Generalized topologies for statistical metric spaces *
by
E. O. Thorp (University Park, N. M.)

1. Introduction. Statistical metric spaces, introduced by K. Men-
ger in (5], are a generalization of metric spaces in which distances
are given by distribution functions rather than by numbers (). Just as
with metric spaces, there is no a priori topology. But whereas metric
gpaces have a single natural topology, there are many structures, sabis-
fying some or all of the axioms of a topology, that may be associated
with a statistical metric space in a natural way. One such structure for
statistical metric spaces was introduced by B. Schweizer and A. Sklar
in [7] ().

Our aims in this paper are as follows: (1) to generalize this topo-
logical structure; (2) to study various properties of and relations among
the class of (generalized) topologies which are so obtained (3); (3) to
establish sufficient conditions for the metrization of a subclass of these
topologies, and, in so doing, to extend the metrization theorem of
B. Schweizer, A. Sklar and B. Thorp [8]; and lastly, (4) to introduce
a different method of obtaining topologies for SM spaces.

2. Statistical metric spaces.

DEFINITION 2.1. A statistical metric space (briefly, an SM space) is
an ordered pair (9, F), where § is a set and F is a mapping from 8 x 8
into the set of distribution functions (i.e., real-valued functions of a real
variable which are everywhere defined, nondecreasing, left-continuous and
have inf 0 and sup 1). The distribution function F(p, ¢) associated with
a pair of points (p, ¢) in 8 is denoted by Fye. It represents the probability
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that the “distance” between p and ¢ is less than x. T i
e e q . The functions F,, are
(SM-I) Fyy(@) =1 for all >0 iff p =q.
(SM-IT) F,y(0) = 0.
(SM-IIT) Fpy = Fyp.
](ESM-IV) If Fyya) =1 and Fely) =1, then Fp(z+y) = 1.
ereafter, when we use the term ‘“distribution. f i
r, when -function”
only. those? dl_strﬂ.)u‘mon functions ¥ that satisfy F(0) =0 1(; vgﬁa?(;arn
fosz’lnle distribution functions for some SM space. It will ,be c‘onvenien:
or the sequel to define the distributi b .
Lorth e distribution function H by H(0) = 0, H(z) = 1,

‘We will have occasion t i i i
ind ot At e o refer to the following particularly “simple”
DEFINITION 2.2. A simple s i
- A pace [7] iz an SM space which can b
Ig);xlegjtzir from a metric space (8, d) and a single distribution function G?‘
. espondence Fyy(z) = G{w/d(p, q)) when p # q and Fyy(z) = H (x).
o reallEizN;lTJON 23 A real-valued function T, whose domain is the set
er pairs i
i el o P (w,y) such that 0 < a, y <1, iy called a t-norm *
(T-I) T'(a,1)=a, T(0,0)=0.
(T-II) T'(e, d) > T(a,b) if c>a, d2 b (monotonicity).
(T-ITT) 7'(a, b) = T(b, a) (commutativity).
]()T-IV) T[T(a,b), 6] = T[a, T(b, o)] (associativity).
- Wﬁji?;mio; 2.-4. The t-norm 7, is weaker than the {-norm T,, and
o wite yl<\1' E;fi,;l'l(,;v,.yt; < Ty(w, y) for all  and y such that 0 <aa’o <1
<Y< 1; T, 18 strictly weaker than T, i ; i o
< T'(@,y) for at least one pair (, ¥). tH ST el i By g)
Tw(sz()ari 115, zﬂw;s;kest t-norm, which we denote by T,,. It is given by
)= = 3 i
oy w(®, @ 0<2<]; Tyz,y)=0 if 0<w<1 and

DErFINITION 2.5.
and a ¢-norm TzsichAth];[;ﬁ’;!ifg g:ﬁ;lési’nf(iugitiys e S space (5,1)
hOIdiS;f]'.IZﬁn) If'pr(w’*‘?!) = I.Y(Fm(“’)qur(y)L ‘ ’
oy Oﬁenlg)nu;tigé,mg 7 in 8 and for a.]l numbers 2,y > 0.
fonotions w0 witin?}?t to T:VOI'_k WI.ﬂl the tails of the digtribution
ese distribution functions themselves, The

tail of Fp,, which we d . A
“for each o enote by G, is defined by Gpe(®) =1—Fpy(w),

() Further information on t-norms is

¢ -functions. available in [9], where they are called
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3. A class of generalized topologies for SM spaces. The
concept of neighborhood for SM spaces was introduced in [7], de-
finition 7.1:

Let p be a point in the SM space (8, ) and let u and v be positive
numbers. The (u,v) neighborhood of Np(u, v) is {gin S : Fpglu)>1—0}
={g in 8 : Gplu) <v}.

We will refer to Nyp(u, ) as the (u, v) sphere with center p. For fixed
positive % and v, we define Uw,v) = {(p,q in Sx8: Gpg(tt) < v}-
Wote that with these definitions of Np(u, ) and U(u,v), two points
are “near” each other if the tail of their corresponding distribution is
“gmall”, For any set X of ordered pairs of positive numbers, set ¥ (X)
= {Nplu,v): (u,?) in X, pin 8} and YU(X) = {U(u,v): (u,») n X}
This relativizes the neighborhood concept introduced in [7]. The latter
results when X is the positive quadrant.

Topological spaces and uniform structures are a natural setting for
metric spaces [4]. Generalizations of these notions, as defined and studied
by A. Appert and Ky Fan in [1] (%), turn out to be a natural- tool for
studying SM spaces. From this point on, whenever a familiar concept
is replaced by a generalized one, we prefix the familiar term by gy
e.g. ““generalized topology” is written “g-topology”.

A non-empty family {¥,} of subsets N, of a set § associated with
a point p of 8 is a family of neighborhoods (°y for p if each Np contains p.
Let o family of neighborhoods be associated with each point p of a set S.
The set S and the collection of neighborhoods is a g-topological space
of type V. The closure of a subset E of 8, written F, is the set of points p

such that each neighborhood of p intersects E. The interior of F is the
complement of the closure of the complement of E. A g- t_opological space
iy symmetric if, for every pair of points p and g, p is in {¢} iff ¢ is in {p}
([1], p. 62). The table below shows how the various g-topological spaces
which we use are related.

—{N. Type V ]
N1. For each point p and each neighborhood Uy,
of p, there is a neighborhood W, of p such that,
for each point g of W, thereis a neighborhoed U,
of g contained in U, {1}, p- 17, condition a’).

i ‘ N2. For each point p and each pair of neighbor-

type Vo

type Vb ~

topological space

L} hoods U, and W, of p, there is a neighborhood of p
contained in the intersection of U, and Wy.

(*) The structures that these authors call topological spaces are congiderably
more general than those structures, to which the term is usnally applied. Since there i8
general agreement in other circles as to the use of the term topological space, we refer
to the Appert-Ky Fan structure as & generalized topology. :

(%) This latter definition is identical with that of the neighborhoods defined in 7.
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The (T,), (T), and (T,) separation axioms for i
1 ' ] generalized topologi
are, in the nelghbor?nood terminology, the same as those for toplz)log?;fj
spaces. For symlmetmc g-topologies, (T,) and (T,) are evidently equivalent
A :q-topology 7' on a set S is finer than a g-topology v on § if, for ea.cli
~_p01nijA P offS, each v neighborhood of p contains a =’ neighborhood of P
uniformity [10] for a set § is a non-empty fami y .
of 8 x8 such that: Py fomlly 2 of subets
(U-I) Bach member of U contains the diagonal, A = {(@,): win 8}
(U-IT) If U contains U, th tas - %) in 8
ymmetas) ) then U containg U™ = {(w,y): (y, @) in 8}
(U-III) If U contains U, then U contains some V such that VoV C [
where VoV = {(z, 2): for some y, (@,y) and (y,2) are in V3. ’
(T-IV) If U contains U and V, it contains U ~ V.
(U-V) U is closed under the formation of supersets.

A generalized uniformity (g-uniformity) i i
ralized y) is a family of subsets o
: xil;nilflat s.atlsﬁes (U.-I). A g-uniformity U’ for a set § is finer tha?rf
G‘g- ormlty for.S if each member of U contains a member of U’
vae; a g-uplformlty Cl{_’. for a set 8, for each U in U and p in § 181;
is,ihe) —; q{q,%'i;];;l,,b&h(p:zm in U}. The collection {Np(U): pin 8, U in’ Uy

- orhood, sysiem (W) associated with the i i

' g-uniformit .
A collection {U} of subsets of § x § ig separated if MU is thje diagyon%
?

4. We will need the fact that, in t
he - ] i
weaker axiom is equivalent to,(U-IV): presence of (UV), the following

(T-1v")
UAvV.

In pa,rfiiel?lar, a collection YU which satisfies either
(U-I)-(U-IV’) is a base for a uniformity.

:];;0 next theorem results immediately from checking the definitions
Thon: %(XR;EJ;i fhl If (S., F) i an 8M space and X and 8 are not empty,
ooy of Hae 7 cezg ((:%l)ec.twn of neighborhoods for a symmetrio g-topologioai
; 18 a symmetric (") g-uni ity ) ;
borhood system associated wit?;n %()g;( ) g-tindformé; TAT) & the et

Theorem 3.1 permits the following definition.

DEFINITION 3.2. The
Fo a fixed subset X of {(
ig denoted by 7(X).

The strong g-topolo ig ine
quadrant. pology of [7] is ebtained-when X is the entire positive

If U contains U and V, it contains a non-empty subset of

(U-I)-(U-IV) or

g-topology for an SM space that corresponds
%, 0): %, > 0} is called the X g-topology, and

(') A space of type V ma
Ry 1 ) y be symmetric with, i i
formizing fasoily Deing symmenio. Lot oo converg:;lyt the associated generalized uni-
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Remark. Since X ¢-topologies for SM spaces are symmetrie, the (T,)
and (T,) separation axioms are equivalent.

Even the strong g-topology on an SM space need not be a topology
as the following example shows.

ExampiE 3.8. Congider the SM space consisting of the points in
the plane and the following distribution functions: Let Fpy(z) = H(x—1)
if d(p, ¢) =1 (d is the euclidean distance) or if the slope of the line join-
ing p and ¢ is irrational. If d(p, ¢) <1 and the line joining p and ¢ has
rational slope, let Fyy(#) = 1—d(p, ¢) When 0 <z < 1 and 1 when 2 > 1.
The axioms (SM-I)-(SM-IV) are readily verified. Every strong g-topology
neighborhood of a point p contains a strong g-topology neighborhood
of the form Sp(n), » = 1,2, ..., where Sy(n) is the set of all points ¢ in
the plane such that d(p, ¢) < 1/n and the line joining p and ¢ has rational
slope. Thus the subeollection {Sp(n)}, n =1, 2, ..., is a family of neigh-
borhoods for the strong ¢-topology. Using these families of neighborhoods,
it is readily seen that N1 fails and N2 is valid. Hence, the space is of type
Vp but is not topological.

Remark. The g-topology in example 3.3 is (Ty), symmetrie, of
denumerable character, and of type Vp, but it is not of type Va. No
example of a g-topological space with all these properties seems to have
been given previously.

THEOREM 3.4. The g-uniformity U(X) is separated (implying 7(X)
is (Ty)) iff for each pair p,q of distinct points in S there is a (u,v) in X
such that v < Gpglu)-

Proof. We have v < Gpg(w) for some (u,0) in X iff (p,q) is not
in U(u, v) for some (u,v) in X, and this is so iff (p, ¢) is not in (M U.

COROLLARY 3.5. The strong g-topology is (Ty) and the associated
g-uniformity s separated.

In contrast, the next example shows that the (T,) (Hausdorff) separa-
tion axiom can fail for the strong g-topology, even if the SM space in-
volved is a Menger.space.

ExAMPLE 3.6. Let the set § consist of the positive integers and
two other points, ¢ and b. Let Fan(z) and Fpn(v) have the values: n@ if
0 < @ < 1/2n; 12+ (4/)tan~ (nw—1/2) if 1/2n<2<1; and 1 if 2> 1.
Let Fma(z), m 7 n, and Fa(z) be H(x—1). Of course, Fyp = H and
Fpq = Fyp for all p and ¢. Direct reference to the axioms shows that
(8,F, Ty is a Menger space. Tn particular, (SM-IVm) is true because
if p, g, r is an arbitrary triple of points, and &, ¥ is & fixed pair of numbers,
either Fy,(z) and Fg(y) are less than 1, in which case the right hand
gide of (SM-IVm) is 0, or one of Fpy() and Fy(y) is 1. Suppose that Fpe(x)
is 1. Then 2> 1 so that »+y > 1, whence Fp(z+vy) equals 1.
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The (%, v) spheres arve a neighborhood basis for a topology ([2], I,
§ 1, n° 2). The topology is not (T,) because a and b do not have disjoint
neighborhoods.

In example 3.6 we showed that the strong g-topology of a Menger
space having T, as {-norm need not be Hausdorff. Theorem 3.7 provides
a sifficient condition, valid even for monotonic functions 7, that the
strong ¢-topology be Hausdorff.

THEOREM 3.7. If (8, F) satisfies (SM-IVm) with a monotonic func-
tion T (not necessarily a t-norm), then the strong g-topology is Hausdorff
if, for each pair (p,q), of distinct points,

supT'(t, 1) > inf Fp(w) .
t<1 z>0

) Proof. Suppose that (§,F) is not Hausdorff. Then there are two
points, p and ¢, and a sequence of points {m}, such that lim F,(x) is 1 for

each fixed positive #. By hypothesis (2), we can choose numbers @, y > 0
and ¢ < 1 such that Fy(x4-y) < T(¢, ¢). On the other hand, for sufficiently
large m, Fym(z) and Fon(y) both exceed ¢. Hence, by (SM-IVm) and (T-II),
Fplz+y) =T (Fm(m),FM(m)) > T'(¢,t). This'is a contradiction.

COROLLARY 38 If (8,F,T) is a Menger space such that T > T,
and the Fp, are right-continuous (and hence continuous) at 0, then the strong
g-topology is Hausdorff.

DEIF]ZNITION 3.9. If X and X’ are subsets of the plane, we write
X>X .a.nd say that X is finer than X' (and X' coarser than X) iff for
each point (a’, b') of X’ there exists a point (a, b) of X such that a < a’
and b <d'. If both > and < hold, we write = (equivalent to). If > is
true and < is false, we write >.

THEOREM 3.10.: For every SM space: If X > X', then U(X

: : ) ) = UX)
and -r{l:) z2c(X). If X=X, then U(X) = U(X') and 7(X) = z(X').
A sufficient (but not necessary) condition for X > X' to imply Q{(X) > U(X')
and hence 1_(X)> 7(X'), is that there ewist p and ¢ in 8 and (u,v) in X
such that, simultaneously for all (w',v') in X', Gpg(u) > v and Gpg(u') < 0",

Prf)gf: The first two statements are immediate consequences of

g\le geﬁmt(llo?s. T)o prove sufficiency in the last statement note that if
e Gy and (u, v) == of the hypothesis exist, U(x) does not contain
but (p,¢) is in NU(X")D U(w). ’ @2
Example 3.11 shows the condition is not necessary.

Bxawre 311 Let 8={1,2,3}, X={4 1), 3
¥ " k y 4y Sy 3 1) (5, 1), (3, B,
=Fﬁ_{(_%':7.(iz)’ Si?‘)i<l’-’;z(‘”) =5H0<e <1 Fy@) = t 0< o<} Fylw)

CorOLLARY. The strong g-ito 3 b i
pology and ¢-uniformity o
any other v(X) and U(X), respectively. ! Y are foner thaw
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If X is directed, i.e., given @, #, in X there is an # in X such that
# 3> @, and # > @, then U(x)C Ulz,) ~ Ula,) and U(X) satisties (T-IV').
Tf X is not directed, Example 3.12 shows that (U-IV') may still hold.

Exampie 3.12. 8§ = {1}. X = {(}, 1), &, )

Theorem 3.10 shows that, for a given SM space, the relation “X, in-
duces the same ¢-topology as X,” is an equivalence relation for the subsets
of the positive quadrant of the plane. If [X] is the equivalence class con-
taining a given X, we choose the canonical tepresentative X* to be the
largest member of the class [X]. It is given by: X* = {(u*, v*): u >,
v* > v, for some (%, v) in X}

The directed subsets divide into four equivalence classes. If (uy, ¥)
refers to a fixed pair of numbers, their canonical representatives are:

(D-I) {(w,0): w3z u>0; v=0>0},
(D-IT) {(u,0): %> uy=0; v=0> 0},

(D-III) {(%,0): % = 1> 0; v > v, > 0},

(D-IV) {(u,0): %> 2% =0; v> 0,0}

For those among these four types of sets which exist for a fixed
(%o, o), the corresponding topologies are ordered as follows: I > (II, ITI)
>1V. Note that the strong g-topology is of type IV with %, = v = 0.
It is evident that 9 (X) has a countable base whenever X is equivalent
to any one of the four types of sets.

THEOREM 3.13. Suppose that for a given SM space, (SM-IVm) holds
for a monotonic function T. Then U(X) satisfies (U-IIL) in each of the
following cases:

1. For > 1—v,, T(@,2)>1—vy; X = {{,?): v=20> 0} ((D-IT)
with %, = 0).

2. fup Tl—t,1—t)=1—vy X = {(u,?): 2>0 2> 0} ((D-IV) with

>vo .
Uuy = 0).

Proof. Given U(2u,v), we establish the theorem under each hypo-
thesis by showing that U (u, vo)oU (s, ) C U(2u, v).

Using the first' hypothesis: By (SM-IVm), Fpr(20) = T (Fpqlu), F,,(u)).
If (p, q) and (g,7) are in U(u, %), then Fpg(w) and Fg{u) each exceed
1—w,, and hence by the hypothesis, T (Fpg(t) , For()) > 1—2,. There-
fore (p,r) is in U(2u, v,), hence in U(2u,v).

Using the second hypothesis, we can choose »' such that v > %o,
yet T(1—v',1—2")> 1—o. Then, if (p,q) and (g,r) are in U(u,?'),

For(2u) = T (Fpgu), Fp(u) 2 T(l—2,1—-2)>1—v 80 (p,r) is in
U (2u, v).

THEOREM 3.14. The X g-topology for an SM space satisfying the
hypotheses of theorem 3.13 is pseudo-metrizable. The X g-topology is metriz-
able if, in addition, U is separated.
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Proof. By theorems 3.1 ((U-I), (U-II)), 3.13 ((U-IIL)), the discussion
preceding example 3.12 ((U-IV')), and the discussion preceding theorem 3.13
(countable base), U (X) is a basis for a uniform structure with a countable
base. Therefore ([4], pp. 174-180) the space is pseudo-metrizable, and
is metrizable iff U is separated.

The main result of [8] follows as a corollary.

CoROLLARY 3.15. 4 Menger space with the strong g-topology is
metrizable if sup T (z, z) = 1.

o<1

Proof. The hypotheses of theorem 3.14 and corollary 3.5 are satisfied.
For particular SM spaces, e.g. simple spaces, more can often be
proven.

TeErRoREM 3.16. In a simple space with any X g-topology, Np(u,wv)
is an ordinary spherical neighborhood of p in the generating M -space. Con-
versely, any spherical meighborhood of p in the gemerating M -space has
the form Ny(u,v) for some choice of (u,v) ¢f there is a point (u',v') < X
such that G(u') = 1—v" <1 and t > u' implies G(t) > G(w').

Proof. The first assertion holds because ¢ is in Ny(u, v) iff Fp(u)
= @ (u/d(p, q) > 1—v iff d(p, q) < ¥, for some k, depending on @, » and v
([7], theorem 7.1).

To prove the second assertion, consider the ordinary spherical neigh-
borbood Su(k) = {g: d(p,q) <k}. Due to the left continuity of the
distribution function @, there always is (u', v') satisfying the second half
of our hypothesis. However, in the general case, (u',%') may not be
< X.k Henc:; the ﬁfst half of the hypothesis is necessary. Now choose
% =ku' and v =2'. Then ¢ is in Sp(k) iff d < k iff u/d
it Gufd(p, g) > Gufk) = 1—v iff Fpg(u) > (11);3.) (4er 0>t

CoroLLARY 8.17. Simple spaces with the sirong g-topology are metriz-
able with the metric of the generating space,

Proof. The strong g-topology satisfies the conditions of the theorem
for any G. Hence the collection of w—v spheres is identical with the col-
lection of metric spheres,

) 4. ’!‘he g-écart g-topelogy. In this section we study a g-topology
quite dlf:?e.rent from the X g-topologies. We develop this ¢-topology
by exploiting certain structural similarities between the non-negative
real numbers and the set of distribution funetions. We assume that the SM
spaces which we consider consist of more than one point.

Let 8 be a set and P be a partially ordered (<) set with least ele-
ment 0. A generalized doart (g-écart) is a mapping G from § x § into P
(compare [1] p. 138). If a g-écart & satisties G(p, p) = 0 and the set S
consists of more than one point, the g-écart g-topology for § is the g-topo-
logy determined from @, and its partially ordered range set P, as follows.

icm
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For each f>0 in P and each p in S, the f-sphere for p is Ny(f)
={g in 8: G(p,q) < f}. Then for each p in § the collection of f-spheres,
No(P) = {Np(f): 1> 0 and in P}, is a family of neighborhoods for p.

A generalized metric (g-metric) for a set S is a g-écart G for which
the following axioms hold ([1], p. 138).

(GM-I) P = {0}.

(GM-IT) For each pair f, ¢ > 0, there is an h > 0 such that h <[ and
h<yg.
(GM-III) For p, q in 8, G(p,q) = 0 if and only if p = g.

(GM-XV) For each | > 0 there is a g > O such that: G(p, q) < g implies
Gg,p) <] for all p,q in S.

(GM-V) For each > 0 there is a g >0 such that: G(p, ) < g and
G(q,r) < ¢ tmplies G(p,r)<f for all p,q,r in 8.

To keep the analogy Wwith metric space methods as close as possible,
we generally will work with the tails, Gy, rather than the Fy,. We par-
tially order (<) the tails as follows. If f and g are two tails, f < g means
f(z) < g () for all @, with inequality for at least one #. The least element

under this ordering is the tail of H, which we will denote by L. These
considérations permit us to make the following definitions.

DEFINITION 4.1. The g-ébeart associated with an SM space (8,F) is
the mapping & defined by G(p, ) = Gu-

THEOREM 4.1. For any SM space, the associated g-éecart satisfies
(GM-I)-(GM-IV).

Proof. (GM-I) is obvious; (GM-II) follows from the fact that the
sup of two distribution functions is again a distribution function—so
that the inf of two tails is again a tail; (GM-III) is equivalent to (SM-I);
(SM-IIT) implies (GM-IV).

The axiom (GM-V) introduces an interrelationship between the
distribution functions of various pairs of points. It is similar in this respect
to (SM-IVm). It iz therefore to be expected that conditions involving
(SM-IVm) will be useful in establishing (GM-V).

TEEOREM 4.3. If (8, F) is an SM space and (SM-IVm) holds under
a function T satisfying (T-I), (T-II) and BE? T(x,z) =1, then G is a gen-
eralized metric. ’

“Proof. Tt suffices to establish (GM-V). Given a tail f > L, we wish
to find a tail ¢ > L such that Gy < g and G <g implies Gpr <J for
all p,q,7, in 8. By (SM-IVm) and (T-II), Fp(22) > T(Fm(w),Fq,(a;))
>T(1—g(),1—g(a). Hence, it suffices to find a ¢ such that
T(1—g(), 1—g(a)) >1—f(2x), Withgimequality for some, .

Fundamenta Mathematicae, T. LI
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Since f > L, there exists a > 0 such that 1—7(2a) < 1. Let g(2) = 0,
@ > a. By hypothesis there is a number b < 1 such that 7'(b, b) > 1—}(2a),
Let g(w)=1—b for 0 <w<a. Then, if ©>a, T(l—g(x), 1—g(a))
=1T(1,1) > 1—f(20); and if v <a, then T(1—g(z),1—g(x)) = T(b, b)
>1—f(2a) > 1—(20). Thus T (1—g(2), 1—g(a)) >1—f(22) for all a,
with the inequality for 0 < x < a.’

TEEOREM 4.4. If (8, F) is an SM space, and there is a tail g> L
such that ¢ < Gypg for all distinet p and q in 8, then @ is a generalized metrio
and the g-éeart g-topology is discrete.

Proof. For each f> L, choose the g of the hypothesis to play the
role of the g in the statement of (GM-V). Then if Gy, < g and Gy < g,
our hypothesis yields p = ¢ = . Thus Gy, = L < f and (GM-V) ig verified.
Bince the g-sphere with center p consists of {p}, the ¢-topology is discrete.

Congider ;the family U = {U(f): > L}, where U(f) = {g: g< 1}
This family determines a g-uniformity, for it is easy to see, a3 in the
proof of theorem 4.2, that all the uniformity axioms are satistied except,
perhaps, (U-TII). This g-uniformity is separated, and it has a countable
base. One such bage is given by the collection U(fa), where fy is defined
by f,..(a:) =0, > 1/n; fa(x) = 1/n, 0 < & < 1/n. Further, the g-topology
ojntauned from this g-uniformity is the g-écart g-topology. These con-
siderations, and the fact that (GM-V) implies (U-III) for this ¢-uniformity
yield the following theorem. ’

THJ_aOREM 4.5. The g-écart g-topology is meirizable if (GM-V) holds.
In particular, the g-écart g-topology is metricable if the hypotheses of either
theorem 4.3 or theorem 4.4 are satisfied.

THEOREM .4.6. The g-éoart g-topology is finer than the strong g -topology.
.Proof. .Gwen a strong neighborhood N,(u,v) of a point p, it
suffices to find a g-éeart neighborhood inside. Let g@)=v 0 << u
g(z) =.0, 2> U, _Then Gpg < g implies Gpg(u) < v 50 ¢ is in N,(u, o) and
Ny(g) is the desired g-écart neighborhood.
‘We next see, as a consequence of geveral simple observations, that
the g-écart anq strong g-topologies are in general distinct.
l’.:he following lemma, stated without proof, is readily verified.
EMMA 4.7. A point p in 8 is not isolated i : )
i 1] solated iff {Gpy: q + p} 48 co-
" .COB.OLLAR.Y 4.8. z.'hc g-éofu:t g-topology is disorete iff, for each p,
pat 4 7 D} 18 not cofinal. Thé écart g-topology for simple spaces is disorete.
Proof. inf G(o) < 1.
x>0

COROLLARY 4.9. The g- -
not bo idention], e g-écart g-topology and the §trong g-topology need.
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Proof. By Corollaries 3.17 and 4.8, the two topologies are distinet
for any simple space generated by a non-discrete metric.

It has been observed ([7], p. 315) that any given metric space (8, d)
can be regarded as an SM space (8, ) of a special kind if ¥, is defined
for p #£q by Fpox)y=H (x—d(p, ¢)). With this definition of Fye, the
strong g-topology is identical with the metric topology. However, the
g-écart g-topology is discrete. In the next theorem, we show that it is
possible to define the Fy, in such a way that the g-écart g-topology is
identical with the metric topology.

We need a simple lemma whose proof will be omitted.

LEMMA 4.10. A collection of tails 4s cofinal iff it contains a sequence {gn}
such that {(M (gn), m(gs))} converges to (0, 0), where m(g) = sup g(z) and
>0
M(g) = inf{w: g(@)=1}.
THEOREM 4.11. For each meiric space (M, d) there is an SM space (M , f)

on the same set, such that the metric topology, the g-écart g-topology, and
the strong g¢-topology are identical.

Proof. For each pair of distinet points p and ¢ in M, let Gpyw)
=min (1, d(p, q)) if 0 <z < d(p, ¢) and Gue(x) = 0 if > d(p, g)- Since d
is a metrie, (SM-IV) follows from the metric triangle inequality. We show
that the metric neighborhood system of a point p is a base for the g-écart
g-neighborhood system. Evidently, p is isolated in (M, F) iff it is isolated
in (M, d). On the other hand, p is not isolated in (M, F') iff the collection
{Gpa: p # g} is cofinal (lemma 4.7) iff the G, spheres are a base for the
g-6eart g-neighborhood system at p. But the above collection of Gy
spheres is in 1-1 correspondence with the set of metric spheres, {r: d(p, 7)
< d(p, q)}, i.e., for each pair of distinct points p and ¢, {r: Gpr < Gpg}
= {r: d(p,r) < d(p, q)}. This collection of metric spheres is a neigh-
borhood basis for the metrie topology. Thus the metric topology and the
g-écart topology are identical.

The strong g-topology is readily seen to agree with the metric top-
ology. This concludes the proof.

5. Other g-topologies generated by distribution functions.
Other generalized topologies, whose neighborhood systems are generated
by the distribution funetions, can be constructed by somehow restricting
the generating distribution functions to a subset of the total. This leads
to a generalization of the g-écart g-topology that is analogous to the gene-
ralization of the strong g-topology studied in section 3 (X g-topologies).

We might generalize still further by letting the subset of the distri-
butions that generate the neighborhoods of the points in the space vary
with the point p. One g-topology which illustrates this further generali-
zation iz sketched below.

2%
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DerINITION 5.1. Given an SM space (8, F), for each pair of points p
and 7 in S, the r-sphere with center p, Np(r), is defined to be the sphere
Np(Gpr) = {g: Gpg < Gpr}. The R g-topology for (8, F) is the structure
whose family of neighborhoods at each point p is the collection
{Np(r): r in S} _
An immediate consequence of our definition is the following theorem:
TEEOREM 5.2. The R g-topology is coarser than the g-écart g-topology.

Tt can be shown readily that the R g-topology is never coarser than
all the X g-topologies. Further, examples can be constructed in which
the R g-topology is strietly finer tham, equal to, strictly less than, or
incomparable with, any preassigned X g-topology. To illustrate, we give
an example in which the R g-topology is strictly finer than the strong
g-topology.

ExampLe 5.3. Let § be the non-negative integers. If m and n are
distinct, let Fun(z) = 34 (4/n)tan ™ (m +n)a— 1) when o> %. Lot Fpu(e)
=(m+n)s if 0 << (m+n)2 and (m,n) = (0,1). Lot Fy(x) =4} if
0 < o < }. It can be verified that 0 is an isolated point in the B g-topology
bur not in the strong g-topology. The neighborhood systems of the two
topologies are the same at the other points.

If we delete the element 1 in example 5.3, the point 0 iy no longer
isolated. This is an instance of the general situation: the R g-topology
of a subspace may be strictly coarser, and is never strictly finer, than
the relative R g-topology. This results from the fact that the collection
of distribution functions is not the same in each case. This contrasts
with the g-écart g-topology, where the collection of generating distri-
bution functions is fixed and the relative g-écart g-topology induced
on a subspace is equivalent to the g-écart g-topology of the subspace.

6. Open questions. When is a generalized topology statistically
metrizable, i.e. derivable from an SM space in one of the ways we have
studied in sections 3 and 4?2

‘What conditions are both necessary and sufficient for the various SM
g-topologies to be of type Vp?

What conditions are necessary and sufficient for the various SM
g-topologies to be topologies?
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