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In the special case of n =2 and of X being a plane set, Coroll-
ary 2 constitutes the theorem which has been announced by D. Za-
remba (see [4], p. 14, Theorem 4) and generalized in another direction
by A. Lelek (see [3], p. 88, Theorem 7).
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Fixations of sets in Euclidean spaces

by
A. Lelek (Wroctaw)

Results and problems. The fization of a collection C of sets
is here understood to mean a set intersecting each element of C. Various
fixations have been considered in connection with upper and lower semi-
continuous decompositions, but they may also be studied separately.

Tt is the aim of this paper to examine three kinds of fixation for
collections C consisting of sets econtained in the Fuclidean n-dimensional
space €", and T am especially interested in the cases # =2 and 3. These
three kinds of fixation correspond to the following three properties of
the collection C, respectively:

(I) There exists a 0-dimensional compact set ZC & such that
Z A~ C#0 for every CeC.
(IT) There evists an arc A C E" such that A ~ O+ 0 for every C ¢ C.

(IIT) There emists, for each { > 0, a finite sequence Zy, ..., Zy of closed
and mutuolly disjoint subsets of €™ such that 8(Z;) < [ (*) fori=1,..,kand

(Zyv eV Ziyn O #0

for every C eC.

Property (III) restricted to upper semicontinuous decompositions
is equivalent to the existence of fixation in the sense of Knaster [2].

Now, let C* denote the union of all sets belonging to 0, ie.

c+={JC.
CeC

We have the following theorems:

THEOREM 1. (I) implies (IT).

TEEOREM 2. (I) implies (ILT).

Theorem 1 is an immediate consequence of the Denjoy-Riesz Theo-
rem (see [4], p- 385). Theorem 2 is obvious.

TesoreEM 3 (D. Zaremba). If C* is a compact set and every CeC
is a- component of C*, then (II) implies (1) (see [6], p- 14).

(1) 8(Z) denotes the diameter of the set Z.
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Evidently, all hypotheses in Theorem 3 are essential.

We denote by A(C) the set of all points p of the space " such that
there exists a sequence Ci, O, ... of (not necessarily distinet) elements
of C satisfying (p) = LimC; (). Of course, we then have Iimé(C;) = 0.
It is evident that 4 (C) is always a closed subset of ¢™ and {p} ¢ C implies
ped(C).

THEOREM 4. (IIX) implies the inequality dim 4 (C) < 0.

A weaker theorem has been shown by D. Zaremba (see [6], p. 14).
Theorem 4 will be proved in the sequel (see p. 91).

TrEOREM 5. If C* is a compact set, AimC* < 1 and there emists e>0
such that every CeC is a connected set of diameter 0(0) > ¢, then (I) holds.

The proof will be given in the sequel (see p. 91). The collection of
points of an are shows that the hypothesis concerning the diameters in
Theorem 5 is necessary; however, we shall point out a possibility of modi-
fications. (see remark on p. 97). It will he shown by Example 4 that each
of the hypotheses concerning C* in Theorem 5 is also necessary.

THEOREM 6. If C* is a bounded subset of the plane €2 and there exists
&> 0 such that all sets O € C are disjoint continua (®) of diameter 6(C) > g,
then (I) holds.

For the proof, see p. 93. Theorem 6 with the stronger hypotheses
that C* is a compact subset of ¢2 and the sets O ¢ C are components of C*
has been announced by D. Zaremba in her paper [6] (see also [5], p. 84).
The hypothesis that C* is contained in the plane is essential by virtue
of Example 1. The question whether the word “continua’ in Theorem 6
can be replaced by the words “connected sets” remains open (see Prob-
lem 1). Simple examples of C, for instance C congisting of (i) all con-
centrical circumferences with diameter greater than 1, (ii) all arcs con-
tained in a circumference and having the diameter greater than 1, (iii)
all antipodal point pairs on a circumference, and (iv) all points of an are,
show that the hypotheses in Theorem § that C* is a bounded set and

that elements (' ¢ C are disjoint connected sets with big diameters are
essential, respectively.

THEOREM 7. If C* is a bounded subset of the plane €2, the sels O« C
are disjoint continua and dim 4 (C) < 0, then (T) holds.

For the proof, see p. 97. Theorem 7 with stronger hypotheses has
been announced by D. Zaremba [6] (see also [5], p. 85).

(%) For definitions of topological limits Lim, Li and Ls see [3], p. 241-245. The

set A g}C) corresponds to the “adduit” defined by Zaremba [6] for collections of com-
ponents,

(*) That is compact connected sets,
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TeEOREM 8. If C* is a bounded subset of the plame €* and the sets

C e C are disjoint continua, then (I) is equivalent to (I1X).

Theorem 8 follows from Theorems 2, 4 and 7. The hypothesis that C*
is contained in the plane is essential by virtue of Example 3.

I say that C is a lower (or upper) semicontinuous collection if ‘for
every open (closed) set X in C* the union of all sets O e C satisfying
X ~ 0 5 0 is an open (closed) set in C* (compare [4], p. 42 and 48). The
collection C being both lower and upper semicontinuous is called continuous
(compare [4], p. 48). ‘ ‘

Evidently, each collection of the form C u {C*}, where C is an arbi-
trary collection of sets, is continuous one. Therefore thege not101.1s. are
interesting only with the restriction to collections consisting of dlst.nt
gets. For such collections C the notion of hyperspace H(C) may ea,sﬂy
be introduced provided that C* is a compact set and C is upper semi-
continuous (see [4], pp. 42-46). It is also easily seen that if C is an upper
semicontinuous collection of disjoint sets, then each element of C is
a cloged set in C*, we have ), ~ 0, = 0 for 0y, 0, ¢C, O, # C,, and every
subcollection of C is also upper semicontinuous.

Now let 9 = {t: 0 <t<1} and let 9" be an n-dimensional cube.
The following two theorems have been proved by Kelley [1]:

TarorEM 9 (Kelley). If C* = 92 and C is an upper semicontinuous
collection of disjoint sets with the hyperspace H(C)C &, then (I) holds

(see [1], p. 32).

TEEOREM 10 (Kelley). If C* is a compact set, C is‘ a continuous
collection of disjoi(nt connected sets, AimA(C)< 0 and dimH(C) < oo,
then (X) holds (see [1], p. 33). ' ' .

According to Example 1, the hypothesis that C is continuous is
essential in Theorem 10.

TEEOREM 11. If C is an wupper semicontintious collection of disjoint
connected sets and dim 4(C) < 0, then (II) implies (IIL). '

The proof will be given in the sequel (se.e P ?8). Acfsord.mg to El.l-
ample 4, the hypothesis that C is upper semcon@uous is neeessa.rybm
Theorem 11. The guestion whether this hypothesis can be repla.cgd Yy
the condition that C*C ¢? remains open (see Proble.am 3). It is n(?t
difficult to verify that each of the other hypotheses in Theorem 11 is
also mecessary. )

TamorEM 12. If C* is a locally connected continuum, C is an upper
semicontinuous collection of disjoint sets and H(C)C &, then (II) holds.

For the proof, see p. 103. Example 2 shows that. the.local com:llec5-
tedness of C* is a necessary hypothesis in Theorem 12; likewise Example
shows that the condition H(C)C &t is the same.
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TerOREM 13. If C* is a locally commected continuum, C is an upper
semicontinuous collection of disjoint connected sets, dim 4(C) <0 and
H(C)C &, then (III) holds.

Theorem 13 is an immediate consequence of Theorems 11 and 12.
It may constitute a contribution to the discovery of the analogue of
Kelley’s Theorem 10 for semicontinuous collections. The gquestion
whether (IIT) in Theorem 13 can be replaced by (I) remains open (com-
pare Problem 5).

We have the following examples, the first two having been con-
structed by Knaster [2]:

Examprm 1 (Knaster). A collection C such that C* is a 2-déimen.-
sional compact subset of €3, H(C)C &, Cis a component of C* and §(0) > 1
for every CeC, and (non I), (non IT), (non XII) hold (see [2], p. 194).

ExAwMPLE 2 (Knaster). An upper semicontinuous collection C of
disjoint continua such that C* is a 3-dimensional and non-locally connected
subcontinuum of €% H(C)CT &, 8(0) =1 for every C €C, and (non I)
(non II), (non III) hold (see [2], p. 196).

Examrre 3. A collection C such that C* is a 2-dimensional compact
subset of &, H(C)C &, O is a component of C* and 6(0) =1 for every
C eC, and (non 1), (non II), (IIL) hold.

The construction of Example 3 will be given in the sequel (see p. 105).

Such an example cannot be 1-dimensional, according to Theorem 5,
and it cannot be found on the plane, according to Theorem 8.

EXAMPLE 4. A4 collection C of disjoint arcs such that C* is a 2-dimen-
sional subcontinuum of €3, 8(0)> 1 for every CeC, and (nom I), (II),
(non III) hold.

The construction will be given in the sequel (see p. 106). According
to Theorgm 11, such a collection cannot be upper semicontinuous.

?

EXAMPLE 5. An upper semicontinuous collection C of disjoint continua
such that C* is a subset of ¢3, homoemorphic to 93, H(C) is a dendrite having
a ramification at most 3, §(C) =1 for every O e C, and (non I), (non II),
(non XII) hold. :

The construction will be given in the sequel (see p. 108). According
to Theorem 12, the dendrite H (C) in Example 5 must have at least one
point of ramification greater than 2.

Finally, the following problems oecur in connection with the pre-
ceding:

PrROBLEM 1. Is it true that if C* is a bounded subset of the plane and

there exists 6> 0 such that all elements C ¢ C are disjoint connected sets of
~ diameter 6(0) > ¢, then (I) holds?
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If, moreover, every element C of C is a closed set, then Problem 1
has an affirmative solution, according to Theorem 6.

PROBLEM 2. Is it true thai if C* is a bounded subset of the plane and
the elements U e C are disjoint comnected sets, then (ITIT) smplies (I)?

As previously, Problem 2 has an affirmative solution for C consisting
of closed sets, according to Theorem 8. It may also be proved by Theo-
rem 4 that an affirmative solution of Problem 1 implies an affirmative
solution of Problem 2.

ProBLEM 3. Can the upper semicontinuily of collection C in Theorem 11
be replaced by the condition that C* is a subset of the plane?

ProBLEM 4. Is it true that if C* is @ compact set, C is upper semi-
continuous and there exists e > 0 such that all elements CeC are disjoint
conmected sets of diameter 6(C) > ¢, then (II) implies (I)?

PROBLEM 5. Is it frue that if C* is a locally commecied continuum,
C is an upper semicontinuous collection of disjoint connected sets with the
hyperspace H(C)C &' and there exists e> 0 such that 6(C)> & for every
C eC, then (I) holds?

'We have (II) and (ITI) for such collections, according to Theorems 12
and 13. It is easy to see by Theorem 12 that an affirmative solution of
Problem 4 implies an affirmative solution of Problem 5.

Proofs of theorems. We shall prove Theorems 4, 5, 6, 7, 11 and 12.
The others are evident or may be found in literature.

Proof of Theorem 4. Let > 0 and let Z,, ..., Z) be closed sets
given by (III). If a point p € A(C)—(Z, v ... Z;) existed, then the
sequence of C;eC, converging to p, would contain an element C; lying
outside the set Z; u ... Z; which contradicts (IIT). Therefore the sets
Z,, ..., Zx constitute a finite cover of A(C) by disjoint closed sets with
diameters <<, whence Theorem 4 follows.

Proof of Theorem 5. Since the set C* is compact, dim C* <1
and ¢ > 0, there exists a finite cover ¥ of C* by sets V with diameters < &
and boundaries of dimension < 0 (in C*). Therefore the union Z of all
boundaries of V ¢ ¥ is a 0-dimensional compact subset of C*. Since each
set O e C is contained in C* and has the diameter > ¢, it intersects a set
VeV and is not contained in V. Consequently (see [4], p. 80) each C
intersects the boundary of some V, whence Z ~ ¢ # 0 and Theorem 5
is proved.

Before we prove Theorem 6 we shall show some lemmas. Let 4> 0 and
let a subset U of the plane ¢? be called a #-net in €2 if for every point
p € €% there exists a point u e U such that o(p, u)< 5 (3.

(*) e(p,w) denotes the distance between the points p and u.
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LemMA 1. If > 0 and U is a n-net in C? then there exists o trian-
gulation T of €2 such that all vertices of every triangle of T belong to U and (%)

1) mesh (T) < 97 .

In fact, denote by S; the square bounded by the lines z = 4iy,
@ =2(2+1)n, y=4n and y =2(2j+1)n (4,j=..—1,0,1,..), and
by pi;—the centre of S;;. Then there is a point u;; ¢ U such that o(py, u;)
< 1, whenece u; e Int(8y). It follows that for every integer ¢ and j the
POINGS Uij, Usy1gy Uige1y Uir1j+1 are vertices of a convex quadrangle @y
lying in the square bounded by the lines & = 4in, & = (4i+6)n, y = 4jy
and vy = (4j+6)7. Hence

0(Qy) < (3697 + 3677112 < 9y

and after cutting every @;; into two triangles along its diagonal we obtain
the desired triangulation T.

Let us denote by pg the straight line segment with end points p
and q (p,qe & p #9).

Lemma 2. If CCCE is a non-degenerate continuum, qeC and
D1y ey Pre C2— C are points satisfying p:g ~ piq = (q) for every i,j=1,...,1,
i 5= 4, then there exist points ¢y, ..., @ € C such that

pigin C=(q) and  pigs o pig; =0

for every ¢, =1,..,1, i #74.

Lemma 2 is trivial for I = 1. Suppose it is true for I =k and let
Pry ooy Pies be points satisfying the hypotheses of Lemma 2 for I = k1.
Sn}ce O% (¢) and every two distinct segments p.g, p;g have only the
point ¢ in common, for at least one of the points pi, ..., Pr+1, We may

assume that pyyq is such a point, there exists a point gy e C—(g) such
that the equalities :

Prfit1 N C = (e} s Prra@uori o (Prg v . v Pig) =0

Iiﬂd. It follows that a number ¢ > 0-exists such that o(g, ¢') < & implies
Pig N PrtaQe+1= 0 for ¢ =1, ..., k. Denoting by €’ such a non-degenerate
subcontinuum of € that ¢ e ¢" and 5(0') < ¢, it is enough to apply Lemma 2
for I =% and (' instead of C.

Now, let C and C’ be collections of sets. We write
cC=sC

provided that every element of C’ contains an element of C.

o T (*) mesh (T) denotes the least upper bound of the diameters of triangles belonging

icm
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Proof of Theorem 6. Since C* is a bounded subset of ¢?, there
is a rectangle R,C €? such that C*CInt(R,). Let us denote by d the
diameter of R,. We shall define, for every n =0, 1, ..., 2 number &, > 0,
a finite collection R, of disjoint rectangles and a collection C, of disjoint
continua. First, put & = ¢, Ry = {R,} and C, = C. It is necessary, more-
over, that each element of R, should have a diameter less than /2" and
each element of C,—a diameter greater than e,, and that the conditions

@) Ry CRY,
(3) . C'1t+1 - Cn s
) Cx C Int(R}),

ghould hold, for every n = 0, 1, ... Since &, R, and G, are already defined,
let s suppose that e,, Ry and C, are defined. We shall find anumber &,41
and construct colleetions Rn.y and C,y; having the required properties.

Setiting
(6) 7 = min (e, /2")/36 ,
we conclude, by &, > 0, that n > 0. Hence the set (°)
(6) U=Ciu[C—Q(CR,n)]

is & #-net in €2 Therefore, by Lemma 1, there exists a triangulation T
of €2 such that each vertex of T is a point of I and (1) holds. Let us denote
by S the collection of sides of triangles belonging to T. Thus S is & locally
finite collection (%), each element of S is a straight line segment with
end points belonging to U and of length less than 9, according to (1),
and every two distinet elements of S either are disjoint or have exactly
one common point which is their end point. Since Cj is a bounded set by
virtue of (4), there is only finite number m of points which belong to c;
and are end points of segments from S. Let a;, ..., an be those points,
if m > 0.

Put S, =S and suppose that a locally finite collection Sy, where
0 < k< m, is defined such that every two distinet elements of S are
straight line segments with at most one common point p which is their
end point and belongs to U, and that every such point p is one of the
POINbE @giy, ...; &m Provided that p e Ci. Suppose also that disjoint con-
tinua K, ..., Kz C €2 are given satisfying

(7) (Klu...UKk)ﬁ{ak+1, aeey am} =07

(*) Q(4, 7) denotes the set of points p ¢ € guch that there exists a point ae 4
satisfying p(p,a) <7u. If 4=X o ¥, then 0, n =Q(X,n) v@(¥,n).

(") A collection S of sets is said to be locally finite if each point (of ¢*) has a neigh-
bourhood (in ¢?) intersecting only a finite number of elements of S.
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a;e K; and 8(K;) < n for ¢ =1, ..., k. Then we define Sy,; and K., as
follows.

Denoting by i, ..., all the points p; satisfying Piari: €S, we
have p; # ar: and  Pilpr o Pk = (@) for 5 =1,..,1, ¢ # 4,
Furthermore 0 < o(ag+1, Ky v ... v Ky) (), according to (7). Since S, is
loeally finite and each § ¢ Sy is a straight line segment, a number ¢ exists
such that .

8) O<ié< ix:f.l.,z {1, 0(@p+1, Ky v oo v Kz)y 0(Gr1,D5) 5 0(0r41,a9)},

F=kt2yn.,m
(9 o(arr1, @) < £ implies 7g ~ S =pairsa ~ 8
fori=1,..,1 and § € Sg— {P1@xs1; .-, Pilles1}. We have az,; e C, whence

a1 € 0’ for some C'eC, and €' is a non-degenerate subcontinnum of &2,
Let K., be a subcontinuum of €’ such that apy, e Kpyy and §(Kyyy) < &
therefore &(K 1) < 7, ’

Kipin (BEyv... vEp) =0 and 9y, ..., D1y Orsay oy Om € C2— Kppy

by (8). Thus (K, v ...w Kpp1) ~ {@xt2y...,0m} = 0 and, applying Lemma 2
fﬂ C =K, and ¢ = agyq, we get points ¢, ..., ¢g e Kxyy such that
Pigi~ K1 = (@) and pig; are disjoint segments (i =1, ..., I). It follows
from (9) that Kxr1~n8=0 and P ~n 8 =piarr1n S for i=1,..,1
and S.e Si— {P18it1y -y Pi@rr1}- We form the collection Sy, from tl,le
collection Sj by replacing the element pwx;: of S; by the segment pg:
for every i=1,...,1L ' i

Hence Sy11 it a localy finite collection of straight line segments, every
tW_o of them having at most one common point p, which is their end
point and belongs to U. Moreover, every such point p is one of the points
@ki2y .-y &m Provided that p ¢ C} and k-+1 < m. In the case of k+1=m
no such point p belongs to C}, whence

(10) S8 cCceée—-cC: for 8,8 ¢Sm, S#S’.‘
Furthermore, the continua K; are digjoint and

(11) a‘eKi, 6(K¢)<17, K,r\SZ,#O

fori=1,..,m.

) Each element of S, is changed at most twice in order to become an

e ement’: of Sy and these changes depend on taking a point of K; as a new

gnd point 1(;)1£ the segment instead of the point a; for some i=1,..., m.
onsequently, since S, = S and each segment of S has a I

e inthy fron (1) that g s & length less than 97,

(12) 5(8) < 9n+29 =11y

(*) e(a, X)=inf g(a, z).
zeX

for SeSm .

icm

Pigations of sets in Buclidean spaces 95

Similarly, each element of S, either remains disjoint with the set
EK,v ... En or changes for the first time to a segment having exactly
one end point in K; and, perhaps, for the second time to a segment having
exactly one end point in K;, where ¢ < j, and no other point of K; v ... v Km
is added. Consequently, each element § of S hag at most two points
in the set K, v ... v Kp and every such point is an end point of §.

Denoting by X; the union of K; and all bounded components of
¢2—K;, we see that the hyperspace H of the semicontinuous decom-
position of €? into the components of Kiv..vK;, and the points
pec—(K{iv .. Ky) is topologically the plane ¢* (see [4], p. 380) and
that the set S% U Kyu .. v Kn is transformed by this mapping onto
the 1-dimensional skeleton of some triangulation T' of H. Hence each
component D of the set

(S5 U By U o v Kn)

is contained in a bounded component either of the set &2—K; for some
i=1,..,m or of a set of the form

C?__ (S‘). v S(’ v S{. v Kil w Kfz v .K“,) )

where 8;; e Sm correspond to the gides and K;—to the vertices of a triangle
belonging to T’ (j =1,2,3). It follows, in any case, that we have

3
5(D) < ) [8(8y)+8(Ky)] < 3-1ln+3y =360 < en,
=1
according to (), (11) and (12). Therefore no set C e C, is contained in D,
whence each set C eC, intersects the set Sp v Ky v ... v Km. If we have
C ~ K; # 0, then K; C C, because K; is a subset of a continuum belonging
t0o Cy (i =1, .., m) and C, consists of disjoint elements. Hence, by (11),
0£ K;~S5CC Sy, and we conclude that it is always ¢~ Sn# 0
for C € C,. But since C} is a bounded set, according to (4), and Sm is
a locally finite collection, there is only a finite number of elements 8, ..., S»
of S, which intersect C%. Consequently,

ér\(slu...ush)%ﬂ

for every C eC,.

Consider two distinct segments S; and 8 (4,§ = 1,
+ 0, then S; and §; have exactly one point p in common, where p i§
end point of §; and 8;, and belongs to U. By (10), we have 8; » 8;CE2— c,
whence p € €2—Ch. Therefore, by (6), the point p does not belong to the
set Q(Ca, 7).

1t follows, according to (4), that disjoint segments 8;CS; exist
(i =1,..., ) such that

ey h). T B 8
an

8 U ... v 84 C Int(R3)
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and
(18) On(Siv..uli)#0 for CeC,.

- Consequently, We can construct disjoint rectemgles Ry, ..., R; and
rectangles Ry, ..., R} such that

(14) 8; CInt(R;), R;CInt(R;)C R}
and

(15) R:CQ(Si,7)

for ¢=1,..., h

Now, we define 41, Ry1 and Cyyy as follows.
Put Ryii = {By, ..., Ry}, It follows from (5), (12) and (15) that

8(R:) < 6(87)+2n < 18y < 13d/36-2" < /ot

for 4=1,..., h. Moreover, by (14), we have R;C R} for i=1, ...,h-.

’

thus (2) holds.

According to (14), there exists a number &,.; > 0 such that Ent1 < &p
and zn11 < g(s,7) for every s eS; and » belonging to the boundary of R},
t=1, ..,k If CeC,, there is, by (13), a segment 83 (j =1, ..., 1) which
intersects the continuum C. Therefore, in the case when € is not con-
tained in R; there exists a component ¢ of the set € ~ R; such that
a1 < 8(0). If OC Ej, then, putting 0 = 0, we also get the inequality
&1 < & < 6(0) = §(0). We define

Coin={0: 0cCy).

Hence C,.4; is a collection of disjoint continua with diameters greater
than e,y and (3) holds. Moreover, we have Ci1CR{v ... U R}, whence

CiiCRiU .. 0 RiCInt(B) w ... u Int(Ry)
CInt(R; v ... v Ry) = Int(R4y,),

a,ccord‘ing to (14), i.e. (4) holds for n+1 instead of n.
Smce‘each collection R, consists of a finite number of disjoint rec-
tangles with diameters less than d/2", it follows from (2) that
Z=(\R:
n=0
is a 0-dimensional compact subset of the plane (2,
Let C be an arbitrary element of C — C,. By (3), there exists an

infinite sequence C,, C,, ... of continuga such that Cy=0and 0,1, C 0, eCy
for n =0,1,.. Thus 0,C ¢ and, according to (2) and (4), we have

R 1A OCR:A CORYAUOy=0,#0
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for n = 0,1, ..., whence we obtain

8

ZAC=(RE~C) %0,

n=0

I

i.e. (I) holds and Theorem 6 is proved.
Proof of Theorem 7. Let us put

C,={0: CeC, 1< (0},

(16) Co={C: CcC, 1n+1) < 5(0) <1}

for n =1,2,... By Theorem 6, there exists a 0-dimensional compact
set Z, C € such that Z, ~ 0 5 0 for every C €C, and n = 0,1, ... Since
C} C C*, each set

an Zh=ZnnCE (n=0,1,..),
as well as the set A (C), is a closed subset of C* and so
(18) Z=AC)vZivZv..

is a 0-dimensional subset of C* (see [3], p. 171). Hence, C* being bounded,
to prove that Z is compact it is enough to show that Z is closed. Let
p = limp; and p; e Z for i = 1,2, ... If a set in the sum on the right side
of formula (18) contains infinitely many of the points p;, then, being
compact, it contains the point p, i.e. p e Z. If, however, there is a se-
quence 7, Ny, ... such that limn; = co and each set Z, contains at least
one of the points p;, then p is a limit point of points g; € C},, according
to (17). Taking such C; that g¢; ¢ 0; ¢ Cyy, we thus obtain U;¢C for
j=1,2,.. and Limé(C;)=0, by (16), whence (p)=limg;= LimOC;
and therefore p € A(C). This yields p ¢ Z and so Z is a compact seb.

Finally, let C be an arbitrary element of C. If O is a one-point set,
then CC A(C), whence Z ~ C 5= 0, by (18). If ¢ contains at least two
points, we have 0< §(C), i.e. CeC, for some n=0,1, .., according
to (16), whence 0% Z, ~n C=Z;, n CCZ ~ 0, by (17) and (18). There-
fore Z intersects each element C of C, i.e. (I) holds and Theorem 7 is
proved.

Remark. Theorem 7 is a generalization of Theorem 6 and it is easily seen that
the above proof can be extended to that of other theorems generalizing theorems like
Theorem 6. For instance, Theorem 5 can be generalized in this way as follows: if C* 4s
a compact set, C is a collection of connected sets, dim A (C) < 0 and dim C* < 1, then (I)
holds. The condition that C* is an at most 1-dimensional and compact set can be replaced
here by the condition that C* is contained in such a set.

I say that L = L, v ... v Ly is an ordinary decomposition of the arc L
into ares L; provided that L; ~ Ly consists of a single point for i=1,...,
n—1 and 1 < |i—¢| implies Ly ~ L; = 0 for 4,j =1, ..., %.

Fundamenta Mathematicae, T. LI 7


GUEST


98 A. Lelek

LevuMa 3. If y> 0, Lis an arc and Ty < 8 (L), then there exist a number
n=1,2,.. and an ordinary decomposition

L =L1 U VW L4n+3

of I into arcs L; such that

(19) y < 0(Li) < By

for every i =1, ...,4n+3. N
In fact, p denoting an end point of L, there is an arc A, CL beginning

at p and having the diameter 5(4,) = y. Similarly, therw

A, CIT=4, such that 4, ~ 4, # 0 and §(4,) = y, an arc A, C L—(4,v 4,)

such that A4, ~ 4, % 0 and 6(4;) =y, and so on. Choosing these arcs

as long as possible, we obtain an ordinary decomposition

L=A4du . vdyol—(4d 0. 04,

where 8(4;) =y for =1, ...,k and the diameter of the last arc is less
than y. Let n = [}(k—3)], whence k =4n+3+m and m < 3. Putting
Li=A;for i=1,..,4n+2 and

Liis = Aanis U oo W Agnrsgm v L— (4 v o v 4z),
we obtain 6(L;) =y for i =1,...,4n+2 and
y < 8{(Lunss) < y+my-+y < By,

i.e. (19) holds. Moreover, 7y < §(L) implies 7 < k, whence 1 < » and thus
Lemma 3 is proved.

LEMMA 4. If C is an upper semicontinuous collection of disjoint sets
and C;eC for i =1,2, ..., then there is an element C e C such that

CrALiC;CC.

Suppose, indeed, p, g € C* ~ LiC;. Then p e C for some CeC and,
for i=1,2, .., there exist points p;, ¢; ¢ ¢; such that p = limp; and
¢ =limg; (see [3], p. 242). It is enough to show that qe C.

If ¢ belongs to the infinitely many sets O, these sets must coincide
with some element ' of C, because C is a collection of disjoint sets. Then p
is a limit point of the set ¢’ and since C is upper semicontinuous, 0’ i3
closed in C*. It follows that p € ¢/, whence O = €' and go ¢ belongs to C.

" If an index k exists such that ¢ does not belong to C; for ¢ > k, then
the set {p,Px, Pr+1,...} 18 closed in C*, and since C is an upper semiconti-
nuous colleetion of disjoint sets, the union O v O v Opgqv ... must
be a closed subset of C*, whence it must contain the point ¢. It follows
that ¢« O and thus Lemma 4 is proved.

Proof of Theorem 11. Since, by (II), every element of C inter-
sects the are’ 4, the set A4(C) iy contained in 4, and so it is compact
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(see p. 88). A(C) being also 0-dimensional (or empty), there exist in A4
intervals I, ..., Iy (i.e. connected open subsets of 4) such that A(C)C
Iyv ... v Iy, the diameter of I; is arbitrarily small and T; n I; = 0 for
i,j=1,..,% ¢ . Then all the elements ¢ of C which intersect the

© seb A— (I w..uI;) (let us denote the collection of such ¢ by C’) have

diameters greater than some &> 0 and it is sufficient to prove that (IIT)
holds for C'.

Thus we can assume that there exists an ¢> 0 such that 6(0)> e
for every C eC.

Let £> 0 be an arbitrary number and
(20) » y = min(e, {)/17,

whence y > 0. Consider the collection I of maximal intervals in 4 in
each of which some element of C is dense. In other words, the collection I
consists of all the components of the interiors (in 4) of the sets 4 ~ c,
where C ranges C. Since C is an upper semicontinnous collection of disjoint
sets, it follows that every two distinet elements of I are disjoint (see p. 89).
Hence J = {J: J eI, y < 8(J)} is a finite collection of disjoint intervals.
For every J ¢ J, let J, be such an interval that J, CJ and J—J, is the
union of two disjoint intervals having diameters less than y. Putting
K = {J,: J ¢J}, we thus conclude that

(21) if CeC, Y is an arc and y < 6(Y), then Y—(A—K*)~ C £ 0

and J—J,C 4—K* for every J eJ.

Furthermore, from (II) we have 4 ~ 0 50 for every CeC. If
J ~ 0+ 0 for some J ¢ J, then ¢ must coincide with that element of C
which is dense in J, whence 0 # (J—J,) ~n 0 C(4—K*) A 0. But if
J*An C=0, then 0 £ A~ O0C(4d~TJ*) A CC(4—K*) A C. Therefore in
any case we have

(22) (A—K*)~C#0 for every CeC.

Let ug denote by L the collection of such components L of the seb
(A—K*) ~ C* that Ty < 6(L). Hence L is a finite collection of disjoint
arcs and
(23) L*C(A—K*)n C*.

Therefore a number %> 0 exists such that
(24) QL) ~QL,n) =0

for L, L' e L, L % L.
73
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Now, let L be an arbitrary element of L. According to Lemma 3,
there exists an ordinary decomposition L =1I,w ... Lys of L into arcs
satisfying (19). The sets

(25)  Fy =Fr[Q Ly v Ly v Lyisr, 1)1~ Q (Lui-2 v Lusye, 1/j)
are evidently compact (°) for ¢ =1,...,n and j=1,2,..
Consider a number 4, = 1, ..., » and a sequence C;, ;, ... of arbitrary
elements of C which satisfy the inequalities
(26) Ly~ Ce£0  for k=1,2,..
According to Lemma 4, there exists an element C e C such that

C* A LiC; C C. But since Ly, CLCL* and Ly, is an are, it follows
from (23) that

L4{0_1 C (A-*K*) mn C" f\ L‘{o_.l 9
whence, by (19) and (21), we get
0 # Lyy1—(A—K¥)~ C
CA—K*YnC*n Ly, y—(A—K*) nC* A Li0y
= (A—K*) n C* ~ (L1 —LiOk) C Lyyy—1— Li 0y,

ie. Ly,—y—LiC) # 0. Thus there exist a point p e Ly,—1, an open neigh-
bourhood U of p (in the Euclidean space) and a subsequence Cj,, Op,, ...
such that U~ Oy =0 for I =1,2,.. Bvidently, we can do the same
with the are Ly, and the sets Oy, instead of Ly, and Oy, respectively.
Then we obtain a point ¢ € Ly,+1, an open neighbourhood V of ¢ and
a subsequence Oy, Ok, .. such that Vo~ O, =0 for m=1,2,..
We can assume for simplicity that the last subsequence agrees with the
preceding one, and so

27 : (TuV)nly=0 for 1=1,2,..

Let; .L4_.-,,—1 =M v M,v My and Ly, = NyuN,u N; be ordinary
decompositions into arcs such that M, and N, intersect Ly, and M, v N,
CUvV. Put M= M, Ly, v N,. Then there exists such an integer
y.,?l 0 that 1/j, < ¥ and, for every j > j,, we have @ (M, o N,, 1j)CUVV
an
(28) Q@ (Luip—2 v My v Ny Ly, 1/§) ~ Q(M, 1/§) = 0.

_ I‘t fol}ows that, for j>j,, no point »eFr[Q (M, 1/))]—(TUv V) is
a limit 1.)011113 9f thfa s_et Q (M, v-Ny, 1/j) v Q( My N,, 1/7). However every
such point  is & limit point of the set Q (M, 1/j) and of its complement-
ary set. But since .
QLaiy-1 % Luiy © Liio1, 1) = Q(My v Ny, 1/j) © Q(My Ny, 1/f) © Q( M, 1/7)

(*) Fr(X) denotes the boundary of X in the Euclidean space (see [3], p. 29).
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(compare the footnote (*°) on p. 93), every such point # is a limit point
of the set on the left side of the lagt equality as well as of its complementary
set, and 5o # belongs to its boundary. Therefore the whole set Fr[Q (M, 1/j)]
—(U v V) is contained in this boundary and we infer from (25) and (28)
that .
(29) FriQ(M,1)ICFpu UV
for § > j,. We have
0 # Ly~ O C M A0y CQIM,1/j) A Oy
according to (26), and
8[Q (M, 1/j)] < (M) +2/j < 8(Lisy—1 Lty Luiyt1) +2/jo
<3 By+2y=17Ty<e¢
for j > o, according to (19) and (20). But since Oy, € C, we have & < 8(0k,)
for 1=1,2, .. Hence no set 0y, is contained in @ (M, 1/j) and therefore
each must intersect the boundary of Q(M, 1/j) for j>j, and 1=1,2, ...
(see [4], p. 80). Consequently, by (27) and (29), we obtain
Fii O #0

for every integer j > j, and 1=1,2, ..

Since the sets O, C, ... satisfying (26) have been chosen arbitrarily
in the collection G, it follows that for every i = 1, ..., n an integer m (i) > 0
exists such that
(30) if 0eC, Lyn C#0 and m(i) <j, then Fin C#0.

The closures of the sets

G =Ly wlywDyn and Hi=A—(Lyusv ... L)

being obviously disjoint, it follows that an integer 5> 0 exists such that

(31) 1/h < min {7, y, 1m(1), 1/m(2), ..., Ifm(n)},
(32) Q(Gi, 1/h) ~ Q(H;, 1/B) = 0

for i =1, ...,n. Since I is a component of the subset [A=K*) ~ C* of
the arc A, the arcs L; and Lip.s (containing the end points of L, respec-
tively) may be completed, respectively, by adding some points of A—1L,
o such closed subsets I{ and Lin+s of the set (4—K*) ~ C* that
(33) L CQ(Lyy1/h),  ints CQ(Lunts; /)
and the union I w Ty w ... v Lins v Linys containg I and is both o'pqn
and closed in (A—K*) ~ C*. Let us denote by My, the collection con-
sisting of the following 2n--1 sets:
LuL,uly, T Linis v Lints,
Fan, Lun v Luse v Lairs and Fon,
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where i¢=1,..,n—1. From (25) we have FuC@Q(G;,1/k) and
Fo A (Deg—z v oo 0 Lygye) =0 for ¢ =1, ..., n. Hence

(Fipvw i UFpp)nA =0,

by (32), and so (Lw Mf)~ A = Lj v L Ligys, i.e. this seb is an open
and closed subset of (4—K*) ~ C* Furthermore, if 4,§ =1, oy and
?;ﬁj’ ﬂ}eﬂ G; C Hy, whence Fy ~ Iy =0, by (32). It follows that My
is a finite collection of mutually disjoint compact sets.

Accor.ding to (25) and (33), we have Z C Q(X, 1/h) for each Z eM;,
where X is a union of three successive arcs I;. Therefore

8(2) S B(X)+2/h < B-5y-+2y = 1Ty < ¢

for Z e My, by (19), (20) and (31).
Let CeC and L~ C 0. Then we have Lu~ C =0 for some

m=1,..,4n+3. If m=£0 (mod4), L, is contained in an element of M, -

Whenc_e 0#£#Lnn OCMEAC. If m =0 (mod4), we have m = 4i for
some %=1, ..., n; and so from (30) and (31) we get 0 % Fy ~ O C Mi A O.
Hence in any case

(3_4) if CeCand L~ O #0, then M(n~n 0 0.

Finally, (25) and (33) imply that each element of My, is contained in
Q(L, 1/b). Therefore (31) gives

M;CQ(L, ).

- The finite collections My, of mutually disjoint compact sets with
dla,n-aeters‘ less than ¢ are thus defined for I e L. Comparing the last in-
clusion with formula (24), we see that the collection

M=\JM,,
LeL

is the same one. Furthermore, since L is finite, the set

(I*oMA A =LL£JL[(L v M) ~ A]

is an open and closed subset of (A—K*) ~ C* and (see the definition
of L, p. 99) each component of the set

(A=K A C —(L*UM*) A A

has a qiametel_' l_ess than Ty. It follows that ‘this last set may be decorﬁ-
pf)sed into a finite collection IV of mutually disjoint compact sets having
diameters less than 8y, and thus less than ¢, according to (20).
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Thus M v N is a finite collection of disjoint compact sets with dia-
meters less than  and

(A—K*) A C*CL* v M* U N*,

By (22), each element ¢ of C intersects A — K*. Hence it must in-
tersect L* or M* o IN*. In the first case we have L ~ C +# 0 for some
LeL and infer from (34) that 0+ M}~ CCM*A C. Then O always
intersects M* u N*. Denoting by Z,, ..., Z; the elements of the collection
M o N, we conclude that condition (III) holds and Theorem 11 is proved.

Proof of Theorem 12. According to the Alexandroff Theorem
(see [4], p. 42), there is a continuous mapping f: C*—H(C) such that
the counter-images  '(y) coincide with the elements ¢ of C, i.e. we have
O = f*(0) for every O < C. Then f(C*) = H(C) is a segment {f: a << b}
of the real line €. Let p ef *(a), g/ (b) and let A C C* be an arc from p
to g (see [4], p. 182 and 184). Hence f(4)= f(C*) and it follows that
HA A O)=flA~FHO]=HA) ~](0) = F(C*) ~f(0) = }(C) # 0, which
implies 4 ~ C 7 0 for every CeC, ie. (II) holds and Theorem 12 is
proved.

Constructions of examples. The constructions of Examples 1
and 2 being given by Knaster [2], we are to construct Examples 3, 4
and 5. All our constructions will depend on Knaster’s result [2]. We start
with the following

LeMMA 5. Let G= Gyu ... w Gy, where Gy, ..., G are open subsels
of the plane ¢? such that )

(35)  8(G)<1

let Py, ..., Pn be points of the square 92 and let K be a component of the set
92— @, intersecting the two sides I x (0) and I x (1) of F*. Then there exists
a polygonal arc A with end points g, and ¢ such that

g eIx (1),

A n[9x(0)]= () -

and  GAGi=0 fordij=1,..,ki%j,

2 eI X (0),
ACEK—{pyyyPaty

First we shall show that there is only one component K of the set
92— @, joining the sides 9x (0) and Ix (1).

Indeed, if the set @ cut 92 between the gides (0)x9 and (1)x9,
a continuum € C G would exist (see [4], p. 97, 176 and 335) such that C
would intersect both 9 x (0) and 9 x (1), whence 1< 8(0). Then, by (35),
we should have C C @ for some i =1, ..., k, which would give 1 < (k)
contrary to (35). Therefore there is a component K’ of 92— (@, joining
the sides (0)x9 and (1) x9. It follows that K ~ K’ # 0, whence K =K'
Now, if K is a. component of 92— @ which joing Ix (0) and 9 x (1),
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we must have K' ~n K" # 0, that is K ~ K" 0, whence K — K", and
so our assertion is proved.

Now, if the set Qf-—@ were not connected between the sets 9 x (0)
and 9x (1), the set G would contain a continuum ¢’ joining the sets
(O)xQ_ and (1)x9, whence 1 < 6(C’). Then, by (35), we should have
0'C G; for some j =1, ..., k, which would imply 1 < §(&;) = 6(&;) con-
trary to (35). Therefore there is a component R of 92— @&, and thus a con-
nected and open subset of 9%, which joins 9 x (0) and 9 x (1). It follows
(see [4], p. 342 and 343) that there exists a polygonal arc A’ with end
points ¢ and ¢, such that g€ Ix (0), ¢, e Ix (1) and 4’ C R— {p,, ey Du}e

But since EC 92— G C 92— @, the sot R is contained in a component
of 92— @& joining I x (0) and 9 x (1). Hence RC K. Taking, on the arc 4’
the last (in the passage from ¢ to ¢) point ¢ such that ¢, e 9 x (0), we;
obtain the desired polygonal are A C A’ with end points ¢ and ¢, and
thus Lemma 5 is proved. ’

We shall prove that for every n = 1,2, ... there exists, in the Euclid-
ean space C° a polygonal arc A, with end points Pn and g,, so that

(36) An COPX (1),

(37) Pn=(tn, 0,1/n), gu=(s4,1,1/n) y
(38) m#Et  for m#£an,

(39) An AT X (0) X (1/n)] = (pa)

for myn =1,2,.. and
(40)  the collection A4 = {02 x (0), 4y, 4,, ...} satisties (non III).

In fact, every set K. /n in Knaster’s example .
the form R ple (see [2], p. 194) is of

Eyw = Cu x (1Jn) ,

Where? Cr is & component of some set P—(Gy v ... U Gy), intersecting ﬁhe
two md.es 9% (0) and 9 x (1) of 9%, and conditions (35) are satisfied. Hence,
supposing the ares A}, «ey Ap aré just defined, we first find, by Lemma 5,
a p;lygonal are 4 with end points ¢, and ¢, such that ¢; € 9x (i) for i = 0
or 1 (that is gy= (fp41,0) and ¢, — ($n41,1) With #41, Sp41€9), 4C
Ontr—{(ts; 0), ..., (ts, 0)} amd A ~ [9x (0)] = (gy).
. Ne(xt) W(el/ (put 1);1”1 =4 X [1(n+1)), puss = (@) x ((n+1)) and
1= (@) X (1/(n+1)). Thus A,y is a polygonal arc from to
condlmon? (3(?), (37) and (39) hold for n--1 instead of ”, 17;]:& (® +ql”+(;;
=ged 1fnphes that £, £ 1 for ¢ = 1,..,n ’ "
. In this way the arcs Ay, A, ... are defined so that all the conditions
(36)-(39) hold, and moreover, we have 4, C Ky, for n — 1,2, ... Since,
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by [2], condition (III) for the collection consisting of all continua K,
and of their limit set 9%x (0) fails already with { = 1/2, it must be the
same for the collection 4. Hence (40) follows.

Oonstruction of Example 3. Let »,7;,.. be the sequence of
all rational numbers of the segment 9 and let a,, a,, ... be such an infinite
sequence of positive real numbers that lima; = o and ma; # na; for
every 4,§,m,n =1,2,..; ij. Congider the homeomorphisms h; of
the space €* onto itself, defined by

(41) hi((m; Y, z)) = (iﬂ/’l:, Y, Z/ll,)
for ¢ =1,2,... According to (36) and (37), the set
(42) Bip = Ay v [IX (11) X (1/n)]

is a continuum for ¢, » =1,2, ... Let us put

Ci = {he(Bu1), ha(Bs), -}
for ¢=1,2,.. and
C={x0)}vCuvCGu..

The proof that C* is a 2-dimensional compact subset of ¢® and that
every element of C is a component of C* and has a diameter equal to
or greater than 1 is left to the reader. It is not difficult to verify that the
hyperspace H(C) is homeomorphic to the subset of ¢!, consisting of the
number 0 and of all the numbers 1/na;, where 4, n =1,2,...

Suppose, now, that (I) holds and let Z be a 0-dimensional compact
subset of €3 such that Z ~ € 5= 0 for every C e C. Hence the set ¥; = ki '(Z)
is 0-dimensional and compact, and we have Y; A By # 0 for n =1, 2, ..,
If we had Y; ~ A, 5~ 0 for » > k, then adding to the set ¥; k+1 points
arbitrarily chosen in the sets 92x (0), 4;, ..., A, respectively, we should
get a 0-dimensional compact set intersecting each element of the col-
lection A4, which is impossible by (40) and Theorem 2. Thus there exists
an inereasing sequence 7, < 7, < ... of positive integers such that ¥; ~ 4,
=0 for j =1, 2,.. It follows from (42) that we then have

Yin[Ix @) xA/ng)] #0

for j=1,2,.., whence ¥Y;n [Tx(r)x(0)]#0, by the compactness
of ¥;. Therefore there is a number z; €9 such that the point (x;, 7, 0)
belongs to ¥;. We infer from (41) that

(wsfi, 75, 0) e hi(X3) = Z

for i=1,2,..., which gives (0)x9x (0)C Z = Z, contrary to the sup-
position that Z is a 0-dimensional se.

Consequently, we have (non I) for the collection C. By Theorem 3,
we also have (non II). So it is emough to show that (ILT) holds for C.
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Indeed, let > 0 be an arbitrary number and let e = ¢/2. Since
lima; = oo, there is such an integer m > 1/¢ that 1/e < a; for i > m.
Putting

P={r0,2): 0<2<e, 0<2< s},

we have 8(P) = e)/2 < ¢, tafi <1fi<1/m < e for £, ¢T and i > m, and
Ifna; < 1fa; < e for m =1, 2, ... and ¢ > m. It follows from (37) and (41)
that h(ps) e P for n =1, 2, ... and i > m. Therefore, by (42), the get P
intersects each element of C; for ¢ > m. Now, let ; be the set consigting
of the point (0,;, 0) and of all the points (0, 7;, 1/naz), where n — 1,2,..
Thus @ is 0-dimensional compact set and intersects the set 92x (0) as
well as every set hy(Bi) for n =1, 2, ..., according to (41) and (42). This
means that @; intersects each element of C;, and so the set Z — P w Q...
v @ intersects each element of C. Having the components of diameter
less than £, it ean easily be decomposed into a finite sequence of digjoint
compact sets Z;, ..., Z, such that 8(Z;) <¢ for i=1, ..., k.

Construetion of Example 4. The mapping f of the space &3
into itself, defined by
(43) @ y,2) = (@,9,92),
i8 & homeomorphism on every plane z = 1/n. It follows from (36) and (37)
that f(4,) is an are with end point (tn, 0,0) for n=1,2, .. By (39),
only this point belongs to the common part of the arc /(44) and the half-
space H = {(z,y,2): 2 < 0}, as well ag (38) implies that every two distinet
arcs f(4m) and f(4,) intersect H at distinct points. It follows that the
arcs f(4,),f(4s),... are mutually disjoint, f being 1-1 on the set f‘l(H).

Put Iy = 9—{t;,4,..}. Let g: 99T be a non-decreasing continuous
function such that ¢(9) = 9, g=1(1) is a point for ¢ eI, and

g ) = {t: eI bn},

wyere n < .b,t, for n =1,2,... Denote by §; the straight line segment
with end points (¢(z), 0, 0) and (2,1, 0) for t ¢ I,, and by Ty, Tj, T—the
triangles with vertices

(ta, 0,0), (as,1,0), (b, 1,0),

(tay 0,0), (ta, 0,—1/n), (as,1,0) ’

(tsy 0,0), (&,0, —1/n), (bs,1,0),
respectively, for » =1, 2, ... Then their union

Di=Tho Thu Ty

is & disk, and the straight line segment U, with end points (¢, 0, 0),
(ts, 0, —1/n) is contained in Dy, n=1,2,..
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Now, let D be the union of the square 9% and the circle a4+ 42 < 1,
and let B; be the arc composed of the segment (f) x 9 and the are p = i,
n/2 < 6 < 2n in polar coordinates, for 0 < ¢< 1. Then D is a disk, the
arcs B;, where 0 <t < 1, are mutually disjoint and fill up the set D— (0, 0).

Finally, let %, be a homeomorphism of D onto D, which maps the
segment I x (0) on the segment U,, the segment 9 x (1)—on the segment
{(®y1,0): an <2< by}, and the point (0, 0)—on the point (i, 0, 0).

Let us put

C={f(dn): n=1,2,.30 {8: tely}
U {hm(Bi): 0<t<1, n=1,2,..}.

It is not difficult to see that the elements of C are disjoint ares and
the set C* is a 2-dimensional continuum in &3,

By (37) and (43), we have f(ps) = (tn, 0, 0) and f(¢n) = gn = (8n, 1, 1/n)
for » =1,2,... Moreover, each arc S; contains the points (g(t),(), 0)
and (¢, 1, 0) for ¢ ¢ I,, and since each arc B; intersects the two sets I x (0)
and 9 x (1) for 0 < ¢ < 1, each arc hy(B;) intersects the two sets U, and
Ix (1)x (0) for 0 <t<1, n=1,2,.. Thus every element C of C inter-
sects the two planes y = 0 and y = 1, whence 6(0) > 1.

Furthermore, each arc f(A.) meets the segment I x (0)x(0), just
as each arc hs(B;) meets the segment 9 x (1) x (0) and each arc §; meets
both these segments. Consequently, the are

4 =[Ix(0)x (0)]w [(0)x Ix (0)] v [9% (1)x (0]

has a point in common with every arc belonging to the collection C, and
thus (II) holds.

Since (non III) implies (non I), according to Theorem 2, the proof
of all the desired properties of Example 4 is completed by showing that
(non IIT) holds. To this end, suppose on the contrary that C satisfies (IITI).
Then there exist, for each {> 0, compact disjoint subsets Z,..., Z
of ¢€* such that

(44) 8(Z) <3

for 4 =1,..,% and

(45) (Zyw oo Zg) nf(An) #0
for n=1,2,..

Tet 1> 1 be an integer such that 1/l<Z/y/3. Setting J; = T2 x (1/f)
for j=1,...,1—1 and
Jy=x {t: 0<t<1T,

let us congider the sets
Zig=d; ~ [ (%)
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for i=1,..,kand §=1, ..., 1 They are compact and mutually disjoint.
If the points p = (2,y,#), ¢ = (2',9',2") belong to Z,;, then |a—|
SIL<Y3 and f(p), f(q) € Zi, whence o{f(p), /() <¢/V3, by virtue
of (44). It follows from (43) that [o—a’| <Z/)/3> |y—y/'|, and 50 o(p, g)<¢.
Therefore all the sets Z;; have diameters less than ¢.

We infer from (45) that each arc 4, intersects at least one of the
sets [(Z), ...,/ '(Zx). Hence, by (36), each arc 4, intersects at least
one of the sets Zy,, .., Zu, and thus (IIT) holds for the collection 4, which
contradicts (40).

Construction of Example 5. Setting

In={t: —1/n <t<1+1/n},
let P, be the parallelopiped in the space €3, defined by
Pu=Tox {t: (dn—1)4n* <t < (4n+1)/4n?)
forn=1,2,.. Let @, and R, be the boundary and the interior of Py,
regpectively. Then Py, P,, ... are mutually disjoint sets and since 92 is
contained in the interior of I, every polygonal arc A, is, by (36), con-
tained in R, for #=1,2,... The region R, being topologically the space
€% there is a homeomorphism g, of R, onto ¢® such that In(Ag) is
& polygonal arc. Hence there exists a homeomorphism %, of E3— gn(dy)
onto €2—{(0,0,0)} such that h, is the identity mapping outside a neigh-
bourhood of gu(d,) for n =1,2, ... (see [4], p. 342). Denoting by 8, the
sphere 2+ y%4-2* =2 for r > 0, let us put
C={PxO} v @n: n=1,2,..}

VAP (1) (dn+B)d(n+1r < i< (dn—1)dn2, n =1, 2,..}

C{gn (8 >0, n=1,2,..} U {4 n= 1,2,..}.

One can verify that C is a collection of disjoint continua whose dia-
meters are not less than that of 4,, whence 0(0)=1for O <C, by (37).
Moreover, the set C* is topologically the cube 93, the collection C is upper

semicontinuous and the hyperspace H(C) is topologically the dendrite D
defined by .

D=19x 01w J W) 0<y < 1ny.

Bach arc A, corresponds to the end point (1/n, 1/n) of D; similarly
each topological sphere (Q, corresponds to the point (1/n, 0) of D, for
n=1,2, .. The points (1/n, 0), where n = 2,3, ..., constitute all ramifi-
cation points of the dendrite D.

It follows from (36) and (40) that every element of the collection 4
is a component of 4* and 4* ig a compact set. Thus (40) implies, by
Theorems 2 and 3, that the collection A satisfies (non I), (non II) and
(non IIY). But since A C C, the collection C does the same.
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