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Complementation of independent subsets and subspaces
of generalized vector spaces
by
M. N. Bleicher (Warszawa and Berkeley)

Introduction. The axioms for generalized vector spaces which
will be used in this paper are those which were introduced by G. B. Preston
and the author and which were expanded upon in their joint paper [2].
In the above paper one may find proofs of the analogs of many of the
theorems of classical vector space theory which are related to independence,
as well as the equivalence of this system, in the proper case (ef. below),
with that of B. Rado defined by I-functions [7]. The reader is also re-
ferred to the work of A. Kertész [5] in which he gives many interesting
applications of a system of axioms clearly equivalent to those to be used
here. All necessary definitions will be given in this work; however, it will
be necessary to cite various results proved in [2].

The principle result in this work is that for any basis of an arbitrary
generalized vector space there is a function which to any subspace of the
space assigns a disjoint subset of this basis, which together with the
gubspace generates the whole space, in such a manner that this function
is anti-monotonic. From this theorem follow the theorem of B. Bana-
schewski [1] for the general case and the theorem of K. Johnson [4] for
the special case of modules over a division ring. The derivation in this
paper of the result of Johnson depends on a property of dependence
which does not hold for the general case; an example will be given to
clarify this difference.

Definitions and axioms. A relation R between the subsets of
a fixed set V is called a dependence relation if the following axioms hold
(if subsets X and Y are in relation R.ie., it XRY, we shall write X < Y
which is to be read ‘X is dependent on ¥’ or simply ‘X depends on X°) (*}:

Ll1. If XCY then X 3 X.

L2. If X; = Y for all ¢ in some index set T' then 22X <2 Y.

L3. If X2 Y and ¥ 3 Z then X = Z.

(1) @ denotes the empty set. 4-B and A+ B denote the intersection and union,
respectively, of two sets 4 and B.
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L4, If y and © are points of V and y 3 X and y & (X—2x) then
© = (X—u)+y) (here for a one element set {x} we use simply ).

A subset X is independent if for each of its elements », & £ (X —ux);
otherwise it is said to be dependent.

A dependence relation which further satisfies the following property
is called a proper dependence relation:

1L5. For every subset X of V the property of independence is a property
of fimite character.

The importance of L5 is further clarified by the following theorem
(cf. [2], Lemma 6):

A dependence relation < on the subsels of V is a proper dependence
relation if and only if the following property holds:

(P) For any element.y of V and any subset X, y -3 X if and only if y I F
where F is a finite subset of X.

In this work only proper dependence relations will be considered.
A set is called a basis if it is a maximal (with respeet to inclusion) indep-
“endent subset -of V.

A generalized vector space consists of a couple <V, <> where < is
a proper dependence relation on ¥. When no confusion is likely to arise
the set V will be used to denote the couple.

A subset 4 of a generalized vector space V is called a subspace of V
if # ¢ A implies # < 4. It is not difficult to show that the intersection
of an arbitrary collection of subspaces is again a subspace; thus, if B
is any subset of V we define the subspace generated by B to be the inter-
“section of all subspaces which contain B. This subspace will be denoted
by B. It can be shown that B ={2: 2 < B}. The family of all subspaces
of ¥ will be denoted by S8(V). If 4 is any subset of V then the family
of all independent subsets of A4 will be denoted by I(A).

M_n'in resplts. The proof of the main theorem requires two lemmas.

Imm L If X and Y are subspaces such that X-Y =@ and z is
any point of V whioch is not in X+ ¥ then X-(Y +2) = 0.

Proof. We suppose that & is in X:(¥Y +=2). It follows that » < X
and 2 Y+2 I o isin Y then v is in X-¥ = 0.

‘We now suppose that « is not in Y. Since Y is a subspace, this implies
that @ £ ¥. We thus obtain

< Y4z

hence from L4 it follows that

23 ([(Y+2)—2l+a) =Y +a.

and @ R [(Y +#)—2];

However
22 Y+o 2 X+Y
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hence e

zeX+Y

which is in contradiction to the hypothesis that z is not in X 4 ¥. Thus
the only case which can arise is ¢ Y. It follows that X (Y+2)CO.
Since every subspace contains the subspace generated by the empty set,
equality follows.

LemMa II. If X is a subspace of V and {¥i} is any tower of subsels
of V such that for every t, X-Y; =0 then

x(XY)=0.

Proof. Suppose that there is a point @ in X-(} ¥;). Then since the
dependence relation is proper, # < F where F is finite subset of 3 ¥;.
Since the Y; form a tower, there is an index f, such that F is contained
in ¥,. Thus « < ¥;, from which it follows that @ is in X- ¥, =@. It
is clear that X () ¥y = @.

We are now in a position to prove the following theorem.

TaEorEM I. Let V' be any vector space and B any basis of V. Then
there is a function | which assigns to each subspace of V a subset of B which

© generates a disjoint subspace (except for O) but which together with the given

subspace generates all of V, further | does this in a monotonicly decreasing
manner; symbolically,

1. Xf(X)=0.

2. X+f(X)=V.

3. XC Y implies f(X)D7(¥Y).

Proof. The proof proceeds by means of a transfinite construction
of the function f. We arrange B in a well ordered sequence

by, buy eeey biy ey E< T,

where T is an ordinal number.
Tet X be an arbitrary subspace of ¥; we now construct f(X). We

begin by defining P, as follows:
@ if
Po= { b, i

We now make the inductive hypothesis that for some ordinal t < T
we have previously defined the sequence

Poy Pyyeery Poy e

by is in X,
b, is not in X .

y §<ty

which. satisfies the conditions:
i, for all s<t, X-P, =@,

ii, for all r< s < t, PrC PyC {by}ess-
1#
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Let Q= 2, P,. We define P, by
8<t

b is in X 4-Qy,
b,: is not in X—*—Q;.

@ if

Py = v
Qe+ if

From Lemms IT we see that X -Q; = @. From Lemma I we see that
if b, is not in X +Q; then X -Q;+ b;=@. Thus in either case X -P; = @,
Condition i of the inductive hypothesis is thus satisfied. Condition ii is
also satisfied since for all s <1

Py CQ:CPCQuA b C({brlrat+bs) -

The induction is thus complete.
We define f by

H(X) = Pr.

It is an immediate consequence of the first condition of the inductive
hypothesis that P satisfies condition 1 of the theorem.
It follows from the second induetive hypothesis and the definition
of P; that for all t < T
by 2 X+ P CX+Pr=X+f(X).
From the axioms L1, L2, and L3 we obtain

B X+{(X).
Since B is a basis, we get

V=BCXFfX)CV.

Thus f satisfies the second condition of the theorem.

We now prove that f satisties the third condition of the theorem.
We‘ suppose that X C Y and that X and Y are subspaces of V. We will
derive a contradiction from the assumption that

O=1X)-f(X)#0.

. R, and S; will be used to denote the sets in the construction of #(¥)
v;h:f(zl};zon‘espond to the sets P, and @,, respectively, in the construction
o .

Since O is a subset of a well-ordered set B, there is a least ordinal s
for which b, is in C.

From the choice of s it follows that
PO Ry,

and further that b, is not in P,. But b, not i i i
b is in TTQ,. L Ly s 10t in P; can oceur if and only if

t<s,
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However XCYC Y+ 8;, and fi)r all t<s
b3 Y+83Y+8s.
Since Qs C {bikics, it follows that Qs < ¥ + 85 and hence

X4+Qi 3Y+8s.
Thus bs is in ¥ +8s. -

Therefore by the definition of R, bs is not in R;, and hence bs is
not in f(X). It follows that bs is not in ¢ = f(¥)—f(X). This is contrary
to the choice of s; the desired contradiction having been established the
theorem is proved.

A funection 7 from the set of subspaces S(V) of ¥V to S(V) is said to be
quasi-orthogonal if for any two subspaces X and ¥ in 8 (V), f satisties

1. X-{(X) =0,

2. X+f(X)=V,

3. X C Y implies (X} Df(X).

B. Banaschewski [1] proved that in the case of modules over a di-
vision ring there exist quasi-orthogonal functions; the proof for gener-
alized vector space may be found in [2]. It follows here as an immediate
corollary to Theorem I.

TaEoREM II. Let V be a generalized vector space, then there ewisis
a quasi-orthogonal funetion from the set of subspaces of V to the set of sub-
spaces of V.

Proof. Let ¢ be the function given in Theorem I. Define f byy-yf(_Xs
= g(X) for each X in S(V). It is immediate that g is quasi-orthogonal.

K. Johnson [4] has proved a similar type theorem on the existence
of such functions from the set of independent subsets of ¥, I(V) to I (V).
In order to more fully understand the relationships of these theorems
we must first investigate the relationship between bases of subspaces
which have only @ in common (2). The next two lemmas will yield infor-
mation to this end.

LsavA IIT. Let X and Y be two disjoint independent subsets of a gen-

eralized vector space, then: if X+ Y is independent then X-Y = @.

Proof. We suppose that X 4 Y is independent and will derive a con-
tradiction from the existence of an element z in (X Y)—@. By the choice
of z it follows, since our dependence relation is proper, that there is a mi-
nimal non-empty finite subset X’ of X such that z <3 X', Let # be any
element of X’'. Then

2<X but 24LX—uw,

(%) (Added in proof.) Johnson’s paper has appeared in the interim and the
results of his paper are somewhat stronger than here indicated.
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hence, by axiom X4, # 3 (X'—2)+2. Further, since # is in ¥, we know
¢ =< Y. Putting these facts together we get

R (X —2) 422 (X ~—0)+YC(X~a)+Y = (X+X)—2.
This Iast statement is' in contradiction to the independence of X+ ¥.
The lemma is thus proved.
LEMMA IV. If X and Y are disjoint independent subsels of a vector
space over o division ring D then:

X+Y is independent if and only if X-¥ = {0}.

Proof. Half of this lemma is contained in the above lemma. It is
straight forward to construct an element in X-¥ under the hypothesized
circumstances if one further assumes that X+ Y is not independent, and
is therefore left to the reader.

Of course the question arises concerning the possibility of proving
Lemma IV for the case of generalized vector spaces. The following example
yields a negative reply.

Let V = E, the Buclidean plane. We define the relation X < ¥ to hold if

1. Y is a one element set and X C Y;

2. Y consists of two or more colinear points and X is a subset of
the line passing through them;

3. Y contains three or more non-colinear points and X is arbitrary.

Let X be the set consisting of the two points, (0,0) and (0,1), and
let ¥ consist of (1,0) and (1,1); thus X is the line @ = 0 and ¥ is the line
#z =1. Clearly X-Y = 0 = . However the set X +Y is not independent
sinece, for example, the point (1,1) is dependent on the other three points
of X+Y.

This example provides yet another proof of the fact that there are
dependence relations which can not be represented as vector spaces over
some division ring (ef. Lazarson [6] and Ingleton [3]).

By using Theorem I and Lemma IV one can now eagily obtain the
following special case of Johngon’s Theorem.

TeEOREM IIL. Let B be any basis of V, a vector space over divigion ring,
then there ewists & function f from the independent subsets of V, I(V), to the
subsets of B, I(B), such that for any sets X and Y in I(V) the following hold:

1 X-{(X) =9, .

2. X+ f(X) 18 a basts,

3. XC XY implies {(X)D f(X).

Proof. Let g be the function given by Theorem I. Define
f(X) = g(X) for each X in I(V). Verification };f 1-3 present no diffic{ﬂ:?

For the proof of this theorem in full generalit
o Topneone Broof g y we refer the reader
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Remarks. Because of the wide range of applicability of the
axioms of abstract linear dependence relations (e.g. groups, rings, fields,
differential algebra, etc.) it is to be expected that the above theorems
may have many interesting consequences in other particular cases. As
examples of what may be done along this line, by application of the
single theorem that the cardinal of any two bases are thé same, one
should consult Kertész [5]. The author hopes to go into this aspect of
the theory at a later date.

Tt will be noticed that in the proofs of Theorem 1, and consequently
in the proofs of Theorems II and ITI, the axiom of choice i3 used. As
always in such cases one would like to know if the use of this axiom is
essential, and if so are these theorems equivalent with the axiom of choice.
Tt can be shown that all of these theorems are independent of the usual
axioms of set theory (in any of the ordinary axiomatization, e.g., the
Bernays-Godel system). It can further be shown that various restrictions
of these theorems, either singly or in combination are equivalent to the
axiom of choice. A more detailed discussion of the relationships between
the axiom of choice and various restrictions of these and other theorems
on generalized vector spaces, the proofs of which require the axiom of
choice, will be the topic of a forthecoming paper of the author.
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