Invariant extensions of the Lebesgue measure

by
A. Hulanicki (Wroclaw)

In this note we present a positive answer to a problem of W. Sier-
pifiski concerning invariant extensions of the Lebesgue measure formulated
in a paper of E. Marczewski in 1935 (ef. [5]).

Before discussing the problem itself we wish to fix our notation
and recall some notions.

By a measure space we understand a triple (X, 3, u) consisting of
the set X a Borel o-field 93 of subsets of X and a countably additive
measure p defined on 3. We generally assume that for a measure space
there exists (at least one) subset M ¢ such that 0 < u{HM) < oo.

A measure space (X, B, u) is called separable if there exists a count-
able family of C 98 such that for any M in 93 and any & > 0 there exists
a set NV in ¢f such that u(MAN) <e(l).

A measure space (X, 9B, ) is called an extension of a measure space
(X,B,n) it X =X, BCB, u(M) = &(M) for every M e B. Tt is a proper
extension in the case of 9B = TB.

Let (X, 9B, u) be a measure space and T a one-to-one transformation
of X onfo itself. We say that T is an automorphism of (X, B, u), if it is
B-measurable and measure-preserving, i.e., for each M ¢, T(M) B
and u(T"YM) = p(M).

Two automorphisms 7” and 7" of a measure space (X, B, u) are
called equivalent (notation T'~T") if ,u({a;: T'(z) = T"(2)}) = 0.

Given a separable measure space (X, %8, u). A maximal set of non-
equivalent automorphisms of (X, 9, x) has cardinal at most 2% (cf. 31,
Lemma 2).

Given a measure space (X, 9, u) and a family F of its automor-
phisms. An extension (X, B, %) of (X, B, u) is said to be F-invariant
if every automorphism of the family ¥ is an automorphism of (X, 93, n)-

Suppose that ¥’ is a set of automorphisms of a measure space
(X, B, p). It is clear that

If F' is another family of automorphisms of the measure space (X, B, u)
such that for each T’ eF' there ewists T ¢F such that T'~T, then any
F-invariant extension (X, B, u) is F'-invariant.

—(1—)?3y MAN we mean the symmetric difference of the sets 3 and N.
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An extension (X, 9B, z) is simply called énvariant if it is 7 -invariant,
F being the set of all the automorphisms of (X, B, u).

Denote by (X, .2, ») the measure space in which X is an Euclidean
space, £ the o-field of the Lebesgue measurable subsets of X and » the
Lebesgue measure. .

Following E. Marczewski (cf. [5]) we call an extension (X, B, )
of (%, .2, ») perfect if it is Pt-invariant, I being the family of the iso-
metries of .

In his paper (cf. [5]) E. Marczewski quotes the following problem
of W. Sierpinski:

Given: a perfect emtension (X, 98, 1) of the measure space (X, 2, ).
Does there exists a proper extension (X, 9B » ) of (X, B, u) which is again
a perfect extension of (X, .2, »)?

We present here a positive answer to this problem and indeed we
propose a theorem formulated and proved in terms of general measure
spaces which, by the use of a well-known set theoretical hypothesis
(weaker than the continuum hypothesis), will imply a positive answer
to the problem.

THEOREM. Let (X, 9, u) be a measure space such that

(i) the cardinal X is less than the first (weakly) imaccessible cardinal
(ef. [6]) ();

(ii) for each M C X such that M < X we have M ¢ B and w(M) = 0.

Further, let F be a group of automorphisms of (X, W, u) such that

(i) F < X. ‘

Then there ewists an F-invariant proper extension (X, B, m) of the
measure space (X, B, u). ‘

) In order to derive the answer to the problem of W. Sierpinski from
the above theorem we note that if the continuum hypothesjs is assumed,
then every perfect extemsion (9¢, %3, u) of the measure space (XX, .2, )
satisties :conditions (i) and (ii). Since the group of isometries of X has
cardinal ¢ = X, then also condition (lii) is satisfied and the existence

(*) As we shall see in the proof, assumption (i) is needed only to ensure that the
conditions of Ulam’s theorem of the non-existence non-trivial measures, universal
(defined on all the subsets of the set X) and vanishing on the one-point subsets on X
are satisfied. Instead of this we could have simply assumed the assertion of Ulam’s
theorem, i.e. that there is no non-trivial universal measure vanishing on the one-point
get¢ in X. As is known, if the continuum hypothesis is assumed, this is equivalent
to the non-existence of a non-trivial universal measure taking only two values 0 and 1
and vanishing on the one-point sets in X. By the results obtained recently by A. Tarski
and his pupils, this class is extremely large and a result of D. Scott states that the
assumption that this class exhausts the class of all the cardinals is consitent.
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of a proper extension of (X ,%,ﬁ) which is a perfect extension of
(%X, .2, ») follows.

It seems worth while to note that the theorem and Lemma 2 of [33,
quoted above, imply a slightly stronger form of what was stated above.
In fact,

if (X, B, p) is an invariant extension of the measure space (X, 2, »),
then there exwists a proper extension of (¢, B, p) which is an invarian
extension of (X, L2, »). .

The general formulation of the theorem enables us to deduce the
following corollary, which might be of some interest in the theory of
topological groups.

If G is a locally compact separable topological group, B the o-field
of Haar measurable subsets of @, u the Haar measure and S the group of
automorphisms of (G, B, ) defined by the left (right) translations, then
each S-invariant extension of (@, B, u) has a proper G-invariant extension.

The proof of the theorem in its essential part is based on the idea
of absolutely invariant sets introduced by S. Banach in 1932 (ef. [1])
and applied later by P. R. Halmos and J. von Neumann [2], and S. Ka-
kutani and J. C. Oxtoby [3].

Needless to say, the axiom of choice is used freely in the proof of
the theorem and its corollaries.

Proof of the theorem. We obtain the proof of the theorem in
the following two simple steps.

Step 1. Under the conditions of the theorem there exists a set A C X
such that

(a) 4¢3,

(D) for each T ¢ F we have u(T(A)sA) =0.

In order to construct the set A we well-order both the space X and
the group 7 into transfinite sequences: the first into a sequence

Lyy eeey Bay eeey a < wg,
where w; is the first ordinal of cardinal f, the second into a sequence
T1$ ...,.Ta, ey a << W,

where T is the identity transformation and w; < wg. Then for each a
we define a set O, as the set of the elements of X which are of the form
iy

7 s -y Tin(&,), Where Ay, ..., A, Tuns over the finite sequences of ordinals
<@gy Ny, ..., N are integers and 7 is less than w;. Clearly

1. 0.< X, so u(0,) =0;
2. 0,C Opy1;
8*
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3. for each T with B < a, the set O, is invariant wnder Tg (that is
T (Oa) = Ou)‘ X
’ For each o < w; we define a set @, putting @, = 01' and @, = 0,+:\O,
for o > 1. Properties 1, 2 imply the following properties of the sets Q.
a << we:

1. p(@a) = 0;
2. QunQp =9 for a #B.
Moreover,

3'. for every subset Q of the set of the ordinals < w; and for each
= A ) =0
T =Ty ¢F we have ,u(T(aLEJDQ ) (aLngQ ) )
4. Jg.=X.

a<og

To see 4 we simply note that O.+1= gﬂQp and that CHDGQ‘,H = X.

In order to prove 3’ we mote that the set

M= Tp( U Qu)A( UnQa) = [ T4l UnQa)U ( UnTﬁ(Qa))]A( kEJnQa) .
€ a€ a€ :;ﬂ a

a<f

Since, by 3, Tp(0,) = O, for all a > f, we have also T5(Q.) = Q.. Hence

M= [Tﬁ(aLE?LQa) - (aLEJQQu)]A(a%Qa) - Tﬂ(agﬂQa) v }.<J'9Qa C Tﬁ(oﬂ) A Oﬂ .

<p azg

Thus, by 1, M < X and hence u(M) =0, as reo:luired.
Now we suppose that for each set 2 of ordinals a, a < o, the :set
U Qa € B. Let M be a set of 9 such that 0 < u(M) < oo. Then putting

a€Q

m(Q) = p(\U Q. ~ M) we would obtain, in virtue of 1’, 2", 4', 2 o-additive,
e

atom-free, finite measure defined on all the subsets (?f the sejt of ordi.na,ls
less than we. But since @; = X is less than the first inaccessible cardn.lal,
this contradicts the well-known result of 8. Ulam [6]. Thus there exists
a set 2 such that UnQué PB. We put 4 = Q..

aeQ
Step 2. We join the set A io the o-field 9B, that is we ; form the family
B={MnA)v (N~A): M,N B} and for each E B we set

A(E) = p*(B ~ A)+ (B ~ A7)

where by u* and u, we mean the outer and the inner measure imduced by
u respectivelly.

As was proved by J. Fo§ and E. Marczewski (cf. [43, the family
% is indeed a o-field and % is the measure defined on B equal to p

on the sets of 9. Since also A e %8, the measure space (X, %8, p) is a proper
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extension of (X, B, p). To see that it is F-invariant we note that, by 3/,
for each T e¢F we have T(4)=A\MU N, T(4)=A\Pu R with

M, N,P,ReB and u(M) = u(N) = u(P) = u(R) = 0. Hence for each
B eB also T(H)e9PB. Moreover,

HTTUE) = p*(T7(B) ~ 4) + e (THE) A 4)
=T 7(EB) A [THANY © N)) + a(T(E) ~ [T(ANP  R)),
where u(M) = p(¥N) = pu(P) = u(R) = 0. Thus

B(T7HE) = p(T7E ~ 4) + pua( THE A 4))

= uH(B A A)+ pa(B ~ A) = @(B),
as required.
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