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disjoints. En vertu du théoréme 9, tous les continus My, (de chacune
de leurs 9% familles) sont homéomorphes. En particulier, si M est une
dendrite, il en est donc de méme de tout Myy;.

En conséquence, si dim(X)=0, on peut, en vertn du corollaire 2,
remplacer dans énoncé du théoréme 9 le mot sur-continw par les mots
dendrite dont les bouts et les points de ramification appartiennent & X,

La question est moins simple pour les X enfilables. Bn vertu du
théoréme 1, elle se réduit & des X compacts de dimengion 0. Or un théoréme
permettant enfiler tout X compact de dimension 0 én un arc L tel que
L—X se compose de segments ouverts digjoints (cf. le probléme men-
tionné p. 72) permettrait, tout comme pour les dendrites, de remplacer
dang Iénoncé du théoréme 9 le mot sur-continu par le mot arc et avoir
ainsi une généralisation considérable du théoréme de Riesz-Denjoy.
Mais & défaut de ce moyen de procéder, et celui consistant & enfermer
dans des disques les arcs ouverts non-rectilignes (signalé p. 73 comme
bien plus compliqué) n'ayant pas été utilisé, cette généralisation du thé-
oréme de Riesz-Denjoy reste un probléme ouvert. ‘
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Dimensions of irreducible continua and fixations
of components in compact spaces

by
A. Lelek and D. Zaremba (Wroctaw)

This note establishes a relation (see Theorem 1 below) between the
dimengion of a continuum X (i.e. connected compact metric space), irre-
ducible between two points, and the dimengion of fibres in X (*). As
applications there are given two theorems on the existence, in a corapact
metric space X, of a compact subset which has dimension less than an
integer » and intersects every component of X provided that all these
components have large diameters or converge to. points of a compact
set with dimension less than n, and X satisties a certain condition (see
Theorems 3 and 4). That condition holds for subsets of polyhedra, and
in this way generalizations of the results of D. Zaremba [4] concerning
plane sets are obtained (see Corollaries 1 and 2).

Lemua. If ¢ > 0, X is a compact metric space and n < dimy X, then
there emists o continuum CC X such that d({p}v 0) <& and n < dimC.

Proof. Let Q be a closed solid sphere in X with centre p and radius /4.
Hence n < dim@ and we infer (see [2], p. 106) that there is a component ¢
of @, satisfying n < dimC. Thus 0 is the desidered continuum.

TaEOREM 1. If X is a continuum irreducible between two points a, b
and 2 < n < dim X, then there ewists a fibre F C X such that n < dimF.

Proof. Let g: X—9 be such a continuous mapping of X into the
segment O = [0, 1] (2) that the sets g~%(f) coincide with the fibres of X
(see [2], p. 139). If g(X) is a one-point set, then F = X and Theorem 1
follows. Thus we may assume that g(X)=9, g(a)=10 and gb)=1.

Since X is a compact metric space and n < dimX, the Menger
Theorem (see [2], p. 66) implies the inequality n < dim[X=Xm-n],
where Xy = {#: © ¢ X, dim, X < n—1}. But X@-1 is & Gy-set in X
(see [1], p. 164), whence X — Xy = ¥; v Yy v ..., Where ¥, are closed

() Fibres of an irreducible continuum correspond to its “tranches” in the sense

of [2], p. 139. The notation from [1] and [2] i8 adopted here. ) a
() If t, <1, are real numbers, then we denote by [, %] the closed interv:

{: 8 <t <1y}
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subsets of X. Therefore there is a ¥; such that »n < dim ¥;, (see [1],

p. 176) and so a component K of ¥;, must satisfy n < dimK (see [2],

p. 106). If ¢(K) = {t,}, then K Cg~*(%) and the proof is completed by
putting F = g-1(t,). Thus we can consider only the case when ¢(K) = [¢,, 1]
and 0 <t <t <1

The fibres g~%(f) being continua (see [2], p. 139), ¢ is a monotone
transformation, whence the union

] L=g[0,4]) v Kv g7}([%, 1])

is a continuum contained in X and containing the points @ and b. Since X
is an irreducible continuum between these points, we get L = X. It follows
that g~1(t) CL for every t¢Y, which implies

(2) g CECY; ) CX— Xy

~ for t, < t < t,, according to (1).
Let us put
Zy={t: L <t <H, 0=10[g"(0)]},

®) =
I = {t: t, <E <y, 1m < 8[g YO}

for m=1,2,.. Then [t, ;] = Z, v Z, v ... and it follows from the Baire
Theorem that there are an integer % > 0 and real numbers s,, ¢, satisfying
Lh<e <8<t and

4) [51, %1 C Zy .

If we had % = 0, then, for a number s, such that s, < s, < 8, and
8y € Z,, the fibre g-'(s,) would be a one-point set {g}, by (3). Hence, for
an arbitrary neighbourhood & of the point ¢ in X, there would be such
a number > 0 that

9 ([8%—7, 8%+71))C G,

according to the continuity of ¢ (see [2], p. 35-36). Next, by (4) for k = 0, -

numbers %, u, € Z, would exist such that

Bo— N K Uy < 89 < Uy < 8+ 7

and for U = {: w, <t< u,} we should have s, U, whence qegy(U). ,

Thus g=(TU) would be an open neighbourhood of ¢ in X, contained in &
and having the boundary

GO~ gH0) C g T)— g4 T) = g T— ) = g4(a) © g-Yuy) ,

w}{ere each of the sets ¢~%(u,) and g—*(u,) would consist of at most one
point, according to (3). The boundary of g~(U) in X would be composed
of at most two points and 80 we should have dim, X <1 <<n—1, geg(s)
and 4 < s, <1, contrary to (2).
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It follows that & > 0. Choosing a point p and a number s with p e g~1(s)
and s, < §< 83, We see p to be an interior point of ¢-*([s,, s,]). Therefore
anumber & > 0 exists such that e < 1/k and ¢(p, #) < e implies g(a) € [8;,8,]
for every ¢ X. Moreover, we have n < dim, X, by (2) for ¢ =s; thus
we infer from the lemma that there is a continuum OC X satisfying
§({p} v 0) < ¢ and n < dim C, whence

(8) 0(0)< 1k and ¢(C)C[sy,s,].

It We_had ¢(C) = [v,, v,], where v, < 9,, then (4) and (5) would imply
[9,, ©5] C Zy and such a number v would exist that » < v < v, and » € Zy.
The union
D = g0, n]) v O v g~*[v,,1])

would be a continuum contained in X and containing the points a and b,
whence D = X and D would contain g—*(v). Thus so would € and, by (3),
we should get 1/k < 8[g~*(v)] < 6(0), contrary to (5).

Hence g(C) must be a one-point set {v,} and putting F = g=*v,),
we obtain a fibre F gtatisfying O C F. The inequalities #n < dim 0 < dimF
follow.

TeEOREM 2. If X 48 an irreducible conti and each continuum
O C X nowhere dense in X sotisfies dim 0 < n (where 1 < n), then dim X < n.

Proof. Suppose that ¥ C X is a non-degenerate indecomposable
continuum. Thus 3(Y)> 0 and if for any point pe¥Y we had n+1
< dim, ¥, then there would exist a continuum € C ¥ such that é({p} v C)
< 6(Y) and n+1 < dim 0, according to the lemma. Therefore ¢ would
be a proper subcontinuum of ¥, and so it would have to be nowhere
denge in ¥ (see [2], p. 145) and also—in X, contrary to the hypothesis.
It follows that dim,¥ < n for every pe ¥, ie. dimY < n.

But every fibre F' of X is a union of countably many continua, each
of them nowhere dense in X or indecomposable (see [2], p. 153). Hence
dimF < » (see[1], p. 176) and Theorem 1 implies the inequality dim X < =.

THEOREM 3. If > 0, X is a compact metric space, each continuum
O C X nowhere dense in X satisfies dimC < n (where 1 <n) and every
component K of X has a diameter 8(K) > ¢, then a compact subset ¥ C X
emists such that im Y < n—1 and ¥ ~ K # 0 for every component K of X.

Proof. Let {K.: ae A} bethe collection of all the components of X.
Thus there are points p,, ¢. € K, such that ¢(p., ¢.) = ¢ for every ae A.
Let I,C K, be an irreducible continuum between the points p, and ga
(see [2], p. 132). Hence:

(6) ' e<d(l,) and dimI.<n

for every a e A, according to Theorem 2.
g6*
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Put
(7) Z=L
and let K be an arbitrary component of Z. Then there is an index a,e 4
such that K C K,,, whence K ~ I, =0 for a, # ac 4.

If n+1 < dim K held, then the Menger Theorem would imply » -1
< dim[K — K], whence [K —Kuw]—I, # 0, according to (6). For
& point p € [K— Ky]—IL,,, we should have n+1 < dim, K and o(p, I,,)
> 0. Hence, applying the lemma, we should obtain a continuum ¢C K
such that é({p} v 0) < ¢(p, I,) and n+1 < dim C. Therefore € ~ I, =0
and one could infer from (CKCZ and O nI,CEAI,=0 for gyt acd
that

U C U Ia_ U Ia ’
a€d a€d
according to (7). Thus O would be nowhere dense in X, contrary to the
hypothesis.

Hence the inequality dim K < n follows. It yields dim Z < n (see [2],
D. 106). Then there are open subsets G4, ..., Gy of the set Z which constitute
a finite cover of Z and satisfy 4(Gy) < e and dim(Gi—Gy) <n—1 for
1=1,2,..,k Putting

Y=(G—-G) v ..u (Go—Gr),

we see ¥ to be a compact set, YC ZC X and dim¥ < n—1. Finally,
by (7), every continuum T, is contained in Z and, by (6), it must intersect
the boundgry of a least one of the sets Gy, ..., G (see [2], p. 80), whence
0#£#YAILCYAK, for ageA.

Smfe every _nowhere dense subset of the n-dimensional Euclidean
space C" has a dimension less than » (see [2], p. 353), Theorem 3 implies

CoROLLARY 1. If ¢>0, X 4s a compact subset of n-dimensional
polyhedron (where 2 < n) and all the components of X have diameters greater

t-han & then a compact subset ¥ C X ewmists such that dim¥ <n—2 and ¥
inlersects every component of X.

A simple proof of Corollary 1 has been given by D. Zaremba (see [5],
. 66, Theorem 3). In the case when n = 2 and X lies on the plane &2,
Corollary 1 becomes the theorem which has been announced by her
(see [4], p. 14, Theorem 3). In the same case, it has been generalized by
A, LelekA(see [3], p. 88, Theorem 6) to a theorem with a more general
hypothesis instead of the assumption that sets intersected by Y are com-
ponents of X. The question arises whether Corollary 1 can be generalized
to th?, following: if £ > 0 and there is given, in a compact subset X of n-di-
'n‘wnsq,ona,l‘ polyi.mdron (where 2 < m), a collection C of mutually disjoint con-
Unua having diameters greater than &, then a compact subset ¥ C X ewists
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such that AimY <n—2 and Y intersecls every element of C (compare [3],
p. 90)%

Now, let us denote by Cx the collection of components of the compact
metrie space X (3), and by A (Cx)—the set of points p e X such that there
exists an infinite sequence 0,, 0y, ... of (not necessarily distinct) elements
of Cx satisfying (p) = Lim C; (see [3], p. 88). Then the following theorem
generalizes Theorem 3:

THeEOREM 4. If X is a compact meiric space, each continuum CC X
nowhere dense in X satisfies dim O < n (where 1 < n) and dim 4 (Cx) < n—1,
then a compact subset ¥ C X ewmists such that dimY <n—1and Y~ C# 0
for every C e Cx. »

Proof. Setting

C,={0: 0cCx, 1<5(0)},
Cyp = {C: 0eCx, 1/(m+1)< 3(0) <1/m}

for m=1,2,.. and
(9 Xn= U C

OeCp

8)

for m = 0,1, ..., we see each point p e U € Cx,, to be the limit of a se-
quence p;, Py, ;... of points such that p; € O; e Cn, whenece 1/(m-+1) < 6(C5)
fori=1,2, ..., according to (8). It follows that p ¢ 1iC; and so K = Ls C;
is a continuum (see [2], p. 111) containing p, contained in X, and 1f(m+1)
< 6(K). Thus we have K C 0, whence 1/(m-+1) <4é(C).

Applying Theorem 3 for ¢ = 1/(m+1) and X = Xm, we get a compact
subset ¥m C Xm such that dim ¥, <n—1 and Ym~ O # 0 for every
CeCx, (m=0,1,..). But since OCX,CX for every 0eCnC Cx,
all these ¢ are also components of Xm, whence CiC Cx,. It follows
that the set
(10) Y=4(C)v v u..

intersects every component of X, dim¥ < n—1 (see [1], p. 17 6) and, by
Y C X, to complete the proof it is enough to show that ¥ is a closed set.

Indeed, the sets on the right in (10) being closed, let ¢ = limg;,
where q; e Ym, and limm}= oco. Then, by (9), there exist sets C; e Cp,
and points 7; e O; such that g =limr. Thus (8) implies 6(05) < 1/my
for i=1,2,.., whence limé(C;) =0 and so (g)= Lim 0;. It follows,
by Cpm, C Cx, that g e A(Cx). Hence the set Y is closed, aceording to (10).

As previously, Theorem 4 yields

COROLLARY 2. If X is a compact subset of n-dimensional polyhedron
(where 2 < n) and dim A (Cx) < n—2, then & compact subset Y CX ewists
such that AimY < n—2 and Y indersects every component of X.

(*) Thus X = C¥ in the terminology of [3].
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In the special case of n =2 and of X being a plane set, Coroll-
ary 2 constitutes the theorem which has been announced by D. Za-
remba (see [4], p. 14, Theorem 4) and generalized in another direction
by A. Lelek (see [3], p. 88, Theorem 7).
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Fixations of sets in Euclidean spaces

by
A. Lelek (Wroctaw)

Results and problems. The fization of a collection C of sets
is here understood to mean a set intersecting each element of C. Various
fixations have been considered in connection with upper and lower semi-
continuous decompositions, but they may also be studied separately.

Tt is the aim of this paper to examine three kinds of fixation for
collections C consisting of sets econtained in the Fuclidean n-dimensional
space €", and T am especially interested in the cases # =2 and 3. These
three kinds of fixation correspond to the following three properties of
the collection C, respectively:

(I) There exists a 0-dimensional compact set ZC & such that
Z A~ C#0 for every CeC.
(IT) There evists an arc A C E" such that A ~ O+ 0 for every C ¢ C.

(IIT) There emists, for each { > 0, a finite sequence Zy, ..., Zy of closed
and mutuolly disjoint subsets of €™ such that 8(Z;) < [ (*) fori=1,..,kand

(Zyv eV Ziyn O #0

for every C eC.

Property (III) restricted to upper semicontinuous decompositions
is equivalent to the existence of fixation in the sense of Knaster [2].

Now, let C* denote the union of all sets belonging to 0, ie.

c+={JC.
CeC

We have the following theorems:

THEOREM 1. (I) implies (IT).

TEEOREM 2. (I) implies (ILT).

Theorem 1 is an immediate consequence of the Denjoy-Riesz Theo-
rem (see [4], p- 385). Theorem 2 is obvious.

TesoreEM 3 (D. Zaremba). If C* is a compact set and every CeC
is a- component of C*, then (II) implies (1) (see [6], p- 14).

(1) 8(Z) denotes the diameter of the set Z.
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