On the order of the points of the n-dimensional
Euclidean space

by

F. Previale (Torino)

1. In the research into foundations of mathematics the concept
of order may beidefined in various ways. For our purpose it is useful
to recall one of the most simple and spontaneous definitions (%).

A set § of points or, more generally, elements, is said to be ordered
if for the points of 8 there exists a relationship of preceding < (as opposed
to a relationship of following >) with the following characteristics:

(a) For any two poinis A and B, either A < B, or B < A.

(b) For no point A, A < A.

(¢) For any three points A, B, 0, if A < B and B < C, then 4 < 0.

The relationship of preceding can be extended to the subsets of 8.
The formulas P < a and a< B (P being a point, « and f point sets) will
mean that P precedes every point of a, and, respectively, every point
of a precedes every point of B.

The purpose of this paper is the search for the most general normal
order of n-dimensional Euclidean space H,; that ig for the most general
order of B,, which satisfies, together with (a), (b), (¢), the following
condition:

(d) Given any two points A and B, if A < B, any point C within the
straight segment AB (any point C between A and B) satisfies A < € < B.

2. In our research we assume all those axioms which define the
Buclidean affine geometry of By, (n = 1), i.e.:

the generalized (for a generical n) Buclidean axioms of incidence
(in German Verkniipfung),

the Buclidean axiom of parallelism,

the awioms of the Buclidean order on the straight line,

the so-called axiom of Pasch,

Dedekind’s axiom of continuity.

() The case in question is the total order, according to N. Bourbaki’s terminology
(see Les structures fondamentales de I’ Analyse, Paris 1939, Actualités Scientif. et Industr.
NO 846, p. 34).
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8. LemMa I. Any normal order of B, is also normal in every subset
of Ey.

No proof is needed.

LeMMA II. On a straight line any normal order wmust coineide with
one of the two opposed natural Buclidean orders.

This is almost evident.

In fact, let the order of the line be a normal order. Supposing that
A < B: by hypothesis each point € between 4 and B is such that A < €
< B. Furthermore each point .D of the Fuclidean extension AB of the
segment AB (i.e. such that B lies between 4 and D) is such that A < B< D,
becanse: we caunot have D < 4; otherwise B, which lies between 4 and D,
would also precede A, against the hypothesis A < B, and, on the other
hand, if A < D, the point B, which lies between 4 and .D, must precede D.

Thus it can also be shown that each point E of the extension BA of the
segment 4B is such that B < 4 < B. Therefore, if the mutual order
of two points of the line is known, its order is completely characterized
and coincides with the corresponding Euclidean order.

From Lemmas I and II easily follows:

LEvmA III. Any normal order of B, subordinates on a straight line
one of the two opposed EBuclidean orders.

DEFINITIONS. Let an order of B, and a pencil P of parallel (n—1)-di-
mensional hyperplanes of B, be given; we say that B s ordered according
to one of the two opposed Buclidean orders, if:

a) for any two hyperplanes « and f of 3, either u < f or f< q,

b) any line of F, intersecting the hyperplanes of P is ordered ac-
cording to one of the two Euclidean orders.

Begides we say that B, (for # > 1) is ordered by parallel (n—1)-di-
mensional hyperplanes if there exists a pencil P of parallel (n—1)-dimen-
sio]ial hyperplanes with an Euclidean ordering.

LeMmA IV. If for a normal order of By (n> 1) a (n—1)-dimensional
hyperplane a precedes another (n—1)-dimensional hyperplane f, parallel
o i, the (improper) pencil which comprises a and B has the one Buclidean
order for which a << §; then By is ordered by (n—1)-dimensional hyper-
planes parallel to o and p.

In order to prove the lemma, let us consider any two hyperplanes y
and J, parallel to a and §, and any two lines 7, #’, not parallel to them.
If we call 4, B, ¢, D the points of intersection of «, 8, y, § with 7, and
A', B’y (', D' the points of intersection of a, #, y, 6 with 7, we observe
that 4 < B and 4’ < B'; then also either ¢ < D and ¢' < D', or D< C

and D’< ¢' (Lemma III); that is either y < é or & < y. Therefore
Lemma IITY allows us to assert Lemma IV.
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4. THROREM. For n > 1, any normal order of By is an order by par-
allel (n—1)-dimensional hyperplanes.

The following pages of the present paper include the inductive proof
of the above-mentioned theorem.

(I) Any normal order of the Buclidean plane B, is an order by parallel
lines (2).

Let the order of the plane be a normal order.

If we consider on the plane any line r and a point P outside of it,
then one of the following two cases may occur:

Ay P<r, or v <P,

B) on 7 there are points which precede P as well as those which
follow P.

Case A. Let us suppose for example that P < r. Then it can be
shown that the line s, passing through P and parallel to », precedes ».
Indeed, if it were ngpt so, there should be a point ¢ of r which precedes
a point @ of s. Since P < €, we should have P < . Therefore, taken

a point T on the extension C‘?j, we have P < T (Fig. 1) (3). On the other

hand, on the extension TP there exists a point D of r. According to the
above, D < P, while by hypothesis P < D. This contradietion proves
that @ < 7. Therefore ¢ <7.

In the same way, if » < P, it may be shown that r <s.

Lemma IV allows us to state that in case A the plane is ordered by
lines parallel to 7.

Case B. On 7 there are points which precede P as well as points
which follow P. Therefore we obtain a partition of all points of » in two
Dedekind’s sets, the first of which contains only points which precede P,
while the second contains only points which follow P. To these two sets
corresponds one (and only one) separation point M, which is either the
last point of 7 preceding P, or the first point of r following P.

Let us consider any point P’ outside the lines PM and »; we observe
first of all that there is a point M’ of r, which is the last point to precede
or the first point to follow P’. Otherwise we would return to the case
studied before, which is incompatible with this one.

We intend to show that the line PM is parallel to the line P'M'.

Let us ervoneously suppose that the lines PM and P’ M’ have a point
8 in common, and let us consider two cases:

(*) One particular order by parallel lines is the well-known order of the eomplex
plane, examined by 0. Stolz and J. A. Gmeiner (Theoretische Avrithmetik, Part II,
Leipzig 1902, p. 280).

() In the following figures we will replace the symbol < by —-.
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Case Bl. M = M’ = §. In this case, if P and P’ were on the two
opposed sides of r, the segment PP’ should meet 7 at a point @ distinet
from 8 = M = M’ (since P’ is outside the line PM). We should have
P< @< P or PP< @< P, according to whether P precedes P’ or vice
versa. But, on the other hand, M and M’ coincide; so all points of »
preceding P (if any, other than S) should also precede P’ and wvice versa.
This means that P and P’ should be on the same side of 7.

However, it is obvious that they cannot both precede or both follow S.

Tn fact, if we take a point 7 and a point 7", the first on the extension PS
and the other on PTS”, it is evident that one of the two segments PT'

s

r r
.
q P!
¢
P
p
0
Fig. 1 Fig. 2

and P'T meets r at a point A which precedes 8, while the other meets »
at a point B which follows § (Fig. 2). Now, if P< § and P’ < 8, we should
not only obtain P< T and P’ < T", but also P < §< I" and P' < §< T,
and therefore either P < A, or P’ < A, which is obviously absurd. If,
on the other hand, § < P and § < P’, we should have 7" < P and T < P/,
and consequently B < P or B < P’, which is equally absurd.

Therefore we ought to have P< 8§ < P’, or else P' <8< P. For
obvious reasons of symmetry, it is sufficient to show the absurdity of
the first of the two cases, in order to exclude both of them.

Since on the line PP’ there arve points which precede § (like P) as
well ag points which follow § (like P’), there must be (on the segment PP’)
a last point N preceding 8, or a first point N following § (Fig. 3). It is
not difficult to prove that, if T is a point on the line S¥ and R and R’
are any two points lying on the two opposed sides of N, R on the same

side as the extengion P"}', and R’ on the same side as the extension P—f”,
then R < T < R'. In fact § < R, because: if the line R'S meets the line
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PP’ at a point V' of the segment NP’ or of the extension ff”, the point
R’ cannot lie on the extension V'8 and therefore, in view of § < V' ', We
have 8 < R'; if, on the other hand, the line R’S meets the line PP’ at
a point V of the segment NP or of the extension PT}, the point R’ must
lie on the extension 173', and therefore, in view of V < §, we again have
8 < R'; and if finally the line R'S is parallel to the line PP’, we can still
find a segment R;R; on the side of Pf”, which comprises R’ and is not
parallel to the line PP’, and therefore state that S precedes R, as well
as Ri and R;. Thus also R < §. From this our assertion follows easily,

r
P

Fig. 3

If we now suppose N to be distinet from P, and we consider a point T
on the extension N§ (Fig. 3), the segment PT meets 7 at a point @, which,
on one hand, should follow P, since P < T, and, on the other hand, should
precede P, since @ < 8 (S is not preceded on r by any point which
follows P). Therefore we have N = P. In the same way it may be shown
that N = P’. We deduce P = P’, that is, a contradiction.

Therefore we have to discard Case B1, in which M and M’ coincide
in 8.

Case B2. M and M’ are different. Let us suppose that M < M,
because, if on the contrary we should have M’ < M, it would be sufficient
to change the function of the two couples (P, M) and (P', M’).

If there were a point § common to the lines PM and P'M’, one
of the following three cases would occur:

B2a. M<8, M <8,
B2b. S< M, 8 <M,
B2e. M<S8, S8 <M.

But we shall now prove that all of them are impossible.
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Case B2a. M <8 and M’ < §. In this case there could not be
P < M < 8. Indeed, if it were so, for a given point T of the extension
s (Fig. 4), the segment PT would meet 7 at a point @ lying on the
extension M3, Now, since P< 8 < T, we should have P < Q. But,
since Q < M, the definition of M calls for @ < P. Therefore the absu.rdity
has been proved.

Fig. 4 Fig. 5

Neither could we have M < P < 8. In fact in this case, let us again
consider a point 7' on the extension s (Fig 5). We see that the line PT
meets ¢ at a point ¢ of the segment M M’, which lies on the extension TP.
Since P < 8 < T, we should have < P, which is again in contradiction
to the definition of M, namely that M < @, which would call for P < Q.

Fig. 6 Fig. 7

And finally, there could not be Il < § < P, since otherwise from
M’ < 8 we could deduce M’ < P, which is in contradiction to the de-
finition of M, namely that M < M’ (Fig. 6), which would call for P < 3’

Therefore Case B2a is to be discarded.

Case B2b. S< M and 8 < M'. In this case we could not have
S< M < P’. In fact, if we should choose instead a point 7' on the ex-
tension M8 and call @ the point of intersection of the segment TP’ with
the line 7, since 7'< 8 < P’, we should have Q < P’ (Fig. 7). But, since
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M' < @, in accordance with the definition of M’, we should have the
contrary, that is P’ < Q.

Neither could we have 8§ < P’ < M'. In fact in this case, if 7 is
a point on the extension 1[8 and if Q is the point of intersection of the
segment MM’ with the extension TP (Fig. 8), since T<S8< P, w
should have P’ < @, which is in contradiction to the definition of M’,
which calls for @ < P’.

And finally, we could not have P’ < § < IM’, because otherwise
we should have P’ < M, in contradiction to the definition of M’, namely
that M < M’, which calls for M < P’ (Fig. 9).

Therefore we can also discard Case B2b.

Case B2e. M < 8 and 8 < M'. In this case we observe first of all
that there are an # points (like If), which precede S, as well as points

.
T /'/ Q S
3 g .
Fig. 8 Fig. 9

(like B"), which follow S. Let the point N of the segment MM’ be the
last point of 7 to precede S, or the first one to follow 8. Taking advantage
of the proof made for a perfectly identical case (Case Bl), we may state
that of the two sides genemted in the plane by the line NS, one, which
containg the extension M ’JII consists of points preceding each pomt
of the line N8, while the other one, which comprises the extension M JL[
consists of points following each point of the line N8.

Let us now suppose N different from M.

Then Case B2¢ can be divided into three subcases, which are all
impossible.

We could not have P < M < §; otherwise, if T is a point on the
extension N8 and @ is the intersection of the segment PT with the ex-
tension M'M (Fig. 10), we ought to have P < T; then P < @, in con-
tradiction to the definition of A, namely that @ < 3, which would
require < P.

Aceordingly we cannot have M < P < 8, since otherwise, if T is
again a point on the extension N8 and Q is the intersection of # with
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the extension TP (Fig. 11), we should have P < T'; then @ < P, in con-

tradiction to the definition of M, namely that M < ¢, which implies P < Q.
And finally, we cannot have M < 8 < P; otherwise, if @ is a generical

point within the segment MN, we should have @ < 8, according to the

definition of N, and P < @, according to the definition of M; this means

that we should have simultaneously @ < P and P < @ (Fig. 12).

Fig. 10

Fig. 11

Analogous contradictions are found if we suppose N different from
M’ and we study the (only) three subcases into which we can break down
Case B2c¢:

S<M<P, S<P<M, P<S<M.

We deduce that not only N = M, but also N = M'; then M = M’
This contradiction proves that Case B2c must be discarded.

. Fig. 12

Therefore, Case B2 also brings us to the conclusion that there cannot
exist a point 8 common to the lines PM and P'M’. It follows that these
Iines are parallel.

) Now let us consider any point P of the line PM; there certainly
enftlsts a last point M" of r preceding P'' or a first point M*' following P"'.
Since the latter statement is obviously valid even if we change the point-
couple (P, M) into (¥, 1’) and the point-couple (P, M') into (P", M"),
we can conclude that the line P M" is parallel to P'M’. Therefore P"'M"
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coincides with PM and M" coincides with M. We then deduce that all
the points of the line PM, in particular P and P”, are preceded by the
points of » which precede M, and are followed by those which follow 3.
Besides any other line P’ M’ parallel to P M will have analogous properties
with respect to the line » and to the point M.

Thus we have proved that also in Case B the plane is ordered by
parallel lines (Lemma IV). These are the lines parallel to the line PM.

In conclusion our assertion (I) is completely proved.

(XT) If for any m, such that 2 < m < n, a normal order of the space
B is an order by parallel (m—1)-dimensional hyperplanes, the same oc-
curs for m = n.

Proof. Let the order of the space B, be a normal order. We will

“consider any (n—1)-dimensional hyperplane « and any point P outside

plane B, passing through P and parallel to a, precedes a.
through C and g in the line P parallel to r
B ﬂ
of Lemma I and of the proof of the case A of
Then @ < C; that is < a. p CJ
In these two cases By is ordered by (n—1)-

of it, and we will first show that, if P < «, the (n—1)-dimensional hyper-
Let us consider in fact any point @ = P of g and any point € of a.
The plane 7, passing through the points P, @, 0, meets a in a line  passing
(Fig. 13 corresponding to case n = 3). But
since each point of 7 is preceded by P, in view
assertion (I), 7 shows an order by lines paral- 0
lel to 7, and the line PQ precedes the line 7. i
In the same way we may prove that, if [
a< P, then a < B. /
Fig. 13

dimensional hyperplanes parallel to a, as fol-
lows immediately from Lemma IV.

Let us suppose now that P neither pre-
cedes nor follows a. In view of Lemma I and of the hypothesis of the
inductive proof, the hyperplane a is ordered by parallel (n—2)-di-
mensional hyperplanes. The improper pencil P of these (n—2)-di-
mensional hyperplanes comprises certainly one (and only one) ele-
ment u which separates the hyperplanes which precede P from those
which do not precede P (because Dedekind’s axiom is valid for any
improper pencil with a Huclidean. ordering). It is not difficult to prove
that the (n— 2)-dimensional hyperplanes of P which follow u follow
also P. Tndeed, if there were a (n— 2)-dimensional hyperplane u' of P,
following u, which did not follow the point P, there shounld be another
hyperplane p' of B, such that u < u’ < u, which could precede P; but
that is absurd. We will prove that the space H, is ordered by (n —1)-di-
mensional hyperplanes parallel to Pu.

Fundamenta Mathematicae, T. L (1962) 32
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In fact let us consider a generical point P’ outside the (n—1)-di-
mensional hyperplanes Py and a. Consequently there must be on « an
(n— 2)-dimensional hyperplane u’ of P, such that every other hyperplane
of P precedes or follows P’, according to whether it precedes or follows u'.
If this were not so, we should fall again into the case of an order by
(n—1)-dimensional hyperplanes parallel to «, which is incompatible with
this one.

First of all we will show that the (n—1)-dimensional hyperplanes Py
and P'u’ are parallel.

Let us consider a plane =, passing through P and P’, but not parallel
to the (n—2)-dimensional hyperplanes x and u'; it meets « in a line r
and u' respectively at two points N and N’
of » (Fig. 14, corresponding to case n = 3).
Because of the particular relationship of x to
P and of u’ to P’, we find that the point N
is the last one of 7 to precede P, or the
first one to follow P, and similarly that N’
is the last point of » to precede P’, or the
first one to follow P’. Therefore the plane =
is ordered by lines parallel to PXN, as well as

and of the proof of Case B of assertion (I));
but this can happen only if the lines PN and
P'N’ are parallel to each other. The two
(n—1)-dimensional hyperplanes Pu and P'u’,
containing two parallel (n— 2)-dimensional hyperplanes (u and u’) and
two lines, not belonging to them, but parallel (PN and P’N’), are there-
fore parallel in their turn.

Let uws now take a generical point P of the (n—1)-dimensional
hyperplane Py, and consider the corresponding (n— 2)-dimensional hyper-
plane y'*, which, of all the (n—2)-dimensional hyperplanes of « parallel
o u, separates those which precede P’ from those which follow it. We
observe that the (n—1)-dimensional hyperplane P"u" is parallel to P'u’
andh therefore must coincide with Pu. We may conclude that x4 coincides
with u.

From the latter assertion we deduce that all the points of the

(n—1)-dimensional hyperplane Py are preceded by the points of ¢ which .

pr?,eede #, and are followed by those which follow 4. The same can be
said, referring to the corresponding (n—2)-dimensional hyperplane u’,
of every other (n—1)-dimensgional hyperplane P’y’ parallel to Pu.

Therefore it easily follows from Lemma IV that the space B, is
ordered by (n—1)-dimensional hyperplanes parallel to Pu. In conclusion
our assertion (IT) ig completely proved.

by lines parallel to P'N’ (in view of Lemma I’
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5. The theorem of no. 4 and Lemmas I, II, IIT allow us to give an

inductive characterisation for the most general normal order of E,.
Any normal order of En, ‘

for m =1, coincides with one of the two opposed Huclidean orders of the
line Ey; . ' ~

for n>1, coincides with an order by parallel (n—1)-dimensional hyper-
planes, which subordinates on each of these hyperplanes a normal order
(which will be an Buclidean order if n =2, and an order by parallel
(n—2)-dimensional hyperplanes if n> 2). .
Since this induective definition of the most general normal order is

a constructive definition, it proves also the existence of normal orders

for any n.

Re¢u par la Rédaction le 15. 4. 1961
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