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tude, introduite par nous [2], a été wutilisée dans le cas particulier des
objets & une composante. Nous disons que les objets £, et 2, sont semblab-
les (équivalents) §’il existe une fonetion @(u) strictement monotone et
telle que la relation

(15) L2y = (D(Q])

subsiste dans tous les systémes de coordonnées. En éerivant cette relation
pour le systéme & nous devons avoir

(16) 2, =0(Dy).
Mais on a (d’apres (4) ot (7))
17) D=0 aE—E, @ #0,
(18) §2=Qz+aa(f“g), ap # 0.
En substituant (17), (18) dans (16) et en tenant compte de (15) nous
obtenons
D) + ay & E) = P[4 ‘11(5"2‘:)] .

Il est évident qu’en posant

d(u) X e

0

on obtient pour @ une fonction strictement monotone et en méme temps
lidentité de (15) par rapport aux variables 9y, &, & Donc les deux objets
géométriques 2, et £, admettant les régles de transformation (17) et (18)
sont équivalents ef, par conséquent, il est permis de dire que les relations
correspondantes B sont ,,équivalents”.

De ce qui préecdéde on peut tirer comme conséquence:

TukorkME 4. 8i la fonction | est linéaire, il existe une seule relation
essentielle (en faisent abstraction des objets équivalents) B satisfaisant aum
propriétés I, 11, TIT.
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On the functional equation f(x+)=£(x)+f(»)
by
M. Kuczma (Krakéw)

One of the most important and best known functional equations
is the functional equation of Cauchy

() , fla+y) = f@) +1() .

In the present paper we consider equation (1) for functions f(z) whose
domain and range are multidimensional spaces.

H. Kestelman ([2], th. 2) has proved a theorem which after taking
into account the recent results of S. Kurepa [3] may be formulated as
follows:

If a function f(») whose domain amd range are an n-dimensional
and an m-dimensional euclidean space respectively satisfies fumctional
equation (1) and i8 bounded on a set V of positive Lebesgue measure, i.e.

(2) IF ()] < a

vy £ we have

for weV, |V|>0,

then for every x(&,

(3) 2 iy,

f7=1

where uf (j =1, ...,n) are the unit vectors of the n-dimensional space
which is the domain of the function f(w).

As ig well known ([2],[5]), when the domain as well as the range
of the funetion f(«) is the space of real numbers, a stronger theorem can
be proved. Namely, condition (2) may be replaced by a weaker one:

(4) fl@)<a for eV, |[V|[>0.

(Thus in this case we assume that f(@) < a instead of |f(x)| < a.) The
question arises whether an analogical weakening of hypothesis (2) in the
theorem of H. Kestelman is also possible in the multidimensional case.

The purpose of the present note is to give an answer to this question.
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Let 9 be a Hilbert space (with finite or infinite dimengion), i.e.
a vector space in which there is defined a scalar product of two elements.
The elements of the space 9 will be denoted by the initial letters of the
Latin alphabet, the scalar product of elements from 9 will be denoted
by a dot. Further let V™ be an n-dimensional normalized vector Space,
The elements of the space ™ will be denoted by the final small letters
of the Latin alphabet, and the subsets of the space V" by the corresponding
capital letters of the Latin alphabet. For arbitrary two subsety X , ¥
of the space V", we shall denote by X+ Y, resp. X— Y, the set of vectors
of the form @+y, resp. #—y, where x ¢ X and y ¢ Y. The real numbers
" will be denoted by letters of the Greek alphabet. Moreover, we shalls
denote by w',...,u* the unit vectors of the space ", ie. the vectors
with the coordinates (1,0, ..., 0), w3 (0,5 .0y 0, 1) respectively.

Of course, it is not quite evident what condition should be assumed
a8 an analogue of condition (4) for #(z) e 9. If U = ¢™is the m- dimensional
euclidean space, a natural generalization of condition (4) is the require-
ment that, for eV, f(x) should lie in a halfspace, i.e. on one side of
an (n—1)-dimensional hyperplane. Apalytically such a condition can
be written in the form

(5) o-flw) <a for weV,

where a € U, and ais a real number. Condition (5), however, has 2 meaning
also for an arbitrary Hilbert space 9%, and thus it may be admitted as
a generalization of condition (4) in the cage f(@) e .

Now, it turns out that if in the theorem of Kestelman we replace
condition (2) by condition (5), then formula (3) need not be valid. It
is obvious from the following example:

Let 9 = €2 be the euclidean plane, W" = ¢! the space of real numbers,
and 6(x) an arbitrary discontinuous real function, satisfying Cauchy’s
functional equation

d(@+y) = 3(a) +(y)

(cf. [1]). Let us define f(®) € & by the formula
flz) = (6(00),'0) .
The function f(x) satisties equation (1) and fulfils the condition
a4 f(w) =0 - for gec

(@, denotes here the vector with the coordinates (0, 1)).
On the other hand, relation (3), which in this case would have the

form f(2) = cx (where ¢ = f(1) = (8(1),0) is a fixed vector) evidently
. 18 not fulfilled, since the function d(x) is not continuous.
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However, we shall prove the following

THEOREM 1. If a function f(x) whose domain and range are the spaces
Y and X respectively satisfies equation (1) and fulfils (for some aeN
and real mumber o) the condition

(6) afr)y<a for wef,

,,f”)gf)]"

where 8 C Y™ is an n-dimensional sphere, then for every m(&, ...
the relation

(7 a~[i(m)»—2 Ejf(uj)] =0

holds.
Proof. Suppose that there exists a vector (&, ..., &) e V" for
which relation (7) does not hold. We write shortly

) A(ae) = flaw)— D) B () .
i=1

Thus we have

9) a-d{xy) #0.

Let g, be an arbitrary sequence of rational numbers such that

(10) lim ga-d(x,) = +oo.
P00

According to (9) such a sequence certainly exists. Further, let us choose »
sequences of rational numbers ol (j=1,..,n) such that

(11) Hm(p,&—cl) =0, j=1,..,n,
P00

which, of course, is also always possible. It follows from (11) that

n
(12) 1im(g,mo—— 2 afu,i) =0,
»~+00 j=1
It follows from relation (1) that for an arbitrary rational number 4
and for an arbitrary x ¢ V" we have f(Ax) = Af(«). Let s denote the centre
of the sphere 8. Thus we have

n

ot et o) = 1(6)+ et — 3, ),

=1 Jm=1

which, after using (8), can be written in the form

o+ omo— X divd) =f(s)+ D [e.8—ollf(w)) + 0d(@o)

=t
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and finally

oul) = a-1(s) + D [o.8—clla-f(w) + oa-d(a).

7=1

(A

(13) avf(s-{— @uo—

J=

-

According to (12), for large »
n
(.9 +- 04y~ E ol uf) ed,
Ja=1
and consequently, on account of assumption (6), the left-hand side of
relation (13) is bounded from above as »—-co. Meanwhile, ag follows
from (11) and (10), the right-hand side of relation (18) increases bound-
lessly as »—+oco. Thus we have got a contradiction, which proves that
relation (7) is valid for every = e Y™
The above theorem implies immediately the following

) TEEOREM 2. If o function f(x) whose domain and range are the spaces
o mw.l W™ (1) respectively satisfies equation (1) and fulfils for a system
of m linearly independent vectors a; e W™ and m real numbers o; the con-
ditions

(14) sf@) <ap for xeS, i=1,..,m,

where 8 C V™ is an n dimensional sphere, then for every (£, ..., £ e W*
relation (3) holds.

. Re.m.ark 1. X Y = ¢" iy the n-dimensional euclidean space, then
in condlltlons (6') and (14) the sphere § may be replaced by an arbitrary
§et 14 Wlth I)OSlt.lve (Lebesgue) measure. This follows from the fact that
it condition (6) is fulfilled in a certain set X, then in the set X +X an
analogical condition

af(@) < 2a

is fulfilled, and, as 8. Kurepa [3] has proved, if X C &" and | X| > 0, then
the set X4 X (as well as X— X) containg an =-dimensional sphere.

Remark 2. In the above remark the condition |V|> 0 may be
made still weaker. Namely, it is enough to assume that the set V4V
(pr even an arbitrary finite sum V-V +...4+V) has a positive measure.
We need only to repeat several times the argument described in remark 1.

Remark 3. What has been proved implies in particular the fol-
lowing theorem:

I.i a real function f(z) of a single real variable satisfies equation (1)
and is bounded from one side on « set V such that |V +V|> 0, then f(z)
8 continuous (and thus, as is well known, of the form f(x) = cw).

(*) %™ denotes here an m-dimensional Hilbert space.
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This theorem is a particular case of a more general theorem of S. Ku-
repa [4]. However, the question arises whether in the above theorem the
condition [V +7V|> 0 may be replaced by the condition |V —V|=> 0 (),
as well as whether the analogical theorem (with the condition |V —V|> 0)
is true for an arbitrary convex function f(z) (3). Unfortunately, at present
we are not able to answer this question.
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(*) It is 8o when we assume that f(x) is bounded from both sides on ¥V (cf. [2]).

(*) Under the supposition that [V +V| > 0, an analogical theorem about convex
functions has been proved by S. Kurepa [4]. (In [4] it is supposed that f(x) is bounded
from both sides, but the proof remains valid without change also under the hypothesis
that f(z) is bounded only from above.)
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