 4,
and for every k an m, m >k, § (m depending on ¢ and §) such that wy,
exists, satisfies (a), (b), (c), and if the simplex o;e N(Tj), then [a7]u
v [wsmoq] is contained in a set of U;.

The collection (X; {Uy}; {my); {wy}) defines a quasi-complex X.

DEFINITION OF . The following definition of w is in [2], p. 666. If
a and f are arc-like finite simplicial complexes and x is a simplicial
mapping of B onto «a, there exists a chain mapping of a onto B which is
defined as follows. Let a;, ay, ..., an denote the vertices of a ordered, as
on a. There is a subarc 8’ of § such that = ()=« and there is no proper
subare y of B’ guch that m(y) = a. Let b, denote the vertex of g’ such that
(b)) = a; and let by, by, .oy by denote the vertices of B’ ordered ag on f.
There is & subsequence by, , Bryy <ory b, OF by, by, ..oy by such that

(1) 2(by) = 0y and 7(by,) = an; ‘
(2) if 7(by,) = a, and 7 (Dkys) = @y then p—r| < 1; and

(8) for each ¢, &y, is the greatest integer § such that
(@) ke <j<hy and
(b) if e < g <4, m(Dg) € {m(br)} © {2 (b))

icm
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v
Define w(L-ap) to be D X5-by, where Xy =0 if m(by,) # ap, and
EES S )

(D) = Opp1, then Xp= +1,
it w(be,) = ap and | w(bs,,) =dap—y, then X=—1,
$=uv, then X = +41.

u=—1

Define o (1+(apapsa)) = 2 ¥y (bebgrs), Where if Ty <8< 8+ 1 < higys
f ),

and for all 0,‘ Iy < 0 < Koy (bo) € {ap} W {@pr1), then Y8 = -+1; other-
wise ¥g = 0.

DEFINITION OF wy. Let w,; denote the chain mapping of N (T;) onto
N(Uy) defined for my in the preceding definition. wy and finite products
fyoyiy +o+ Digia@irdyy Where 4y < 4y < ... < iy, are antiprojections and satisfy

" {(a), (b), (¢) and (d) (see Definition of quasi-complex). Moreover, wy is

an algebraic map.

DEFINITION OF aj. Since X is a snake-like continuum, we have by
[2], pp. 666-667 that (X; {Uy}; {my}; {ws}) defines a quasi-complex X. For
simplicity we now write af as a, and use %, j as indexes on the coverings.
We define an extension of my,afy: CP(N(U})~CP(N(U3)). For each
member of U we select o member of U} containing it. This gives a sim-
plicial mapping of N (UY¥) in N(U}) which is a projection. First we specify
a particular projection =y; as follows. Let p(s) be the subscript of the
vertex in N(Uy) which iy the image of b, under my, Le. my(bs) = ayy-

Let 7(q, 8) = min[y(§)| ¢ <E<s] and pu(g,s) = max[y()| ¢ <E<s],

Now we define a simplicial set transformation =f;: N (UF)->N(UF) by

7(q1,81) 1(2:8¢)

e = Qulqr,8)) -+ Dulge,se) *

mis(V5) = aigs  and - o (BY ... O

If K eQ(US, ..., UY) then KCJUS and K ~ US %0 for ¢ <&

g=g
Since mwy(be) = aye, U5 C UFP for each & Hence K eQ(UJ®?, ..., Ure)
and Q(UY%, ..., U5) CQUI, . ., US), Therefore af; iv induced by
one of the inclusion relations associated with the refinement of UF by U?.
@y induces a chain mapping =¥ on N (U}), ie. for a simplex b2 ... b
we have

< 8.

nlgus)  nldns)
a e O
aly(b ... bE) = { wanes) "ﬁq"")

when the al's ave disbinct}
0  otherwise

So «¥ is actually an algebraic map of N(U¥) onto N(U}) which is an
extension of my and the carvier of =% is #fy (see [6], p. 146, (9.13)).

DeriNtrIoN 4. If 0 is a vertex of a simplicial complex K, then the
8t () is the subcomplex of K consisting of all simplexes having v as a vertex
and all faces of such simplexes.

17*
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‘ DEI«‘.I.NITION 5. If U= {U% is a finite covering of a continuum X
and #; is the vertex associated with U® in N(U), then the St
= U{U'| U7 €U and v; eSt(0y)}.

Notation. In the tollowing K — N(U}), L = N (= N (U}

¢ 0 A gy Ja == (U:;) I = N(U¥

and L' = N(U;), where U; is finer than U; so that )m,: O"(N (( Ui))),
—%-Op(.N( Uj)) and wWjid Op(_N(U,')) —> Op(N(U{))

DEFINITION OF ¢. Define ¢ mapping simplexes of L onto subcomplexes
of I’ by e(ap) = U {S6(by) | I(p) < ¢ < B(p)} where I(p) = min {k [.n(blj
= tp}, B(p) = max {k | m(by) = ap}, the S‘Tf(l;a) iy taken in L' and the av’cs
are vertices of L and the by ave vertices of I, Also o(anay 1) = ¢(ay,)
v 6(@p4a)- l !

LeMMA 6. ¢ is & carrier of w.

Proof.

6(up) = UtSE(bg) | I(p) < ¢ << B(p)}D Y Xibyy = (1 - a)

8=l

?

since Xp = 0 if @ (by,) # ap (see the definition of ).
oLty +api1) = o (1 a) + w(l 1) Ce(ap) v ¢ (tprr)== ¢(apupe) ,
1&:‘11
@ (L aytyr) = D ¥i(bobeys)
gl
i G 8 i
Whue. if lé,i;é 0 then {7 (bs)} w {m(bei1)} C {ap} v {ap41}, 50 ¢(ap) or ¢(ty)
containg St(b,) or St(bsy;) and hence ¢(ap) or c(apys) contains bsbet1 .
Therefore c(ap) v 6(aps1) D (1 apapyy). Henco ¢ is a carvier of w, ginco
for any chain e contaimed in g simplex ¢ we have w(e) C ¢(t).

. II)EFINITION OF ¢*. ¢* maps the simplexes of K into the subcomplexes
of K _‘El;ildq ¢*| L =c and is defined as follows on the rest of K: ¢%(af)
é-:_ﬁ(Lqu){st(tb,]){[ I{p) < ¢ <8 < R(r)} where I and R ave defined above and

s) 15 taken in K', and ¢* of a vimplex is the wni ] i [
i i o in 0*', 1 union. of the images of

LeMMA 7. ¢* is an acyclic carrier function.

Proof. We need to show that if ¢ iy a i [ i
. d-to st ha a simplex of X, then ¢(t) i
% subcgn_xplex of K_ and if ¢ Ct then ex')C c*(t) and u*,(t) iy aeyelic.
‘Y deflnitllon, c*(t).ls a subcomplex of XK' and if ¢'Ct then (') C e*(8),
fso thfmt ¢ is a carvier function. The images of simplexes of L are clearly
acyclie, s0 we congider simplexes in K and not in L.
~ Now e*a?) is N(V*), where V — (T2 uB®re s o it
[=1and6—-—-1otherwise, e=01if R= ,
U’s are elements of the
are 4 elements

: % and ¢ =1 otherwise. These
s the covering of which I’ is the merve and there
in this covering. In each cage c*(a7) ix acyclie, so ¢* of
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any O-simplex is acyclie. e*(aR alil) = o*(af) w eN(aPil) which is N (V¥)
o N(W# where V is as above and W= {T7®™7, .. pFrFy,
N (V) ~ N(W*) = N((V ~ Wy, where VAW = {T7"7, ., 7FO*y,
So that N (V*) ~ N(W*) is acyclic and therefore since N (V*) and N (W*)
are acydlic, by the Mayer-Vietoris Theorem we have that ¥ (V)N (W*)
is acyeclic. Therefore ¢*(af aPF1) is acyclie. Likewise if of daf (i.e. the open
gots associated with these vertices are A-related), then ¢*(a7as) = c*(a7)
w o(aj) which are each acyclie and ¢*(ar) ~ o*af) = o*(amea®f), which
i acyclic. Therefore, by the Mayer-Vietoris Theorem, o¥(ay a;) is acyelic
so that ¢* of any l-simplex iy acyclic.

Tf each pair of vertices of oFajas, are A-related, then c*(af af amy)
= ¢*{a?) U ¢*(af) v c*(ay) which are each acyclic and the intersection
of any two is acyclic. Moreover ¢*(af) ~ ¢*(af) A~ ¢*(aw) = RO an
which is acyelic. Therefore, by the Mayer-Vietoris Theorem, c*(af ai ay)
is acyclic and so ¢* of any 2-simplex is acyclic.

T each pair of vertices of afajanal are A-related then e¢*(ay aj abal)
= ¢*(aP) w ¢*(af) w ¢*(al) v ¢*(ap) which are each acyclic and the in-
terseetion of any two is acyelic. Moreover ¢*(a7) ~ ¢*(af) N c*(ap) ~ c¥(ag)
— H{(aXas) which is acyclic. Therefore o*(afa;apay) is acyclic and
so ¢* of any S3-simplex is acyclic. Hence ¢* is an acyeclie carrier
funetion.

TeMuMaA 8. ([3], p- 171, Theovem 5.7) Let K and K' be simplicial
complewes, let ¢* be an acyclic carrvier function defined on K with values
in K', and let L be a subcomplen of K. Any algebraic map L—K' with carrier ¢
can be extended to an algebraic map K—K' with carrier ¢*. If f,9: K =K'
are algebraic maps with carrier ¢*, then any algebraic homotopy between fIL
and g|L with carrier ¢ can be extended to an algebraic homotopy between f
and g with carrier . .

DEFINITION OF m*. Let o and bf denote vertices of N (U7) and N (U¥)
respectively and 7 (p) = max {k | Xp # 0} and v(p,r) = min{k, [X75£0
and ks = 1(p)} (see definition of ). Following the construction of the
extengion in Lemma 8 we extend g to of where of; | N(Uy) = oy and
in N(UN—N(U;) on 0-chaing we have ofi(1-af) =bidy. In N(Uf)—
—N(Uy) on 1-chaing we have

w(pr+1)-—-1 12 Kagy-1
F \
oMl-dlaad) = 3 (AP o D) (Y (@osatn))
g=r(p,r) g=1 g=ki; -

where 8y, 7{}) z ;;} and b’%x""" bkg; are bp’s such that X5 # 0 and

Fosy < gy
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Pp+1)~1 7(p+1
w*(1 P! g®) — g-+1 4'7)-.1
(Tarmar) = 2 Gonbmm)+ 3 (mEopen),
=y(p) g=%(p,r) ’
*(1 . qP 1, D
w*(1-a71}a?) = w¥(1 “ar107) + w*(1-aF} a?_,);

*(1 , 4P ,0F+1
@*(Lar a13) = o¥(1-aPalss) + (1 ayy ) .
* Y 1
In N(UF)—N(T;) on 2-chaing we have
*(1 . P P D41
w*(1-a7 a7 a7 7) = 0; (1l alapy; ety = o0,
’
" Pt 3 i1 Y@OE)-1  wp-t1,e1)—~1
o*(1 a7 af af2)) = By
(b'b° bM-l Bty 1y n .
W U, 7V0+10941 + DgT1 by b)) 5

*(1 . qP aP~1
oM l-arar™ af_y) = — w¥(1 “ar-y 0777 af) .

. ™~
In N(UH—N(U;) on 8-chaing we have
X1 afafi aByyaf*Yy = |

r
L A7)
MMA 9. Condition (a) for quasi-complex is satisfied.

Proof. i
oof. By Lemma 8, o* is an algebraic map of X to K’ which is an

extensi i

T c;nsti)lfn aieinfl haKs, carrier ¢*. 'We now denote a carrier of fbye

identisy mappon ;1{1[ Sin‘g};el; Carlur() = Cuomt'(8) D €10(8), where 1* ig thle.

naw I w'at = Coplpey Wo have that w*m* *

o the Same carrier ¢yee. Algo in the same WaY Cun(t) D oyt bt o
ave the same carrier Cum - {0 7o hat o

Leb .D be the al p *
ge bI alc holil() ‘3() y bet ween wn 2 d 1 0 .D O L

i wn 18 @ carrier of I alg
congider the case when # = @ since I’ hag no 2 cha,h?:&ol'\l'we need only
- 5. Now

Dby, = by — wmb -—-b — = bp— y X
% % — wa, b 4
‘% ’ * ag; oD

L)
Ds C (0r-1d) + Oabiess) — 3 (Brosbay) -+ (beessn) C
B8]
UBt(dy) | min kg
gy LS nfﬁ?-i, K} = o(ap) = oyn'(by) = CaCa(bk) == Con(by) .
Now if 7' (bg4a) = @p4q then

D -
(bx +by1) = D(bs) + D (brs1) C cufay) Oy 1)

. = Oal@plly41) = 070 (Dibis1) = 0o0n(bybisy)
Likewise if 7 (brt1)
showm for any ¢ ¢ OY(L)
of D. Since (X 5 {Ug};

= Con(bkbr+1) .
= Op—y then D(bg+bp.) Coe

that if ¢ C¢ then DeC c,,,:(t) "
{ms}; {wp)) is & quasi-

babrr1). So we have
, therefore ¢, i a carrier
complex, we have wm~1.
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By part 2 of Lemma 8 the algebraic homotopy between wx and 1 can be
extended to an algebraic homotopy between w*sn* and 1* with carrier ¢*.
Hence o*n*~1*, i.e., condition (a) is satisfied.

TEMMA 10. Condition (b) for a quasi-complex is satisfied.

Proof. I o}y, of are antiprojections we wish to show wfiwry 18
also. wholy i a chain map from N(UY) to N (U%). So we need to show
that w;‘twimﬁc ~1 f . First

Clapionmm) = Cu
and
Clafotrio(t) = Cloful Onf(1) = Oafroy Onial) (1)

2 Gty Oty Ot Cay(1) D Cafy €13 Oty D Coy

] “’Ji(t,) BEHUE

where ' D ¢m5(1) sinee o only makes the domain of og larger. Hence
by part 2 of Lemma 8 the algebraic homotopy between wgwrma and 1
camn be extended to an algebraic homotopy between wfwfmfi and 1.
Hence wfw}, is also an antiprojection, ie. condition (b) is satisfied.

TEyMA 11. Condition (c) for a quasi-complex is satisfied.

Proof. If o and @} are antiprojections, then since by Theorem 1
N(U}) is acyclic, we have wn~wj, i.o. condition (c) is satisfied.

Notation. The star of a simplex o, St(c), is the union of open sets
corresponding to the vertices of o. Uy iy a star refinement of U; if the
star of every vortex corresponding to elements of U; iy contained in some
element of Uj.

LA 12. Condition (d) for a quasi-complex is satisfied.

Proof. For any i we choose § sufficiently large so that U7 is & stax-
refinement of U} (see [6], p. 324). Then for any U% let U* be the one of
the two U¥ and Uj which is a refinement of both. Now we show that
condition (d) is satisfied, i.e. for any ¢ there exists j > i, and for any &k
an m >k, j (depending on ¢ and k) such that oty exists, satisties (a), (b),
and (¢) and. if o; € N(U¥), then [o7] v [whaos] is contained in a set of Uf.
We have that if o= ap 0r dylp4s then condition (d) holds since (X {Us};
{my}; {wy)) defines a quasi-complex X (seo [2], p. 667).

In the following @ with subscripts and superseripts will denote a vertex
of N(U$) and b with subscripts and saperseripts will denote a vertex
of N(U%). We ghow for any simplex o that []w [w}ao] is contained in the
star of some vertex of N(UY). Since U¥ is a star refinement of Ut, we
have that the star of a vertex of N(U}) is contained on some element
of U and hence condition (d) will be satisfied. We need only consider
chaing whoge images are mon-zero. ’

0-chaing:  [a2] v [@hma?] = [62] © [B1E] = 2(UF, ..., UP) v (TR,
o TSP — Q(TP,..., TY) C Sb(a?) since i p(p) <E<7(p,r) then UnCUf,
PLKGST. ‘
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1-chains:  T[ p +p then

(071107 ] © [fmaly A 11(27”‘\4;‘1)“1 ]
| gmBry 1ty | = [0 0n | O [ z (b;/'??l)b}/’(’])),
g=1(p,7)

= (U7, ..., Up) ~ (U2, ..., U;"‘l)) g (T@JUFI{Q( o N
g=vtp) iy ey Uny)
4« o
AT ooy UR) CSUR) A St (a2
sinee i w(p,#) < €< (p, 1) thor
QUL ..., U, pyr-+1) then
If p = then

D
[av107] o [c U}‘m“ﬁ»r-t“ﬂ

. 1@,%1)4 =2 Bggag—y
= [q? ‘. ( 1 1
[actio | D ey 3 S (b el |
g=1(p,r) Qe=s1 ‘7'—‘"3,, .
=203, U™ ~ o) o (T g0
r 4 1 4 )
7 ) ( n::Lt-é),T) {‘Q(Um 30y Uym) ”“Q(U')yrip)w-w([%j-l)}

t-2 Ksgy -1
“

U (@h) ~ eqogy))

el ll=ksq
{(D,r41)—1
co ' ‘
¥ 0 7™ 'y Yagal ]
(4, U, 0h) ~ o, .. iy

CRTT) v (U7, UT) C St (a?) m Sti(a?yy) .

ot P@+1)~1

[(Lr (l,.] w [(,)* a? = ! v
4 i la? at P [ ) pay
7 J [ 7 7 ] ) (’)T(ZJ;T)[)T(WJ'))
7=y(p)

wp+1,0)-1
& ,
L P(@-+1)p p(n--1 y
an?m-) (BRE B+ [ C st (a2

since if y(p) <1< y(p+1) then
0 A w(0,1)y ~ P - ?
(U, .o, U™y C (12 L, T w (VT ., U v ot 5
and if 7(p,7) < £ T(p+1,7) then
Q(Uety ¢ k -
(Un™%, . Uy CRUUES, L T DU, LU Lt it
LA (A
[a‘,”ffa’,’] v [ofnal?] a?]

— p+1 0 |
= [Pt * 0 D '
[ar’5 7] © [whnal_y0?] [wofmaf ™ al_y1 C St (a2_y) ,

D P+l
[a? Oriy] v [Q)}‘m a’f a'f-lfll

= [P P2 x D on
[6af5]  [whya? Grix] o [hn iy al] C St (ar,,) .

QUL L UR) C o, ey U3
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9-chains:

1 e 1 R 1 p pil
[”%'” ay ”’?—H v [ an" apapyy |
v(p»-{lj)—-l Tp+1rt1)—1
- pkl op ol 1 oyl phA1 Bk y Rt h
= [l d I R ( 2 (Vg gr Dggix 4 by 3 b ™ byy)
he=p(p) g=2(pyr) -

= (QUUE, oy UR) ~ (U, oy U -~ QUUP, L, T
g (?(’I)-l~l)-1 f 2p-Lr-1) -1

nmrt) | gmrm)
R 1 3¢ ekt ot R [
A QUUR oy R o (U, VL) - QU™ o, Th)

(@(Th, ooy Ul) ~ (U5, .y TS

A QUL o, TS) C St(a?)
gince if y(p) = A =2 y(p-+1) then
Q(UA, ., TEEDy CQUUE™, ., U w QUF, ., U o QU L, T
and if 7(p,r) = &< r(p-F1,7) then
QUYL TS C QU™ L, U v QU L, UY)
CRUET LU
[ aly] v [whnadab ™ ali]
= a2 al_y] o [— o 0Py P71 a1 TS (a?7T)
Hence condition (d) is sabisfied. v

Prom lemmag 9, 10, 11, and 12 follows

TorrM 2. (0(X); {Uf}; {ah}; {of)) defines a quasi-compler O(X).

TuroREM 3. (/(X) has fized point property.

Proof. By [9] ¢(X) is acyclic and since it is connected, it is a zcro-
cyclic quasi-complex. By [6], p. 326, (36.4), a zero-cyclic quasi-complex
has fixed point property.

Remark. For any continuum Y, 0(X) is an absolute retract if
and only if ¥ i locally connected (see [], Theorem 4.4). Hence if ¥ ig
locally counected, O(Y) has the fixed point property. It follows from
a theorem of Lefschetz ([7], p. 46] that if O(X) is an absolute neighborhood
retract, then it has the fixed point property. By the following theorem
if 0(Y) is finite dimensional (in particular, if Y is snake-like), then o(x)
is an absolute neighborhood retract only in case ¥ is locally connected;
hence neither of the above results applies when ¥ is a non-locally con-
nected. snake-like continuum.

TaREOREM 4. If O(X) is a finite dimensional absolute neighborhood
retract then i is an absolute retrac.

Proof. Fox [4] has shown that any m-dimensional absolute neigh-
borhood retract which is simply connected and acyclic in all dimensions
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<k (<m) ean be covered by m—Fk-
since C(Y) is simply connected ([51,

dimensions, it follows that ¢(¥)
retract.

-1 contractible open sets. Hence
Theorem 4.5) and acyclic in gl
is contractible and hence is an absolute

QUESTION. For what class of continua is ¢ (X
We know that if X is locally connected (in which ¢
retract) or a snake-like continuum that ¢ (X)

) & quasi-complex?
ase C(X) is an absolute
is a quasi-complex,
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icm

Sur la représentation topologique des graphes
par

A, Cs#szdr (Budapest)

i wRldme ) €0 b
1. Nous entendons par graphe (abstrait) le systéme (8, 4, e) (,mn];?e)
dun ensemble 8 (dont les éléments sont appelés sommels ](;lu g; (mé)’ m,
N 0 i i e ) une
d’un ensemble A (dont les éléments s’appellent ardtes du gj?la.p T( )((:memb]0
& 1 e S
icati i fait correspondre & chaque aréte aeAd w
application e qui fait corresp ar n ¢ e
1?‘3 ) {81, 83 C 8 composé de denx sommets distinets, appelés extrémité
é = %1y 92
o laréte @ (). N ‘ .
! Nous dirons qutun graphe (8, A, e) est fini si les ense:xb}e;sq%)etlle
sont finis, et qu'il est dénombrable si 8 et A sont ‘(léq:om wt)/e;g s.;é °
. g i qi, deux § ty distincts 8, 8’ € 8,
i dit conmere wi, deux somme
graphe (8, 4, e) ext dit co 63 distinotis o, &' « 8, 0 7
zt&lllt donmés, on peut toujours trouver une suite finie d a‘r(1 1(<b?: s i
telles que ¢ € e(ay), 8 € (@) el que e{ag) A () # 0 powr 1 S <

2. On a ’babitude de représenter un graphe j"zml (8 ,e ﬁ‘;igsp;ii ;li
sous-ensemble G de D’espace (:uelidie'n (Zy::, M:o;r:i)o;géal(z 12»’ .I;(l.ﬁssanee de
1 . et de certaing arcs ai, .., al 4 : !
i’le;nlf;.e,nslgl; tS ot m & celle de ’ensemble 4), de mamérs (11;1: ;(;Z Sp(;l;:lt;u.z
correspondent biunivoquement aux sonc.\mets 8 e.Ste e e
arétes ay e A, I'are af, ayant pour extrémitiés les pho-m : 8% Om;n e
ment si aréte correspondante ap & pour extrémités les sa' ot g
qui correspondent & sf ot s; respectivement, ep deux ar({; ) kBea &coup )
d’autres points communs que leurs extrémités au 11293 .m i
propriétés du graphe (S, 4, e) pguvent étre fm{mu Tt
propriétés topologiques de lensemble G; p.ex. .e(gfl gens o Iiologique),
connexe si et seulement si Pensemble G et connexe (& e et adiins

Pour wn graphe (8, .4, e) quelconque <fm1] ouf ngﬁ ,suiva,nte. o
une représentation topologique analogue de ad,age e et
dérons un ensemble G dount los éléments sm‘ﬂ; ;m &1; ’11ne o e
8 €8 du graphe, de L’autre les couples (a, @) formés p

oni it ‘faudrait
(*) D’aprés la terminologie adoptée par D. 'Komg ([3}\;l 1;‘1;1 ;u:ts ?;(a); pew
encore postuler que, pour 8 €8, .il oxis;;; au I;l:l:i E:uad; e Copandont, 1a tor
C. Berge ([1], p. 27), on devrait dive mad -graph 4 oo
minolzggie([quapnous’venons d'introduire eonvxenfi:?, mieux A nos bu
(%) Cest-a-dire finis ou dénombrablement infinis.
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