On convex metric spaces III
by
R. Duda (Wroclaw)

§ 1. Introduction. Let X be a continuum with a metric o. For
each two subsets A and B of X there is defined a number

(1) o4, B) = max{ﬁgge(a, B), ggge(A, b1,

where ¢(z, Z) = ¢(Z, #) = inf g(2, 2) ([1], p. 291 and [3], p. 106). This
2€Z

number is called a Hausdorff metric and has the following property: each
family of closed and non-empty subsets of X is metrized by it. In partic-
ular, we shall denote by C(X) the so-called hyperspace of all non-empty
subcontinua of X metrized by a Hausdorff metrie, and by 2% the so-
called hyperspace of all non-empty and closed subsets of X metrized
in the same manner ([3], p. 326). It is well known that the hyperspaces
C(X) and 2% are continua (theorem of Mazurkiewicz [6], see also [2],
theorem 2.7). Evidently C(X)C 2%, i

For every subset Z of X and every number 5 >0 let Q(Z, ) be
a generalized solid sphere of centre Z and radius 7, i.e.

QZ,n)={zm 2eX,0(z, Z)< 7}.

Obviously Z C @(Z, 1) for every 5 >0, Q(Z, 1) = @(Zy, 1) © @(Zs, n)

for Z = Z, U Z,, and Q(Z,0) = Z for Z — Z.

The formula .

) e‘(AyB)="’11;fu{[A CQ(B, I [BCQ4, n)]}

is equivalent to formula (1) ([2], p. 22).

I use in this paper the notion of convexity in the well-known: sense
of Menger ([7], p. 81, see also [5], p. 184). Also other notions and notations
derive from [5]. .

The purpose of this paper is to determine the connexions between
convexxity of continuum X and convexity of its hyperspaces C(X)
and 2°. ’
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§ 2. Auxiliary theorems. Let A and B be two subsets of X
such that for each two points @ ¢ A and b ¢ B there is at least one segment
@h in X. For a = b this segment is reduced to one point. I eall a junction
in X between A and B, and denote by J (4, B), the union aLiab of such

beB
segments, i.e. a set containing at least one segment ab with each pair
of points @ €« A and b ¢ B. I call a bridge in X between A and B, denoting
it by P(4, B), every compact junction in X between 4 and B.

Tt follows that 4 v BCJ (4, B) for every junction J(4,B) in X
between A and B and 4 v BC P(4, B) for every bridge P(4,B) in X
between A and B. Clearly, if X is not a strongly convex continuum
(see [5], p. 184), then the junction may not contain with any two points
ae 4 and b e B every segment ab joining in X these points; consequently,
the junction J (4, B) is not unique in this case. It is also obvious that
every bridge is a continuum (if it exists of course).

2.1. If X is a metric continuum, A and B are closed subsets of X,
and J (4, B) is a junction in X between A and B, then the closure of J (4, B)
i a bridge in X between A and B.

Proof. Since the space X is compact and J (4, B) C X by hypothesis,
we have J(4,B)C X. Let peJ(4,B). Then there exists a sequence
of points {pa}n=1s,.. of the junction J(4, B) such that

3) p=Imp, .
N0

Every point p, of this sequence determines the family of all such
segments abCJ (A, B) that a ¢ A, b ¢ B and p, € ab. Applying the axiom
of choice we have for n =1, 2, ...

(4) P ectnbn CJ(4,B),

where a4b, is the unique segment of the clasy determined by py.

The sets 4 and B are compact by hypothesis, and so is .4 x B. Then
we may assume that the sequence {a., b,} tends to (@, b) ¢ A X B. Since,
moreover, the hyperspace ((X) is compact, we may also assume that
the sequence of segments {@nbayn-yz,.. is also convergent.

The topological limit of the sequence of these segments iy a segment
between the limits of the sequences of theirs ends ([7], p. 92). We then
have I;’_ugaﬂ,.: @b, whence we infer by virtue of (3) and (4) that

peabCJ(4, B).

) 2.2_. If X a metric space, A and B are closed subsels of X , P(4, B)
18 a bridge in X between A and B, and HC P(A, B) is closed, then

(5) the set Jac, where ac A, ceH and acCabC P(4, B), s a bridge
in X between A and H, ‘ -
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and symmetrically

(6) the set | ch, where ceH, beB and ¢b C ab C P(4, B), is a bridge
in X between H and B.

Proof. By symmetry of hypothesis it suffices to prove that the
set (B) is a bridge in X between 4 and H. It follows at once from
HCP(A, B) that for each pair of points a ¢ 4 and ¢ ¢ H there exists
apoint b e B such that ¢ e ab and ab C P(4, B). Then there exists a segment
ac C ab for each pair of points a ¢ 4 and ¢ ¢ H. The union | J ac of these
segments is therefore a junction in X between 4 and H. Hence its closure,
ie. the set (5), is by virtue of 2.1 a bridge in X between 4 and H.

2.3. If X is a metric space, A and B are closed subsets of X such that

(7 there exists a bridge P(A, B) in X between A and B,
and if ¢ is @ number such that

(8) 0<e< o4, B),

then the set

(9) H=P(4,B)nQ(4,e) ~Q[B, ¢4, B)—¢]
satisfies the conditions

(10) H 2%,

(11) o4,H) =¢,

(12) o(H, B) = ¢(4, B)—=.

Proof. It follows from definition (1) that there exists in the bridge
P(4, B) a segment of length at most ¢'(4, B) and with ends belonging
to A and B. By (8) and (9) such a segment must have common points
with the set H, whence H = 0. Since, moreover, H is the common part
of three compact sets, each of which is contained in X (the first by virtue
of (7), the second and third by the definition of the generalized solid
sphere, see p. 23), then HC X and H = H. This means that the non-
empty set H satisfies (10).

Put o4,B)=4d. It is easy to see that A C Q(B,d), whence
H=PA,B)nAnQ(B,d)=P(A4,B)n A=A for ¢=0 by virtue
of (9). Similarly, H = B for ¢ = d. Thus in both extreme cases equalities
(11) and (12) are true.

There remains the case 0 < &< d. By symmetry of definition (1)
we may restrict this case to the following one:

(13) ¢4, B) =supe(4,d).
beB

Hence by virtue of ¢ <<d we have
(14) B—Q(4,e)#0.
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Let F be the boundary of a generalized solid sphere @ (4, ¢):

{15) F = {w: o(w, A) =¢}.
Hence
(16) ela,p)=>¢

We infer by obvious inclusions B C P(4,B) and BCQ(B,d—e¢)
that BCP(4,B)~Q(B,d—e). Hence BAQ(4,e)CP(4,B)~Q(4,8)n
~Q(B, d—e), Le., by virtue of (9), Bn~Q(4,¢)C H, whence
(17) Q(4d,e) n(B—H)=0.

Every connected set which has common points with the generalized
solid sphere Q(A4, ) and with the set B—H, lying by (17) in the com-
plementary of Q(4,¢), must have common points with the boundary
Fr(Q(4,¢)) ((4], p- 80). Hence, by virtue of the connectivity of segments

b and of the obvious inclusions 4 C @ (4, ¢) and Fr(Q(4,¢)) C F (see (15)),
we conclude that

for each aed and peF.

(18) Frab=#0 for each pair of points a ¢4 and b« B—H.

It follows that B— H # 0 by the hypothesis that A 5= 0 and by (9).
Then there exist in the bridge P (4, B) segments whose ends belong to 4
and B—H. Since by virtue of (8) and of definition (1)

(19) for each point b ¢ B there exists a point a ¢ A such that o(a, d) < d,

there is among these segments a segment Eg_ P(4, B) such that
e(a,b) < d. By (18) we have ab ~ F + 0. Let p e ab ~ F', whence :

(20) o(a,b) = g(a, p)+elp, ).

It follows by ¢(a, b) < d, (16) and (20) that o(p, b) < d—¢, whence

ab ~F CQ(B,d—¢) by virtue of the free choice of the point p ¢ ab ~ F.

We have by (15) ab ~ F CQ(4, ¢). We then obtain ab ~ FC P(4,B)

ath(A, &) ~ Q(B,d—s¢), i.e. ab ~ F C H by virtue of (9). It is thus proved
2

(21) p(a, b) < d implies ab ~F C H for every segment ab C P(4, B),
where ae A and be¢ B—H.

Applying (18) we have ab ~ F # 0, whence by virtue of (21)

(22) _  FAH#0.
We shall now prove that
(23) supe(d, H) = d—e¢.
beB
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In fact, supposing first that
(24) supe(b, H)>d—e¢,
beB

there would exist such a point b, e B—H that
(25) o(bo, H) > d—e.

As a continuous function, o attains its suprema on the compact set
A % (b,). Let a, ¢ A be the nearest point to the point b, e B—H, ie.

(26) Eﬁe(a, bo) = o(ayp, bo) ,

whence by virtue of (19)
(27) . olag, by < d.

_Therefore a;b, ~ F C H by (21). By virtue of (18) there exists a point
P € ayby ~ F, and thus a point of H, satistying (20) for @ = a, and b = b,.
It follows from (16) and a, e A that

(28) o(ag, p) > 8,
and from (25) and p ¢ H that
(29) o(p, by) >d—e.

Let us now add inequalities (28) and (29). By virtue of (20) we would
have o(aq, by) > d, contrary to (27). Supposition (24) thus leads to a con-
tradiction. : )

Let us suppose next that

(30) supo(b, Hy<d—e.
bed

For each b ¢ B there would exist such a point @ ¢ H that
(31) o(b, x) <d—e.

It follows by (9) that H C Q(4, ). Thus for each x, ¢ H there would
exist a point ¢ € A such that
(32) o(mp,a) < 6.

Let us now add inequalities (31) and (32). We obtain g(a, d) < d
by virtue of the inequality of the triangle. It means that for each point
b e B there would exist a point ¢ « A whose distance from b is less than d.
Therefore, as previously, we infer by the continuity of the function ¢
and by the compactness of the sets 4 and B that gu%) e(4,b) < d, con-

€

trary to (13). Supposition (30) thus also leads to a contradiction.
Therefore condition (23) is proved.
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TUsing it we now prove condition (12). For this purpose let us observe
that H C Q(B, d—¢) by definition (9), whence

(33) sup o(@, B) < d—
reH

Tt suffices now to substitute H instead of A in definition (1), and
to apply (23) and (33).
It remains to prove condition (11). We infer by (9) that H C Q@ (4, ¢),
whence sug olz, 4) <e We infer also by formulae (22) and (16) that
xT€

sup o(x, A) > ¢. Hence

zeH

(84) ’ © supo(w, A) =e.
zeH

Given some point a e 4, let the point b be nearest to a point of the
set B. By definition (1), abC P(A, B) implies ¢(a,b) < d, whence
Q(d,8) ~Q(b,d—e) ~ab # 0. Thus Q (4, &) ~ Q(b, d—e) ~ ab C H by (9).
Choosing some point ¢ of this subset of H we have ¢ e H and p(a, ¢) < &,
whence a fortiori o(a, H) < ¢. Hence we have by virtue of the free choice
of the point a e 4
(35) sup o (a, H) < ¢

. aed

Condition (11) follows from (1), similarly to (12), by applying (34)
and (35).

Thus the proof of 2.3 is complete.

24. There is no metrization of a simple closed curve such that every
subcontinuum of it be convex.

Proof. If the metrization of a simple closed curve T is not convex,
then T itself is a non-convex subcontinuum. And if the metrization of 7T
is convex, then, given any point p e 7, let the point q € T be-the farthest
from p. There exists a segment pgC T by the convexity of 7. Let
reT—(pg) and lot ¢ CT be a gsegment between q and r. The arc
(pg) v (gr) is not convex, because its length o(p, ¢)+ (g, ) is greater
than the distance o(p,r) between its ends.

2.5. If X is a metric convex continuum and every subcontinuum of X
18 convex, then the following sets are strongly convew:
(a) the continuum X,

(b) the generalized solul sphere Q(4, ¢) for every continuum AC X
and_every ¢ > 0,

(e) the bridge P(A, B) for every two subcontinua A and B of X.
Proof. (a) If a continnum X is not strongly convex, then (see [7,

P. 104) it contains two 0 points p and q and two
joining segments (;pq)
and (pg), such that (pq), ~ (gl = (p) v (¢). The wnion (pg), v (P i ;
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then a simple closed curve and contains by 2.4 subcontinua which are

_not convex. Then the continuum X has not the agsumed property.

(b) By the definition of the generalized solid sphere we have Q(4, ¢
= |J a», where the pair (a,z) runs through all sueh pairs of points a e 4
and z.€ X that p(a, z) < & It follows that @ (4, &) is connected ([4], p. 82).
As a compact set, @ (4, &) is thus a continuum, and as a subeontinuum
of X it is strongly convex by virtue of the assertion (a) just proved.

(¢) The bridge P (4, B) is by definition a subcontinuum of X. Hence
it is strongly convex also by virtue of the assertion (a).

§ 3. Sufficient conditions for the convexity of hyperspace
2% and necessary conditions for the convexity of hyperspaces
C(X) and 2%.

TEEOREM 3.1. If X is a metric continuum, A and B are closed subsets
of X and there is a bridge P (A, B), then there exists in 9% at least one segment
between A and B.

If, moreover, A and B are subcontinua of X and every subcontinuum
of X is convew, then there ewists in C(X) at least one segment between A and B.

Proof. Let A = H, 2% and B — H, ¢2%. By virtue of 2.3 there
exists for & = 27" ¢'(H,, Hy) a set Hyp defined by formula (9), ie. such
that

H,, C P(H,, Hy)
and
QI(HO: Hyp) = 91(H112y H)) = 27" QI(HM Hy).

We shall use induction. Suppose that for some natural n the sets
Hym, where k = 0,1, ..., 2", and Haymn = Hyjen-1, are compact and satisfy
the conditions

(36) H(2m+1)/2n C P(Hgmlgn,H(gm_;.z)/zn) for m = 0, 1, ey 21:,—1_1,

k— n
(37)  @Y(Huzns Hmpn) = I 2ﬂml MH,y, H) for k,m=0,1,..,2%

Using these sets we define the sets Kyzpwwa, Where k=0,1, , oMt

in such a way that conditions (36) and (37) hold also for n—l—l Namely
we prove that for each pair of sets Hyjen y H(x1y2n, Where k=0,1,..,2"-1,
there exists a set Hgyiyera such that

(38) Hgpryyors C P(Higeny Haernyer)
(39) M Higon y Heangayprts) = 0 H anrnymtty Hoernyen)
=27 o' (Hueny Hprayer) -
First, put
(40) Hapor = Hyn for  k=0,1,...,2"


GUEST


30 R. Duda

We then have by virtue of (36) Hieyaye C P(Hygn, Hippayen) for
k=2m and Hyw C P(Hpg-aym; Hproe) fovr b =2m+1. At all eventg
then there exists by virtue of 2.2 a bridge P(Hpyen, Hr1yen).

Secondly let Hyiiyents be a set having properties (38) and (39), the
existence of which follows from 2.3. By (38) we then have (36) for w1
and by (40), (37) and (39) we have also (37) for n-+1 ([7], p. 88).

: The family of closed sets {Hyen}, where == 0, 1,.. and
k=0,1,..,2" satisfying (37) is then defined. The closure in 2% of this
family is a segment between 4 and B ([7], p. 87-89).

I, moreover, every subcontinuum of X is convex, 4 = H, < ((X)
and B'= Hy e (), then the set Hy, is a continuum (even a strongly
convex one) as a common part by (9) of three continua which are strongly
convex by virtue of the assertions (b) and (c) of 2.5 ([7], p. 104). Hence
Hyjp € C(X). For the same reason every of the sets Hy», where n =0, 1 y oo
and k=0,1,..,2" is a continuum. Therefore the closure in O(X) of
the family {Hjm} is a segment in O(X) between 4 and B ([7], p. 87-89
see also [4], p. 110). ’

From Theorem 3.1 just proved we obtain at once the following

) THEOBEM.3.2. If X is a metric convex continuum and every subcon-
tinwum of X is convem, then the hyperspace C (X) is convex.
The contrary implication is an open problem (see P2, p. 33)

33. If X is a metric space (not necessarily a continuum), p ¢ X,
geX, and 0 <e < o(p,q), then

(41) 2eQ(p,2) ~ Qla, o(p, g)—¢]
implies
(42) ep,e)=¢ and o(g,2) = (p,q)—c.

Proof. If (42) does not hold, then we have by (41) the inequalities
o(p,2) < e or o(g,2) < o(p, g)—¢, and we receive g(p, g) < s+ e®,9)—e
= 0(p, ¢) by the law of the triangle.

THEOREM 3.4. If X is a metric continuum o

- nd at least one of the h -

spaces C(X) and 2% is convex, then X i3 convex. ! w
Proof. Let pe X and i

q<X. Obviowsly (p)C 0(X)C 2% and
- an

1(;‘ G§1X) Cc2 - At least one of the hyperspaces (/(X) and 2% being conv(eqzz

mslrd ypothesis, there exists in this hyperspace a segment between (p)

(9) composed of subsets of X. Tt means that the inequality 0 < ¢

< oY, q) implies the exi i i
v su,c h) o :1): e existence .Of a get Z C X belonging to this segment

43) ¢(p, Z) =,
(44) -~ MZ,9) = Mp, g)—e.

On convex metric spaces 111 31

By definition (1) of the metric ¢' and by (43) we have g(p, @) < e
for every x ¢ Z, whence Z C Q(p, &). Similarly, by (44), Z C @[q, o%(p, ) —¢l-
It is obvious that o(z,y)= o' z,y) for every x,ye¢ X (compare (1)).
Consequently Q[g, &{p, 9)—¢] = @[¢, ¢(p, @)— £]. Therefore ZC @(p, &) ~
~Q[q, o(p, g)—¢], which implies (41) for every point 2z e Z. We then
obtain (42) by 3.3. Hence the continuum X is convex by virtue of the
free choice of the number ¢ and points p and ¢.

THEOREM 3.5. If X is a meiric continuum containing isometrically
a contour of a square, then the hyperspace C(X) is not convex.

Proof. Let KC X be a continunm isometric with the contour of
a unitary square in the plane Ozy, having the opposite vertices (0, 0)
and (1,1). Continuum X is then a union of 4 segments: I having the ends
(0,0) and (0,1), II having the ends (0,1) and (1,1), III having the
ends (1,1) and (1, 0), and IV having the ends (1, 0) and (0, 0). Consider
the continua
(45) A=IuvIIvIV and B=IIIvIIuIV.

Thus ¢4, B) = 2-1. It suffices to prove that a continnum H C X
such that
(46) ¢4, H) = o"(H,B) =47

does not exist.
For this purpose it is convenient to begin with Q(4,47") and

Q(B, 47"). We have by (45)
QA, 4N AQB, 4 Y=QUIUIIVIV,4 ) AQUIIVIVIV, 4
=Q(I,4 ™A QUIL, A YU Q4™ )NQUI A ) QI,47T)AQUIV, 47 v

UQUI A AQUIII, 4™V QUII A ™) AQUI A ) UQUI &™) AQIV,4 v
VQUIV, 4™ AQUIL AU QUIV,47) A QUL 4 )V QUV,47)AQUIV,47).

The second and the fourth elements of this union are contained in
the fifth, the third and the seventh elements—in the ninth, and, by
virtue of the obvious equalities oI, III)=1 and oYII, IV) =1, the
first, the sixth and the eighth elements are vacuous. Hence

(47) Q4,4 ~Q(B, 47 =QUI, 47 v Q(IV,47).
At the same time the equality o'(II, IV) =1 implies that
(48) QUI, 4™ AQUIV,4™)=0.

‘We now show that each of the inclusions

(49) HCQUII, 4™ or HCQIV,4Y
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implies simultaneously
(80) ¢4, H)>4"" and o'(H,B)>47"

By virtue of symmetry it suffices to show this for the first inclusion.
We have ¢(IV, II) < o(IV, p)+e(p, II) for every point p ¢ H ([3], p. 103,
formula (4)), whence o(IV,p)= o(IV, II)— e, I >1—4""= 3/4 by
the inclusion assumed. It follows by (45) that

supe(w, H)>3/4 and supo(H,bd)>3/4,
aed . beB

and a fortiori both inequalities (50) by virtue of definition (1).
Suppose now that there exists a continuum HC X satistying (46).

Then by (2) we have HCQ(4,4™") and HCQ(B,4™), whence

HCQ(4,47Y) ~ Q(B,4™"). There follows by (47) and (48) one of in-

clusions (49), whence consequently, as we proved, inequalities (50), con-
trary to (46). '

§ 4. Conditions equivalent to the convexity of hyperspace

ZX and, in euclidean spaces, to the convexity of hyperspace
(X).

TaroREM 4.1. If X is a metric continuum, then the hyperspace 2% is
convez if and only if X is comvem.

.Proof. If the hyperspace 2% ig convex, then by Theorem 3.4 the
continunm X is also convex. Inversely, if the continuum X is convex
then there evidently exists, by the definition of the junction (see p. 24)’
for each two closed subsets 4 and B of X a junction J (4, B) in X betweeli
4 and B. Then there exists by 2.1 a bridge P(4, B) in X between A
@%d B, and it follows by Theorem 3.1 that there exists a gegment in 2%
joining A and B. Hence 2% is convex.

. THEOR'EM 4.'2. If a mem’a continuum X 1is plungeable tsometrically
in the ?z-dtmenszonal euclidean space C", where n > 1, and the hyperspace
C(X) is convex, then X is a segment—and reciprocally.

Proof. If X is a segment, then every subcontinuum of it i a segment

or a point, and therefore is convex. Hence by Theorem 3,2 t
C(X) is also convex. v # the hiyperspace

Im“eciproca,lly, if C(X) is. convex,
containg no contour of a square by
becaufse évery convex and at least 2-dimensional continuum X C &"
‘eonta,mg some‘ square. ':Dhe unique 1-dimensional convex continuum lying
1sometrically in a euclidean space is g segment, of course.

X is convex by Theorem 3.4, and
Theorem 3.5. Therefore dim X <1,

icm°
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§ 5. Problems. The following two problems remain open:

P1. Characterize the family of continua whose hyperspace of subconti-
NUG are CONVED.

‘We have given the solution of this problem only for the continua
which are isometrically plungeable in euclidean spaces: the characteristic
property is to be a segment.

Among continua which are not isometrically plungeable in euclidean.
spaces, the dendrites (i.e. acyclic and locally connected continua), metrized
by the length of arcs, have only convex subcontinua and therefore, by
Theorem 3.2, their hyperspaces of subcontinua are also convex.

The solution of problem P1 may be obtained from the positive answer
to the following problem (see Theorem 3.2):

P2. Does the convexity of the hyperspace C(X) of a continuum X imply
that every subcontinuum of X is convex? ’
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