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This completes the proof of the Main Theorem.
; Re]mark. With our definition of the (n,k)-cohomotopy groups as
divect limits, theorems 3 and 6 of [3] remain true £ o
§ 3] remys rue for an
space X (1). YT compact
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On automorphisms of relatively free groups

v

- by

A. Wlodzimierz Mostowski (Warszawa)

1. This paper deals with gutomorphisms of relatively free groups,
i.e. groups which can be represented as F(V) = F/V where F is a free
group and V its fully invariant subgroup. A study of the theory of such
groups was initiated by B. H. Neumann [7], who obtained many inter-
esting results, especially for finite relatively free groups. It was continued
by P. Hall [2] with special interest in the splitting properties of relatively
free groups. Malcev [4] has solved the question what subgroups of nil-
potent free groups are nilpotent free groups; see also my paper [6]. The
main problem of this paper, i.e. the description of the groups of auto-
morphisms, as far as I know, has not been investigated hitherto. There
were known only some theorems, e.g. in Malcev’s paper [3] (theorems da,
6a, Ta, p. 27), which are marked in this paper as theorems 3 and 4.

In this paper there are investigated {theorems 1 and 2) connections
between antomorphisms of a relatively free group @ and automorphisms
of its (abelian free) factor group GG (those automorphisms can be
described by some matrices), under the assumption that G is either finitely
generated or residually nilpotent. The aim of these investigations is a de-
seription of the strueture of the group of automorphisms for these rela-
tively free groups which are nilpotent. This is given by theorems 5 and 6.

“At the end of this brief introduction I wish to express my gratitude
to A. L. Szmielkin from Moscow for many helpful siggestions, and to
E. Sasiada from Torun for his considerations concerning formulation
questions.

2, Now we shall give some of the terminology and basie facts. By
a Dbase of F(V) we mean a free generating system, ie. such a set X of
generators that every mapping u(X) <F (V) can be extended to an
endomorphism ¢ of F(V) such that ¢(2)= w(x) for @ eX. From this
definition it follows at once that an endomorphism is wiquely determined
by its values on the base of the relatively free group.

Tor a relatively free group there exists a base, and all bases of a group
have the same number of elements, which is called the rank of the
group. :
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. In M. Hall’s book [1] we find the proot of the following theorer
valid for the free group (theorem 7.3.4, p. 111): all wutunnmi‘phisrm uit'
the free group with a finite base =y, ..., %, are generated by the ‘1;1tu-
morphisms: ‘ S

(21) Py w—awy, @y, O O I H

<2.2) V,‘S .l'ri—-':n'lté-l, &y —>Ljy ' 7 #* 15

(28) Wi @y—aeomy, $#j, ay—ap, ko
where ¢ # § are any of the numbers 1, ...,

’l"he proof is based on the Schreier-Nilsen method. It cannol be
ns‘ed in the case of any relatively free group, and the theorem l"uil; in'
this case, For example when 7 is the free gr()u]) and V thé s’ubgr(:'u ) i
generated by the n-th powers of elements from I tlmn.f(.n' any ]b se
oy, Ty, .. of F(F™), and any integers ny, u,, , appine

(2.4)  Q: @y—am v

is an automorphism of #(F™), which is different from those given above
Some other significant cases of the failure of this theorerh ;e ;11\"0‘11%'0({
by theorem 3 of this paper. Now we shall prove the f()llow‘ing:‘ )
- .(2.5) .For any base X of a group @, the endomorphisms Py, Vi, and Wy
1 #§, defined by formulas (2.1)-(2.3) are awtomorphisms. nr v
. “Pro‘oi’. Thf} proof consists in proving that the images are bases.
thel; glueltzl , ‘;):)V\L(lgb 2123) 1&1;0 ‘m‘labges én'el gelnfamting sets.» We prove that
> ng to the definition, we need to prove that
every mapping 4, e.g. of Wy(X) into the group @, ean De extended into
an endo_morphlsm @- The set X is a base, consequently we can extend
a mapping w,(X) such that

(@) = po(Wisl)) ™ - u(Wely)
m(@n) = u(Wylar)), *#7,

to an endomorphism ¢ such that
: 3 5 hat p(@) = py(x) for o e X. This ¢ is an ex-
temsion of (W s()), e ) = () € X. This ¢ is an ex

«- each prime to n, the mapping

@(Wisla) = p(@-25) = () p(5) = palay) - pu(2y)

and
P (Wilaw)) = p(ar) = () = w(Wylwy))  for k7.
The proot of Py(X) and V; ing | i ite si
a HX) being free sets wite similar, al
theretore me shoal o) # 2 § s quite similar, and
) In ‘rhe Investigations of this paper we shall make a distinetion between
'wo possible cases. The first when V < F', and the second when

11:: F“f-(VnF') for s_on}o #>0. In the first case all elements of any
se of F(V) are of infinite order, in the second they are all of finite
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order equal to m. In the sequel we shall call: the number 0, in the first
case, and the number n, in the second case, the exponents of a Dbase.

(2.6) For any base X of a group G, having the exponent n > 0, if n;
are integers prime to m, then the endomorplism Q given by formula (2.4)
is an automorphism of G.

Proof. When » is zero, this is trivially true, since only the integers
41 are prime to 0, If #>0, then Q has an inverse Q': @;—>2%,
na; =1 (modn). This completes the proof.

3. Now we shall investigate the mappings induced in a quotient
group. Let N be a normal subgroup of o group G and ¢ the natural homo-
morphism with the kernel N. Then for every endomorphism ¢ of &, which
maps N into itself, there exists a uniquely determined endomorphism &
of /¥, which forms the commutative diagram

G5 ey
ey oy
G—>G/N
The mapping ¢* of & onto & is multiplicative, i.e. if &, & map N into
itgelt, then g*(e; &) = p*(&;) - ¢*(ex). In the case when N is a characteristie
subgroup of G the mapping o* is a homomorphism of the group of auto-
morphisms of & into that of G/N. If G is a relatively free group, then
for any normal subgroup N and any endomorphism ¢’ of G/N there exists
an endomorphism & of & which is mapped by ¢* onto ¢&'. Note that for &
to be an automorphism, & need not be an automorphism, as is shown
in example 1 of section 4.

When G = F(V) is a relatively free group and N its fully invariant
subgroup, then @GN is a relatively free group F(U), where U2V is
a fully invarviant subgroup of F. A base of F(V) is mapped by a natural
homomorphism ¢ onto a base of F(U). It is easy to see that if p is auto-
morphism of F (V) defined by one of the formulas (2.1)-(2.4), then ¢’ = ¢*{0)
is an automorphism of F(U) defined by the same formulas as those written
for the images of the preceding base. Some questions may arise for ¢ = Q
defined by formula (2.4). Let us denote the exponent of the base of F(V)
by m, and that of F(T) by m. Then V=F"-(1" ~F’) and U=F"-(UnF').
But since U >V, the integer m is a divisor of 7; then all integers n; from
formmla (2.4) prime to n» arve prime to m.

If for a homomorphism ¢ of a relatively free group F(V) the kernel
is V-F'/V, then for every automorphism a of F(V) the induced auto-
morphism 4 = ¢*(a) is rvepresented by a matrix 1 X1t
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with integral coefficients, or with coefficients which are integers modulo .
The coefficients of 4 are defined, by choosing a base X of F(V), by for-
mulag

j=

\
Am) = []#9, i=1,..,r,
1

for the image X = ¢(X). (Abelian groups ave written multiplicatively.)
For instance the automorphisms Py, V;, Wy, 43554, are matrices of
elementary operations: e.g.

[0 1 -1 11

10 . 1 01

-P12: l s " ..
1 1 ) 1

By multiplying the matrix 4 on the left and on the right on these matrices
we can transform A4 into a diagonal matrix I = [ey]; e = 0 for 4 j.
(This is also true for rectangular matrices.)

Suppose that 4 iy an automorphism. Since B, being a product of
automorphisms, is an automorphism, the coefficients e; ave unities.
This proves the existence of an automorphism @ given by formula (2.4),
such that @ - = 1 is the identity automorphism. Summarising the results
$0 far: we have proved for any automorphism 4 of F(V-F') the existence
of automorphisms 4, 4,, @ of F(V F'). These automorphisms have
preimages which are automorphisms of F(V); morcover A,-A-4, =B,
Q-B=1. This proves that 4 = 47" Q™" 47" has a preimage which
is an automorphism of F(V). This divectly implies the following
theorem:

THEOREM 1. Let F(V) be a velatively free group of finite vank (1), and
let A(F(V )) be a group of automorphisms. Then, for the natural howo-
morphism ¢ onto F(V -F"), the induced homomorphism * is onto A (F(V-F").

4. Now we shall investigate endomorphisms of a relatively free
grovp F (V) inducing automorphisms of the abelian relatively free group
F(V-F'). There is a lemma of P. Hall ({21, lemma 1, p. 349) which
states that every endomorphism of a residually nilpotent group @ which
induces an identical antomorphism of /G is an injection. We shall give
a stronger result in the case of relatively free groups which are residually
nilpotent.

Let a be an endomorphism of #(V) which induces an automorphism 4
of F(V-F') and let (@;) be a countable base of F(V) and write

(*) The theorem is true also for countable rank; thiz can be deduced by similar
argument as in section 4,

icm
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® .
H, = {#,, -, %} Then for s<r Hy< H, and F(V) =iL=JIH,:. The matrix

A is row-finite. We can write it in the following form:

By the same method as that used in section 3 we can prove that t].le i(i)l-
lowing matrices exist: matrix A, acting on » columns of 4; ma‘c,rnrf 1
acting on s rows of A, {(both being products of elementary matrices),

and matrix @, given by the formula (1.4), such that
I=Q 4,-4 4,

i1 ”\‘_
N1 N0
0 1\

Qs41,0y e v ¢ o

see e

lias the form

I =

Note that the assumption that the induced mapping Pf _F(V l,F) 1:'8 12.;
automorphism has been used here to Prove t»ha’r: the first s e e;l:le]; o
the diagonal can be turned into uwét'z‘es.. Denoting by cz, g z:l 0 a’nd.
automorphisms of F(V) which are preimages of..Al,1 : ?mthm,? .
defining 5 = pra-a-as, We obtain go:(n) = kI . ;1(111;)lp1§s06:: tha , ezldon
=, Ty oy n(s) = X5 ks fOr sOME  Spy ey Mg € . €
moﬁ;)hils’m ,Z ( (ilfined as follows: &(@y) = (%), ey s(wﬁ) =nni(§ict?$?_
s(m;) = @ for i#1,..,i#s is by the lemma of P Ha %{ teglt on.
Here we unse the assumption that the group 18 residually nilpotent.

z e Hy we have the equality e(x) = n(z). Then an equality

~1 p—1
a-agfw) = o -p7 - ele)
ict is a composition
is valid for x « H. This proves that a-as restricted to H isa (Jo'l::lmo\] Lt o
‘ -to- )i .
of one-to one imappings, and consequently a one to-one mapping

8 = ag(®
Tor r>s we can construct in the same manner o, 30 that a,(iali) rlq.;(er)l
for we H,, and prove that «-ar is on H, a one-to-one mapping.

7 i injection. This
G a; = is an automorphism of F(V), and «-y is an injection. Thi
1

roves the following theorem. ‘
- ) ism of a velatively free and residually

THEOREM 2. An endomorph Jree ; t0.
nilpotent, group @ of a finite or countable rank which induces an aw

morphism of G/G' is an injection.
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Now we shall give some counter examples connected with this theg-

rem. The first example proves that the endomorphism dealt with in the

theorem does not have to be an automorphism of the group @G.
ExaMrLeE 1. Let F' De a free group with two generators a and b.

By Magnus’s theorem it is residually nilpotent. Let us define

a(a) = ‘ab-a=a-(a,b-a),
ad)=0""a"bab=>0-(b,ad).

et

The image a(F) is not the complete F since the length of any non-empty
word belonging to a(¥) is = 5. This proves that o is not an automorphism
of I, but it induces an identical automorphism of F/#".

The second example shows that theorem 2 fails when the assumption
is weaker, i.e. when the induced mapping is onc-to-one.

Exampie 2. Let F be a free group with two generators a and b.
Denote by ¥V a fully invariant subgronp generated by words (g, ), )
and (wy, %)% The group F(V) is metabelian and therefore residually
nilpotent. The endomorphism defined by a(a) = a2, «a(b) =b induces
in F(V, #) an isomorphism. To prove that « is not a one-to-one mapping
we notice that the derived subgroup F (V) consists of two elements, 1 and
(a,b) # 1. It is mapped by o onto 1 since

a((a, b)) = (a(a), «(h)) = (a2, b) = (a, b)2 = 1.

Now we shall give the results of theorem 2 under a condition on
the group G-

(4.1) For every subgroup B if B-G' = G then B = G.

This condition is always meet when G is nilpotent. (Cf. [1], corol-
lary 10.3.3.)

We shall now prove the following theorem:

TEROREM 3. If a relatively free and vesidually nilpotent group G of a fin-
ite or countable rank satisfies condition (4.1), then every endomorphism of G
s an automorphism if and only if it induces an automorphism of G/G.

Proof. Evidently every automorphism of. any group G induces
in G/G an automorphism. Conversely, if « induces an automorphism in
@/@, then, by theorem 2, it is a one-to-one mapping. For B = a (@), we
have B-@ = @. By (4.1) it follows that B = @, which proves that a
is onto @ and therefore an automorphigm.

This theorem can be stated in another form as well.

THEOREM 4. If o group G satisfies the assumptions of the preceding
theorem, and if N is a normal subgroup contained in &, then, for every

automorphiswm y of the factor group G/N, there exists an awtomorphism of G
which induces y.

icm
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Proof. The existence of the endomorphism of G which has these
properties was noted in section 3 on page 405. Since N <&, then this
endomorphism induces an automorphism of G/¢. By theorem 3 it is an

" automorphism of G.

5. Now we shall consider the structure of the group of automorphisms
for a relatively free and nilpotent group F(V) of a finite or countable
rank. By the nilpotency of F(V) we can find an ¢ such that Fo.,, and
not Fs, is contained in V. Here F, is the ¢-th term of the lower central
series, ie. F1=F; -Fa= (FI:F) =F’; Fc-)—l: (FC,F).

Denote DY e, ..., o & sequence of natural homomorphisms,

PV S BV ). SRy
with kernels Kerg; =V -FyV-Fyy, @ =2,..,c. Moreover, denote the
groups of automorphisms as W= A(F(V-Fy)), i=2,...,¢, Upsa =A(F(F)}.

Now we can state the following theorem (2).

THEOREM 5. For i = 2, ..., ¢ the homomorphism of maps W4, onto W, .
The kernel Kerg} is an unrestricted direct product P of as many copies of
Kerg; as a rank of F(V).

Proof. The first half of the theorem, that ¢f is a mapping onto %,
follows directly from theorem 4. To prove the second half of the theorem
we choose a base X = (@2)req of F(V Fiy1). I y € Kergl then for 1e A:

y (1) = @2 ga@y5 o5 Bry) 5

where  ga(@,, s Ba) = §2(@) € Kerg;. Conversely, every mapping -y
given by this formula is, by theorem 3, an automorphism, and therefore
it belongs to Kergf. It establishes the one-to-one correspondence betfween
the element g = gi(z); A € 4, of the product P and the a.utol{mrpblsyl b4
of Kerg¥. It remains to be proved that this correspondence is multipli-
cative. .
Let 5 € Kerg}, then n(as) = @;-hy(®), where hy(x) e Kerey, for de A.
r
Hhen (@) = @y -gi(@) -ha(m-g)  for  Aed.
Now, since for every 1e 4, gia), T@) € Kergy = V-F/V -Fiyq, it is easy
to find that

Bl ) == Bl @y, * Gy s - s By Gitgy) = PalBags oo By = Pal)
by using formulas 10.2.1, p. 150 of book [1], or formulas P4, p. 261 of [6].
This proves the multiplicativity:

yn(as) = w2 ga(®) Bale)
and completes the proof.

(*) This theorem was announced at the Second Hungarian Mathematical Congress.
See [5].

led,
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The theorem just proved shows that the group Q[(F(V)) is an ex-
tension of the solvable group of ¢-th degree by the group QI(F(V . pr))_
Tt is worth noticing that the group W(F(V-F")) is a group of all row-
finite regular matrices over either the ring of rational integers, or the
ring of integers modulo n. Now let us prove a stronger result.

THEOREM 6. If a relatively free group F(V) of a finite or countable
rank is nilpotent and has nil-¢, then the group of automorphisms s2[(1?’(17))
is an ewtension of a milpotent group W having wil-(c—1) by the group
AF(V-F)).

Proof. We have to prove that the kernel 97 of the homomorphism ¢*
of A(F(V)) onto AF(V-F') is a nilpotent group having nil-(¢—1).
Here ¢* denotes the homomorphism which is induced by the natural
homomorphism ¢ of F(V) onto I'(V-I"). The ¢* is onto QI(If’(VF’)) by
theorem 3.

Let us choose a base (Zi)iea of F (V). Denote by 0; i=1, .,¢,
sets of all y e (F(V)) which are of the form

y(m) =o,gx), Aed.

where gy(@) e iy VIV for 2e A. It is easy o see that *){; is precisely
the Ker(@s...¢f), for ¢=1,..,¢—1, and 9 is the unity subgroup;
the ¢f are defined in the same way as in theorem b.
The proof will be complete when we prove that the sequence of
subgroups
C)Z == q{l 2 L?Zg > oo > L‘)’Zc = {.].}

is a central series of 9, i.e. that (97, ) < Wyyq for ¢ =1, ..., ¢—1
Let €9l and y €9;. We have to prove that #=1-y~1-n-y e Wipa-

By the definition of the subgroups 9(; we have

v(@) =oga(®);  yw) =aagla); Aed.
where gy(@), §a(®) e Fipy V[V for Ae A. And

(@) = @3-ha(e); Y @) =2 -%l(w); led,
where Ty(®), (@) e B V|V for e A. Find

yn(@) = @1 ga(@) ha(x-g);  Ae A.

One can ecasily prove that the right sides dre, for 1 e 4, modulo Fyps V/V
equal to @+ hy(@)-gy). Therefore there exists elements fia) e Frpa VIV
such that V

(@) = w3 ha(®@) - gal) - Fo()
for 2 ¢ A. Now

~oA o~

Nty (@) = ;- ha(@) Ba(w - B) - ga(@ - B) - Ful - )
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for i€ A. The fivst factor is
Tahal@) ha(w-h) =4~ on(xy) =@, for Aed.

The second factor gz(m-ﬁ)-ﬁ,(m-h), modulo #;,-V/V, is equal to gi(x)

for Ae A. Consequently there exist elements fi(@) e Fryo F/V such that

gty (@) = oogi@)-filw)  for  de .
Tor 3
pleg=ley o(@s) = @y §() ga(z-§) .f’/_.(m.g) , Jed,
we have - N ;
Ly Galm) galw-g) =y y(a) =@, Aed.
Moreover ; .
filw) =fa@-§) e Fipa VIV for e .
The equality
ylenpThy (@) = @ falw) ,

for Ae A, proves that y=t-n~'-y-9 e Wiy, which completes the proof of
the theorem.

As a corollary to this theorem and theorem 4 we have the following:

THEOREM 7. Let G be a relatively free nilpotent group of a finite or
countable rank, having nil-c, and let N be the normal subgroup which s
contained in &. Then the group W(G) is an extension of a nilpotent group
having nil-(e—1) by the group A(G/N).

Proof. By theorem 4 the homomorphism induced by the natural
homomorphism of G onto G/N¥ maps A(G) onto WA(G/N). The kernel is
a subgroup of the group 97 which is defined in the proof of theorem 6.
Consequently it is nilpotent having nil-(¢—1). This concludes the proof.
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