Axioms of multiple choice
by
A. Lévy* (Berkeley, Calif.)

Throughout this paper let & 3y stand for ¢There exists a one-one
mapping of z into y"; let m,n be variables ranging over the positive
integers and let ¢,j be variables ranging over the non-negative integers (*).

Consider the following statement.

Z(n): On every set @ of non-void sets there exists function f such that
for every y ez f(y) Cy and 0 # f(y) 3 n.

Z(1) is obviously equivalent to the axiom of choice. Tt will be proved
that, for every =, Z(n) is equivalent to the axiom of choice, and so is
even (Hn)Z(n). It will also be shown that this answers affirmatively
the question raised by Chang [1] whether the maximum principles
mentioned there arve equivalent to the axiom of choice.

On the other hand, it will be shown that the statement

Z(oc): On every set m of non-void sets there ewisis a function f such
that for every yex 0 = f(y) Cy and f(y) s finile

(which obviously follows from the axiom of choice) does not imply the
axiom of choice (in a suitable system of set theory). Moreover, it i3 easily
geen that Z(oo) in conjunction with

C(c0): On every set % all of whose members are finite bul not void there
ewists o function ¢ such that g(y) ey for every y e

is equivalent to the axiom of choice; however, it will be shown that for

C(n): On every set © all of whose members have exactly n members there
ewists a function g such that g(y) ey for every yex

the conjunction Z(co)A(Vn)C(n) does not imply the axiom of choice.
An immediate corollary of this fact is that Z (o)A (V)0 (n) does not
imply C(o0), and, a fortiors, (Vn)C(n) does not imply C(co). The methods

* This work was supported by the National Science Foundation of the U.8.A.
under grant G-14006.

() An ordinal (and, in pariticular, a non-negative integer) in taken to be the
set of all smaller ordinals. : '
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used in the metamathematical part of this paper originate with Fraenkel
[2] and were developed by Mostowski ([6], [7]).

We write

Wi(n): For every set z theve exists am ordinal a and a function h on «
such that h(f) S n for every f < a and \Jh(B) = 2.
v B<ea

LuemMA 1. (Vn)(Z (n)<=> W (n)).

Proof. Assume Z(n). Let z be any set and let P(2) be its power set.

By Z(n) there is a function f on P(2)— {0} such that for every y ¢ P(z)

—{0} f(¥)Cy and 0 = f(y) S n. We define J; by transfinite recursion

as follows. hy=f(z— Uﬂh,,) it 2—\Jh, 0 and hg =0 if 2— Bk, = 0.
<,

p<p y<p
If for every f8 hy # 0 then, since, as one easily sees, for £y hynh, =0

and hence %z % h,, we have a one-one mapping of the class of all ordinals
into P(z), which is a contradiction. Therefore there is an ordinal a
such- that h, =0 and hence 2—|Jh,=0, z=|Jh,. The function

y<a p<a

b= {{f, > | B < a} on a obviously satisfies the requirements of W (n).

Assume W(n); let © be a set of non-void sets and let U(w) be its
union set. By W(n) there is an ordinal « and a function % on a such that
k(B) 3w for every f<aand |Jh(8) = U(x). If yex then y =y ~ U(x)

p<a
=5U(yr\h(ﬁ)); since y 5= 0, there exists a B such that y ~ h(8) #0.
<a

For y ex put f(y) =y ~ h(B,) where 8, is the least § such that y ~ h(8) 0.
The function f thus defined obviously satisfies the requirements of Z(n).

THEOREM 2. (Hn)Z(n)<=Z(1).

Proof. Obviously Z(1)—(Hn)Z(n). Assume (Hn)Z(n) and let m
be the least n such that Z(n). We want to prove m = 1. Assume m > 1,
then ~Z(m—1). Let z be any set; by W(m), which follows from Z(m)
by Lemma 1, there is an ordinal « and a function % such that h(B) 3 m
for < a and 5L<_J k() =2 Let = {h(B)xXh(y)| B,y < a} (where axb

= {(u, > | weanved}). By Z(m) there is a function f on x— {0} such
that f(y) Cy and 0 #f(y) 3 m for y ex— {0}. If

(1) there ewists a B such that h(8) = 0 and for all y<a hiy)=0 or
le(h(ﬁ)xh(y))] has exactly m members

{where D(u) = {v | (Hw)(<{w, w> €w)}), then for each such B and any
y < a for which h(y) # 0 since h(f) <Im and D(f(h(ﬂ) X h(y))) C h(B),
'we have %(f{h(ﬁ) X h(y))) = h(B) and hence 7(B) has exactly m members;
since also f(h(8) X h(y)) < m, f(#(B)x h(y)) is a function mapping h(B)
into h(y). Fixing one § as in (1) and a member ¢ of h(p) we define, for
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y<a, yly)=Fh(B)x R(y) (@) if h{y) =0 and Iuy(y)=0 if h(y)=0;

Bu(y) = B(y)—Ra(y). We have, for y < a, In(y) 21 3 m—1, hy(y) 3 m—1

(since if {y) = 0 then hy(y) = 0 and if 0 3= h(y) S m then Iy(y) is a sin-

gleton and hy(y) = h(y)—h(y) Sm—1) and L<) () © Bolp)) = U R(y) ==
y<a y<a

If, on the other hand,

(2) for every B, h(B) =0 or there exists a y such that h(y) #0 and
D(f(n(B) x b)) Sm—1

then for every 8 < a such that h(B) # 0 let y; be the least such y. Put
now, for g<a, M(B)= D(;f(h(ﬁ)xh(yﬁ))) if h(f)s=0 and M(B)=0 if
R(B) = 0; hy(B) = h(B)—hy(B)- If #(B) =0 then, by definition of h(f),
0 = Iy(B) I m—1 and, since hy(f) = h(B)—Mh(B), also ho(B) S m—1; if
2(B) =0 then m(f) = hyf) =102 m—1. pg(hl(ﬂ) w he(B)) =ﬁL<juh(,3) =z

In both cases (1) and (2) we define a function i* on a-+e by h*(u) = ha(p),
Wa+p) = hy(p) for u < a. By what was shown above about % and
T, we have h*(u) 2 m—1 for < a+aand |J #*(u) = 2 Thus we proved

n<ata
W(m—1), which implies, by Lemma 1, Z(m--1), contradicting our
assumption.

Following Chang [1] we say, for n > 2, that a set z is n-disjointed
if any distinet # members of z have an empty intersection. A subset ¥
of x is said to be a maximal n-disjointed subset of « if y is %-disjointed
and is not properly included in any #-disjointed subset of 2. We consider
the statement

w: Boery set x has a mazimal n-disjointed subset.
As mentioned in Chang [1] the axiom of choice implies (Vn = 2)w.
The theorem »,—Z(1). of Vaught [9] (and its proof) is generalized as
follows.

LEaa 3. (Vo 2> 2)(m—Z(n—1)).

Proof. Let # be a set of non-void sets. We have to prove that there
exists a function f on # such that for every y ez f(y)Cy and 0 # f(y)
< n—1. As is well known, we can assume without loss of generality that
the set  is disjointed (i.e., 2-disjointed), since otherwise we can replace &
by {{<¥,20| zey}| y ex} ete. Let u= {{y, {H yem,’\tey} and let
2 be a maximal n-disjointed subset of . We put, for yewm, ()
= {tl {y, {t}} e’D}. As one easily sees, for yem, f(y)Cy since »Cu,
fly) 2 n—1 since v is n-disjointed and f(y) # 0 since # is disjointed,
Yy #0 and » is maximal.

By Lemma 3, Theorem 2 and what was mentioned in Chang [1}
we have

THEOREM 4. (Hn > 2)wv, is equivalent to the awiom of choice.
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For the metamathematical part of the paper we need the following
Lemma 5‘. I)l:l Lemma 5, as well as in the refutation of (10) and the proof
of (12) within the proo_f of Theorem 6, Mostowski [7] is followed closely
Let pys Py, .. be the primes in their natural order. If H is a group and L

a subgroup of H we d ‘ it
of H %)Tverpl}. we denote with Ind(H/L) the number of (left) cosets

LemMA 5. Let I, be the ecyclic group of order p; and Gy =[] I,
i>5

(I stands for the weak direct product). For every n there exists a § such
that for all subgroups H of G; and L of H L = H or Ind (H/L) >?oz» “
Proof. For a given n take § to be the least s i .

15 Ind(H/L) =1 n Let H=L+¢WL+... +s«;1(’c—li)2ha{fep%h>e 7ge*2§;111m?
sition of H in cosets of L. Every ¢ is a sequence (pi?, ¢! ' > vs;hp(‘)
almost all zp%) are the respective units 1; of I;. Suppose éha{t. lqi(?:)"= 1 :;J(;
k> g; and let ¢ be the greatest of the numbers g, ... G1—1- £et Hﬁ be
the subgroup of H containing all ¢’s such that ggm, = 1;+m ;or all m an(i
let I* be H* ~L. ¢, .., 0D ¢ H*. We shall show that the decom-
Dosition of H* in cosets of L* is H* = L*+oWL* ...+ g0-DL*, If ¢ ¢ H*
then geH and hence ¢ ecg®WL for some <1 (p©=1) i.e. i (@)
where y e L. But since ¢, ¢ e H*, one has v = g)-1p e’H* .t’.hlips (ZL%:
aCFl(?. ? cp®L*. Hence H* = L*+nL* L, 4 gl-1L*, Thesé (’osetzJ are
disjoint because they are included in the respeetive IL-cosets. Tlhus we
have Ind(H*/L*)=1. The projection of H* into [] I, i3 an isomorphism
of H* onto a subgroup H** of -<H Ip. Let L*ffg the projection of L*.

F<i<
Thus 7 = Ind (H*/L*) =Ind(H**/L*i) is a divisor of [] p; and hence
=1 or 1> p;> n, contradicting 1 < I < n. i
Let & be the set theory given in Mostowski [6]. This is a set theory

of dfshe ;Bernays-(}ﬁdel type which permits the existence of urelements
and which does not have the axiom of choice among its axioms.

THEOREM 6. If & (or the s A, B 5 . .
ystem C of Godel [3 nsist
then Z(o0)A(Vn)C(n)—Z(1) is ’M?,prm,a;,le ’,L’n Gf(l) [3]) is consistent

knmf:]?:ti }f: 86 :(s coxzr,lstent then by the .construction of Godel [3] we
ohnaton e S g’:deﬁs ,frB, C, D, E of [3]_ is congistent. The same con-
o 13 s : o from the assumptlo.n that the system A, B, C
o consistent (see the remark preceeding axiom D on p. 6 of [3]
systei] S(; S%epgerﬁso% [81, PP- 164-165). From the consistency of the
SR e,nt » G, D, E, taking the group ® in Mostowski [6] to be the

group, we get the consistency of a system &* which is &

1
rop Q] ?)y E(hze(method of Mendelson ‘[5] one can prove Theorem 6 with the conclusion
laced by o) A (V) C(n)->Z (1) is unprovable in the system A, B, C of Godel [3]”.
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with the axiom of choice and the axiom ¢There exists a denumerable
set of urelements” added. To show that Z (o)A (V) C(n)—~Z(1) is un-
provable in & we shall prove that the system S+ {Z(o0), (Vu)C(n),
~Z(1)} is consistent by giving an interpretation of the latter system
in &*. In order to do it we shall now proceed within S*.

Let K be a denumerable set of urelements. We define K,= K,
K,=Kv U P(K,), where P(2) is the power set of . If there exists

<n

I3

an 7 such that # ¢ K, we say that « is a K-element. Let @ be the group
of all permutations of K. For ¢ ¢® and a K-element » we define ¢(x)
by recursion as follows.

(38) For o e K p(x) is already defined; for x¢ E o(z) = {p(y)| y e @} ()
One can easily verify (see [6]) that

(4) (@v)(@) =o(p(@), 1(x)=a (where 1 is the identity),

(8) p(@ny) =@ ne)-

Since K is denumerable, there is a one-one correspondence between
the denumerable set {<p:, ¢» | sewrg <p} and K. Let k;q be the
member of K corresponding to <(p;, ¢», thus K = {kiq| 1 e @A < Pi}-
Let K = {kiq| g < p}; let x; be that member of @ for which y:(k;q)
=k;q for § =iy falkig) = kg for ¢< pi—1, and p(kip—1) = Kio-
Let ¥ be the subgroup of @ generated by {xi| © € ®}. Let the variables
a, b, ¢ range over the set of finite subsets of w. A permutation g ¢ ¥ is
said to be b-identical if p(ksg) = Fig for every ¢ eb and ¢ < pq; the group
of all b-identical members of ¥ will be denoted with w? An element @
is said to be b-symmetric if z is a K-element and @(z) = x for every
@ € P°. We define M, by recursion as follows.

) {MO=K and for >0
e, (Vyex)(HE<(Ye M)A (ED) (z is b-symmetric).

If there exists an 7 such that » e M, we say that o is an M-element.
By (6) #is an M-element if and only if every member of #is an M-element
and for some b @ is b-symmetric. A class X is called an M-class if (Vy € X}
(y is an M-element)A(Hb) (Vo ¢ P°)(Vy € X)(p(y)  X). One can easily
verify that

(M My=Kwv {0},
(8) x e Mnp e V—p(x) e My,

(9) @,y e My~ {2, y} e My A <@, Y> € Mo

(*) Actually, a new term with two variables, ¢ and , is defined here and notation
different from the functional notation () should be used, but since no confusion can
arise we nse the same notation.
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As shown, essentially, by Mostowski [6], if we interpret & in ©*
by replacing the primitive notions ‘element’, ‘class’, ‘¢ and ‘0’ of S by
the notions ‘M-element’, ‘M-class’, ‘¢ and ‘0’ of &* respectively, all
the axioms (and the theorems) of S will go over to theorems of &* In
order to prove the consistency of €+ {Z(o0), (Va)C(n), ~Z(1)} we have
to show that Z(co) and (Va)C(n) go over to theorems of &*, whereas
Z(1) goes over to a sentence refutable in S* Using the standard abse-
luteness results, which are proved in Mostowski [6], we see that Z(1)
goes over to a sentence equivalent to :

(10)  For every M-element x which is a set of non-void sets there is an

M-element f which is a function such that for every yex f(y) €Y,
that Z(c0) goes over to a sentence equivalent to

(11)  For every M-element @ which is a set of non-void sets there is an
M- element f which is a function such that for every y ez 0 # f(y) Cy

and f(y) is finite -

{here we use the fact that the notion of finiteness is absolute with respect

to this interpretation—see Lemma 1 of [4]), and that (Vn)C(n) goes over
to a sentence equivalent to

(12)  For every n and for every M-element x which is a set of sets which
have -exactly n members each there exists an M-element | which is

@ function such that for every yex f(y) ey.

To refute (10) take for # the set {K“”| i e w} which, by (7), is easily
seen to be in M. Let f be as in (10); then, since f is an M -element, there
is a b such that f is b-symmetric. Let j ¢ b; then, since %7 is b-identical,
2ilf) = f. Since FlES e K9, we have FIEDY = k;q for some ¢ < p;, ie.,
CE?, ksg> «f and hence, by (3), <KD, y;(k;,0)> = g <KD, Torgd) € 4(f) = 1.
By definition of y;, z;(kj,) # %s,q and hence (K9, %5, (XY, 1ilfia)> €f
contradicts the assumption that 7 is a function.

Now we shall prove (11). Let u, v be K-elements; we define w~v
<= (Hp ¢ °) [p(w) = v). One can easily see, by (4), that ~ is reflexive,
symmetric and transitive. For a K-element u let Hy(u) = {v | v~pu}. Let

Fo={p| 9 PAVI)(Vq) (i ¢ eAq < pi—>p(kig) = Fig)} .
Let p « ¥*, then 9 — 7o where v and o are defined by
T €ang < pi>olkig) = kight(kig) = p(ksg)
1€ ang < Pi—>0(kig) = p(kig) AT(ksg) = Kig -

Obviously o P and veW, ;. Let % be an M-element, then % is a-sym-
metric for some a. For ye PP we have, by (4), p(u) = (vo)(u) = T(U('M))
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1 b
— 7(u) (where v and ¢ are as above) and hence Byw) = {p(u) | pe ¥}
= {v(u)| 7€ Pap}. It is easily seen that ¥, has exactly Il ) p; members
1€Q~—!
and hence By(w) is finite. Since u is an M-elelglent, then, by (8), all the
members of By(u) are M-elements. Let pe ¥

o (B(w) = [glp() | v P} = {lgp) () | v e ¥

and since WP is a group, the right-hand side is {y(w) | pe Y = Ey(u).
Thus Eplw) is b-symmetric and hence Fy(w) is an M-ele’ment..

Given a set & as in (11), since # is an M-element, thexje isab su.ch
that « is b-symmetric. Let z = |U(By(t)) | ¢ e 2}. By the axiom of choice
(in ©*) there exists a function g on # such that g(s) e s for each s e2. Let

= Bl TN 3} 53]

For ¥ ez, g(U(Eb(y))) ¢ U(Byy)), hence there is some ge P such that
g(U(E,,(g))) c(y). By (8), p(y) is an M-element and hence g{U (Es(y)))
is also an M-element and therefore E,,(g(U(Eb(y)))) is an M-element.
Since, as is easily seen, if w is a-symmetric ar}d v is c—symme.trig thEI,L,
by (3), ¥~v is avc-symmetric, the intersection of two sets which are
M-elements is an M-element. For ¥ € #, ¥ is an M-element and therefore,
by what was just said and by (9), it follows that all the mel_nbers of f
are M-elements. To show that f itself is an M- e%ement we still have to
show that f is b-symmetric. For this purpose ? 1s_$nou§h to show that
for every g e PP o(f) C f, since then, for p e ¥, ¢7 € ¥° and

F=1() = (p9)(f) = ¢ He(H) Co(N CF
and hence g(f) = f. By (3) and (3)
ot ={ (o), o Bl TE)) ~ p) 1 9 €3]
and since Eb(g(U(Eb(y)))) is b-symmetrie,

#) = (o), Bo(T(EBW))) ~ o) ] v €3}

Tor a fixed y ex put p(y) = 2. Since ¢ ¢ P’ and @ is b-symmetric, we
have z ex. Since z~py, we have Hy(2) = Ep(y). Thus

{p@), Blg[V@W)) ~ o)) = Eifg(U(B@))) ~ #) <

and hence ¢(f) Cf.
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We still have to show that, for Yem, 0=f(y) Cy and f(y) is finite.
f(y) Cy follows directly from the definition of f. As was mentioned earlier,
there is a e %” such that g(U(Eb(y))) €p(y) hence, by (3) and (4)
7 {y(U1E) e But, since =1 ¢ ¥, poig(U(Ey))) < By{g(U(Bu(y))),

hence qu(g(U(Eb(y)))) €f(y), i.e,, f(y) # 0. f(y) is finite since g(U(Eb(y)))
is an M-element and, as was remarked above, for every M-element 4
By(u) is finite and hence (y) C E,,(g(U{Eb(y)))) is finite.

To prove (12) let n and » be as in (12). Since # is an M -element,
@ i3 b-gymmetric for some b. For the given = let j be as in Lemma 5.
Without loss of generality we can assume that JC b (since z is, a fortiori,
b v j-symmetric). Since z is b-symmetric, u e xAU~pyO->v €z (by (3))
and hence # is the union of a set of ~s-equivalence classes. By the axiom
of choice there is a subset 2 of # which contains exactly one representative
of each equivalence clags and hence x — U By(y). Since 2z C =, every

yez

r

member y of 2 has # members. By the axiom of choice there is a function
g on # such that for every y ez g(y) ey. Let Hy={p|pe Tb/\qv(y) =y}
and let I, = {p | ¢ « HyAp(g(y)) = g(9)}. By (3), if 7 « H, then 7(g(y)) €.
If r and o ave respective members of distinet left cosets of Hy, over L, then
7(9(y) # o(g() (since it 7(g(y)) = o(9(y)) then, by (4), g(y) = (v-0) (g(y))
and r7%¢ e I, which is impossible) and hence 4 has at least Ind(H,/L,)
members, i.e., Ind(H,/L,) < n. Since we assumed that jCb, we have
H,CP'CW. ¥ i easily seen to be isomorphic to []I, and hence,
]
by Lemma 5 and Ind(H,/L,) <n, L, = H,. Put § = e, olg)>] v
ez/\q)e‘P”}. Since g(y)eyex, y and g(y) are M-elements and hence,
by (8) and (9), every member of f is an M-element. Since ¥ is group,
f 18 b-symmetric by (3) and (4). The domain of f is )| yezng e ¥}
=yLeJ P ey =U Byly) = 2. To see that 1 is a function let p(y)
z yes
=@ (y) for ¥,y ez, ¢,9 ¢ ‘P”, then y = ¢~¢'(y"), i.e., Y~py’ and since z
contains exactly one representative from each ~j-equivalence class,
we have y =y'. Thus y = 79 (y), hence iy’ € H, and since L, = H,,
9 (9(»)) = g(y), hence ?(9(¥) =¢(g(y)) and f is a function. To com-
plete the proof we note that, by g(y) ey and (3), we have q;[g(y)) € p(y).
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