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difféventes, les suites {E(10i~m1)} et {B(10°-z,)} sont incomparables. II
existe donc (axiome du choix) un ensemble T de 2% nombres réels di-
stinets 2 pour lesquels les suites {H(10°-2)} sont incomparables deux & deux.
Il est & noter que, dans le travail précité de Waraszkiewicz, clest
seulement la puissance 2% de I’ensemble des # et y pour lesquels les sui-
tes (3) sont incomparables et non pas sa structure continuwe qui intervient
dans la construction de la famille ¢ de 2% spirales &, incomparables
deux & deux (dans le sens défini an début). Ce fait permet de maintenir
le résultat de Waraszkiewicz par la simple correction consistant & réduire
la famille § & celle des spirales S, olt  ne parcourt que 1’ensemble T de
valeurs donné par le théoréme -2.
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Suspension of transgression
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I. M. James (Oxford)

1. Introduction. In a fibre bundle, there exist relations between
the homotopy invariants of the fibre, the total space, and the base. It
is interesting to investigate how such relations depend on the fibration.
For homology much is already known. Here (see also [7]) we study the
suspension of the transgression homomorphism in the homotopy exact
sequence of the fibration. Information about the transgression is obtained
which adds something to our scanty knowledge of the relation between
the homotopy groups of the fibre, the total space, and the base.

Consider a fibre bundle with fibre ¥ and projection f: B—X, where B
is the total space and X is the base. Let SY denote the suspension of Y.
We study the composition

(X)) S 21 ¥) S 7(8Y)

where A is the transgression and F is the suspension operator. The Hopf
fibration of 87 over S§* provides an example where F4 is not induced
by a map X—~S8Y.

To construct 8Y we take C° and C%, two copies of the cone on ¥,
and identify their bases, so that

Y=0nC, SY=CouCl.

Since fY is a point, we regard the cone on Y as a subspace of the mapping
cylinder of f: B—X. Let I gnd I be copies of this mapping cylinder,
with their bases identified, and let XB denote their union, so that

(8Y; ¢, (") C (ZB; I, I,

We extend f to a fibration ¢: YB—X by defining ¢(82) = f2, where
8z C ZB denotes the suspension of zeB. Thus if x X then g~z is the
suspension of 'z, and an admissible map SY-»g—x is the suspension
of an admissible map ¥ —f '#. Similarly I (¢ =0,1) is represented as
a fibre bundle over X with fibre ¢* and projection g{I’i. The mapping
cylinder of f containg X as a subspace, and so there exist cross-sections
}: X—ZB such that WX CI". Let @z, € X, Y, € ¥ be basepoints, with
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= fy,. We use ¥, as basepoint for 8¥ and B, also for ¢* and I By
translatlon of the basepoint along Sy, we 1dent1fy ) homotopy groups
based at y, with those based elsewhere on Sy,.

We choose the suspension operator F to be the one such that

(1.1) EES =1,

as shown in the following diagram, where 6 denotes the boundary operator
and £, 5 are injections.

700, ¥) S m (8T, O
ay re

oY) > (S T)

If C° and C' are interchanged then F is changed into — .
Since the fibration g: XYB—X admits a cross-section, its homotopy
exact sequence splits and the injection

o: #(8Y)—>mn.(XB)

is & monomorphism. We shall prove
THEOREM (1.2). The composition

cBA: 7(X)—>mn,.(XB)

is equal to the difference h3— Il between the homomorphisms induced by
the cross-sections ho, ht: X 2B,

COROLLARY (1.3). Suppose that there exists a retraction e:
Then

2B-+SY.
K-k =FH4: a(X)>m(8Y),

where ki s induced by & =eh’: X >8Y.

The retraction condition is studied in [8]. Tt is fulfilled in the fol-
lowing example. Take X = 8", the unit sphere in Euclidean (n+1)-space.
Let T denote the antipodal transformation, whose degree is (—1)*™™
Take B to be the (n—1)-sphere bundle of unit tangent vectors to 8™
Let d(z,y) denote the geodesic distance between points z,y e 8% If.
iz, y) = a/2 we identify (@, y) with the unit tangent at # in the direction
of y. Thus B is identified with the subspace of 8™ x 8™ where d{x,y) = /2.
Similarly I is identified with the subspace where d(z,y) < #/2, and I
with the subspace where d(w,y)>> /2, in such a way that g(z,y)=x and

h(@) = (2,2}, M=) = (z, Tz).

(). This overcomes the difficulty caused by using unreduced suspension and enables
us to compare the homomorphisms in (1.2) below.
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We identify J with (2, ¥) so that 8Y = §". A retraction of B onto 8Y
is given by e(z, ¥) = y. We obtain %° = 1 and k* = T. By (1.3), therefore,

(1.4) 1-T,=F4A,

where T, denotes the antomorphism of ={(8") induced by T

In general §Y is not a retract of ZB and so (1.3) does not apply.
To illustrate the use of (1.2) we take X = 8" Let t; € ma(S™) denote the
clags of the identity map. Consider the element 0 = Ay € Y), which
is the obstruction to the existence of a cross-section. Let & e (2 B) denote
the class of the cross-section A'. Then &4 o(4) is the class of A% by (1.2),
where 1= K0 ¢m,(SY). Notice that h®~73' if and only if 1=0. If
a € m(8") then
(1.3)

cEA(a) = (5—}—0(1)) ca—Eoa,

by (1.2), and the main theorem in § 6 of [4] can be used to express the
right hand side of this relation in terms of multiple Whitehead products
and generalized Hopf invariants. To be specific we define a homomorphism

@2 7{RY) =1 n-a(8Y)

as follows. The image of the monomorphism o is the kernel of the epi-
morphism
o: m(TB)—>m(X)

induced by the fibre map g. By naturality of the Whitehead product

ol&, o(B)] =[e(&), 00(A] =0,

where fem(S8Y), and so [&,¢(p)]= o(y), where y € Tin—1(SY). We
define @(B) = y. Let A, %, ... denote the sequence of elements in the
homotopy groups of 8Y defined by 4 = 4 and im = @(n-1) (m = 2). The
main theorem in §6 of [4], applied to (1.3) above, shows that

EA(a) = Zlm ° Uy +Z [y Am] o aam

l<m
—-1-— 2 []*Ay [ll, }.m]] ] a;‘.,;,m-{—... I}

kzl<m

(1.6)

where the remainder involves quadruple and higher Whitehead products,
and the elements om, ¢ym, Grim, ... are generalized Hopf invariants of a.

In particular
= 2 j-m © Oy
m

(1.7)
modulo the kernel of the suspension
7 SY) > 1(82Y) .
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In the notation of Hilton [4] we have o = a, a, = Hya), a3 = Hy(a),
2 = Hy(a); if » < 4n—4 then all the other generalized Hopf invariants
in (1.6) are zero for dimensional reasons.

There remains the problem of how to compute the “structural con-
stants” 4, 4;, ... In § 3 below we solve this problem in the ease of sphere-
bundles over spheres, and thereby obtain an expression for BA which is
convenient for applications.

2. Proof of (1.2). Consider first the commutative diagram shown
below, where all the homomorphisms are injections.

m(@l,f)—”m,(sy, 0" < m(8T)
i B a

(I, B) > m ZB, ") - % ZB)

Because g is an extension of f it follows that the injections

(B, X)—>m(I, Y, a(l°, (°)—>m(ZB, 8Y),

are isomorphisms. Therefore the triads

(I B, 0, (2B;I°,8Y)

have trivial homotopy groups, by the upper homotopy exact sequence,
and hence 1 and u are isomorphisms, by the lower homotopy exact

sequence. Also the image of the monomorphism ¢ coincides with the
kernel of the epimorphism

e: m(ZB)—n,(X)

induced ?oy g. SiI'lGe &0 = pé, which is an isomorphism, it follows that &’
and g yield a direct sum decomposition of m(XB). Thus (1.2) will be
proved by showing that

(2.1) a) l eoBA = th_eh}u .
b) §'oBA = ERL—E'RL .
The first of these relations is obvious, since go= 0 and gh® =1 = ght.
We prove (2.1b) as follows. Since h°X C I we have at once that

Eh=0. Let f,: m(B, Y)>n(X) denote the isomorphism induced
by f. Then

4f, =4': 7B, X)—m_4(X),
where 4’ denotes the boundary operator, and so

§oBAf, = pEBS = und™%

icm

505

Suspension of transgression

by (1.1). Also uy =#'4i, by naturality, and so

(2.2) EoBAf, = 5’20716 .

Consider next the commutative diagram shown below, where the
homomorphisms into m,_,(¥) are boundary operators and the others are
injeetions.

a{B, Y)

6'
a (I, (") Wr—;( ¥)

) @ (I, Y) s

() | (0, Y)

e
w\n,(]%, B) g

The sequences leading through the centre of the hexagon are exact. Also 6
and § are isomorphisms, since C* is contractible. Therefore

AT = — b,

by the hexagonal lemma ((1.15.1) of [3]). Hence and from (2.2) we obtain
that

(2.3) EoBAf, = —q'pb .

Finally we consider the diagram shown below, where y is the injection
and g is the isomorphism induced by g¢|I™

w{ Tt OV« m(I") 25 (T, B)
o \a v
7 X) > m( ZB) o m( ZB, I?)
I H
Commutativity on the right is obvious; on the left it holds because h*
a cross-section whose image lies in I™. Thus
ne =&y =~ERgu0,
and so
NP0 % = & hygyn = E'hyfa
since f = g|B. Hence and from (2.3),
§'oBAfy = —E' M fy

Since f, is an isomorphism, this completes the proof of (2.1b), and con-
sequently the proof of (1.2).
34*
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3. Sphere-bundles over spheres. Let B be an oriented (g—1)-
sphere bundle over 8", where n, ¢ > 2. Then B determines an element
x € 7ty—1(Ry), as described in §1 of [9], where R, denotes the rotation
group in euclidean ¢-space. Bundles which determine the same y are
equivalent as sphere-bundles, and so the transgression operator

Az m 8™y =7, 18T

in the fibre homotopy sequence can properly be regarded as a funection
of . The action of B, on 877", given by rotation of the basepoint, carries %
- into 6 = di; € m,—3(87"). We shall obtain an expression for
BA: m(8")—m,(8%)

in terms of the elements

A=EO0emn(8Y, u=—Jyemq1(8Y),

where Jy is obtained from y by means of the Hopf construction (see § 3
of [10]).

Let 7,(87) denote the subgroup =,(8%) consisting of elements which
are obtainable by the Hopf construction. We compute the homomorphism
P: n,.(Sq)~—>n7+n_1(Sq) 3

on this subgroup by proving
THEOREM (3.1). Write v = —[u, t5] € Tprog-o(S%). Let B e mi(S?) have
generalized Hopf invariant B = H(p) e (S, Then
(=)D (f) = po BBty BV

According to §7 of [9], B can be described as the neighbourhood
bundle' of ZB determined by the cross-section hl. Since & is the class
of B, it follows from (3.7) of [9] that [&, 5] = o(u), where 5 = o(y). By
definition

op(B) =&, o(B)] =[&, 7081,

to W}{ich we apply the Barcus-Barratt formula (7.4) of [1]. Since f e m)(8%),
the higher generalized Hopf invariants H,, H,, ... are trivial, by Lemma 4
of [5], and so we obtain (2)

(— 1)(n+1)(q+r)[£’ e Bl

(&, m o BB (&, pul, o] e B" 76"
=a(p)o B 'f+a(») o B" A .

(*) Some sign changes are necessary because the conventions of [1] are different
from those of [9].
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Since ¢ is a monomorphism, this completes the proof of (3.1). Further
use of the Barcus-Barratt formula enables us to compute Hg(») and hence
obtain an expression for Hyp(f). Moreover, it follows from the remarks
on the lower part of page 76 of [6] and from (3.1) that

(38.2) ¢7(8%) C /4 na(87) ,

and so by iteration of (3.1) we can compute the *“structural constants’’
Ay Azy ... in (1.6). Notice, furthermore, that the remainder in (1.6) is
trivial, since by (6.10) of [4] the quadruple Whitehead products are zero
in the homotopy groups of 8. The triple Whitehead products are zero
when ¢ is odd.

Suppose, to give an example, that B" 'u = 0. This condition is
satisfied by the Stiefel manifolds of 2-frames (see § 1 of [9]) when repre-
sented as sphere-bundles over spheres in the usual way. Repeated appli-
cation of (3.1) shows that 1n = 0 for m > 4, that [1, 4n] = 0 for m >3,
and that |4, (4, in]] = O for m >2. Thus (1.6) reduces to the relation

(3.3) BA(a) = o atdyo Hya)+ 25 0 Hy(a)+[4y, 4] o Hy(a) ,

under the condition & 'u = 0.
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