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Remark. Using the same method as in the proof of Lemma 11 we
can prove that for each finite group B we have Hy(B)-+H,(B)D B®B.
By this relation and the first part of the proof of Theorem 14 it follows
that a class is weakly complete even in the case when the group H,(4)
is in @ for any group 4 from @. This last property is then equivalent to
the perfectness of C. :

For any integer » > 1 and any (abelian if # > 1) group 4 the groups
Hn(4,n) are defined as homology groups of the Eilenberg-MacLane
complex K(4,n). If n =1 then Hp(4,1)= H,(A4). Theorem 14 and
Proposition 6.11 of [6] (p. 304) imply

TEEOREM 15. If C is a weakly complete class and a group A is in G,
then all the groups Hn(4,n), m > 0, are in C.
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A functional conception of snake-like continua

by
J. Mioduszewski (Wroclaw)

It is known [5] that snake-like continua (in short 8C) in the sense
of Bing [2] may be regarded as inverse limit spaces of arcs (closed intervals)
with projections which are continuous mappings onto.

This method of construction will be applied here to an important
class of 8C, viz. to the hereditarily indecomposable SC. The existence
of hereditarily indecomposable SC was shown by Knaster [6]. Bing called
them pseudoarcs. and proved their homeomorphism to one another [3].
I prove that every SC is a continuous image of the pseudoare; therefore,
the pseudoarc will be called here the universal smake-like continuum (in
short USC). This result seems to be a consequence of a certain theorem
of Bing (see [2], Theorem 5 and Lehner [7], Theorem 1), but I intend
to .use this opportunity to exemplify how the method of inverse limits
can be applied to this kind of problems. Therefore, my construction does
not resort to Bing’s geometrical method using erookedness. I nse particu-
larly the uniformization theorem of Sikorski and Zarankiewicz (see [9]
and [11]) concerning continuous mappings- of the closed interval onto
itself.

Waraszkiewicz [12] showed that there exists no continuum of which
an arbitrary continuum would be a continuous image, i.e. would be uni-
versal for the class of all continua. Henceforth, the following question
seems to be interesting: how large is the class of continua for which USC
is still universal?

§ 1. Preliminaries. ‘We ‘consider -SC as inverse limit spaces
X =lm{X,, 7y} of arcs X, with projections =y: Xp—>Xn, m>n,
m,n =1,2,.., which are continnous and ontoe (s, are assumed to be
identities). We assume, for convenience, that X, are closed unit intervals,
ie. Xp = {xn: 0 < 2, < 1}). Consequently, SC are 1-dimensional metric
continua (see theorems on inverse limits in [4]). It is also known that SC
are imbeddable into the plane (see [2] and [5]) ().

(*) A quite elementary proof of the last proposition is as follows.
The inverse limit does not change if we subtitute (even in infinitely many places)
a7th, for 7, where b, is a homeomorphism of X, +, onto itself. Furthermore, every
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Let I be the closed unit interval. Let f, g: I—+I be continuous and
onto. We write /< g if there exists an a: I—I, also continuous and
onto, such that fa = g. Let § be a class of mappings f: I->I continuous
and onto. We say that g is a majorant for 8 if f < I for every f¢S. We
say that g is a strong majorant for § if for every /', f"" « § we have " <3 f'g.
Relation < was investigated in [9].

Let I" be a triangulation (division) of I. Simplices (segments) of I’
are assumed to be equal. We denote by #(I’) the number of segments
in I'. Consequently, meshI' = 1/5(I'). The closed intervals which are
the sums of segments of I' will be called subintervals of I'.

Let I" be another division of I of this kind. Consider the class [I* —I 1
of simplicial (piece-wise linear) mappings from I'” onto I’. This class
is, of course, finite. It is non-empty it 5(I') > 5(I’).

Lemma 1. There ewist a division I'” of I and a mapping ge[I"—=I"]
which i3 a strong majorant for [I'"—1I'].

inverse system {X , z""}, where X, are arc and n are continuous mappings onto, may
be regarded a5 a subsystem of an inverse system {B,, 7™}, where E, are Euclidean
planes and #*™, which are continuous and onto, are defined as. follows.

Let g, be a homeomorphism of X, ., onto the graph ¥,  of n:""' given by the formula
InlTy) = (Tpyye N, ) = (a3, 119 @y). Consider the inverse system

XX <« Y, X, <.
AT n :r:*'lg;" ﬂgn 1 2

having the same limit as {X,, a™}. Now, we extend mappings ag=? to mappi.nga'

n
"1 which map the plane onto the plane as follows:

nt1,
A @y T) = (CRE A
where
Tyty for z,,>0,
o= 0 for 0<a,<1,
Tpy—1  for w,,>1.

Let g¥ be an arbitrary extension of g, to the homeomorphism of the plane onto
itself. Consider the following inverse system of pairs of spaces:

By Xy)o = (B, X)) (By, Vo)< (Bpyyy Xppi)<ooe

where the arrows have the meaning described above.

The limit of the first membres is the plane. In fact, according to the remark at
the beginning, the limit in question is the same as that of the system F,<... «~E,«FE,,
<. with mappings equal to :rz:""‘l. That. the last limit is the plane is an eagy conse-
quence of the geometrical form of mappings 2¥"", which are constant with respect
to the second coordinate and monotone with respect to the first one. Because the second
members in the inverse system of pairs have continnum X as the limit, the imbed-
dability of X into the plane is proved.
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Proof. Let f, sy ..., fx be all mappings in [I"—I"]. According to
the uniformization theorem of [9], there exist mappings a, oy ..., Ok
e[I*->T1""], where I*is a division of I, such that f,o; = fyos = ... = fra.
Using again the uniformization theorem, we find a division I’ of I and
mappings By, fus .y P € [I'"' —I*] such that a,f; = afy = ... = oxfr. Leb
g=aifi, 1=1,2,...,k We have ge[I'"'—I"]. Mapping g is the re-
quired strong majorant for [I'"—I']. In fact, we have for any f; and f;
in question equalities f;g = fiys;, where p;; = a;f;. In- other words
fi = fig for any fi, fy e [>T :

Remark. Factors y;; which realize inequalities f; < fig belong
to [I'"""—I""] as indicated in the proof of Lemma 1. ‘

Now, let ¢ > 0. We write ffg if |f(x)—g(2)| < e for every zel.
‘We prove in an elementary way the following approximation lemmas:

LieMwmA 2. Let f: I—-1 be continuous and onto and let ¢ > 0. There
exists an integer N such that for any divisions I' and I"” of I such that
n(I")n(I') > N dnd meshl’ < e/4 there ewists a ge[I”"—>I'"] such that
f=g

Proof. Let f,: I—I be a simplicial mapping onto such that f« jz 1.
It satisfies the Lipschitz condition with a eoefficient K, i.e. for every
2, 2" « I we have |f.(2')—fo(2")| < Kl&'—a"|.

Let I' and I" be divisions of I such that n(I”)n(I') = N = [K]+1
and such that meshI’ < ¢/4. The first assumption implies that the image
by 7« of any segment of I lies in two adjacent segments of I'.

It remains to define g € [I"' —I'] which is an &/2-approximation of f..
Let 0 = ¢y < €; < ... < s = 1 be all division points in I'". Let 0 = ¢, < ¢
<..<e¢ =1 be all division points in I'. We define first a simplicial
mapping ¢, by formula g.(e;) = ¢x, where ¢ is the least division. point
in I’ not less than f.(e;). Mapping g, is not necessarily onto, but it may
be improved in the following way.

Let u, v e I' be two adjacent points such that f.(u) = 0 and f«(v) = 1.
We shall consider only the case % < v. If « is one of division points of I”,
then g, assumes value 0. The same is true for v and value 1

Then let ¢; < % < €j+1. We have gi(ey) = go(€j1) = ¢;. We improve g,
by defining a new mapping g, also simplicial, by formulas

em—y  for ke <j, where cm = g.{e),
Galer) = { glen) for k>j.

Lot 6; < 0 < eir1. We have gus(8:) = Gas(€i11) = 1. We improve g,,

by defining a new mapping g, which is simplicial, by formulas
Cm+t1 for k>i-+1, where cm = gulér),
glew) ={ Gurler) for k<i.
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Mapping g is the required approximation of f,, because, according
to the construction and the remark at the beginning, for every x el
points f{x) and g(x) lie in two adjacent segments of I’ and either of them
has diameter not greater than &/4.

§ 2. A-categories. Let X, X,,... be a sequence of closed unit
intervals. Consider for every X, a sequence of divisions {X,,}, » > n—1,
in the sense of § 1. Assume that every X, ,+: is a proper subdivision of
X, ie. every segment of X, ;1 is at most a half of that of X,,. We
have :

1) - limmesh X, =0 for every n=1,2,..
=00

Consider classes of mappings Sy = [Xmr—Xn,] for all n < m < 7.
Assume that 85, C Smy for p < 7. A mapping ¢ is said to be admissible
if ge[Xmm—Xnm] = Smn = Smn. It is easy to verify that the se-
quence {X,} and all admissible mappings form a category in the sense
of [4]. This category is said to be an A-category if

(2) 11m WX (Xny) =00 for n=1,2,..

Property (2) implies the following approximation property:

(AP) Let an & > 0, an integer n and a mapping f: I—I which is con-
tinuous and onto be given. There exists an r, such that for any v =, there
exists a mapping g € [X,,—>X,,] such that f = g.

) .Pro of. Take an 7, such that mesh X,,, < /4 for » > r, (this is possible
in virtue of (1)) and such that #(X,;)/n(Xn,) = N, where N depends
on f so that Lemma 2 is satisfied (this is possible in virtue of (2)).

m~1

Let 8, = nl;jl Smn. A mapping g: I—I will be said to be a special strong

majorant for 8y, if it is a strong majorant for every Bpnyn=1,...,m—1.
) LeMMA 3. There exist a division I* of I and mapping g € [I* — Xpnl
being -a.special strong majorant for 8. :

Proof. Let fnn» be strong majorants for Sy,y. According to Lemma 1
they belong to [I™—X,,,], where I™ is a division of I.

A%)piylng the Remark to Lemma 1, f,,, majorizes §,,,- with factors
belonging also to [I™ - X, ).

Using the uniformization theorem we find mappings 8, e [I*—>I™7,
where n =1,2,...,m—1, and I* is a division of I such that 16y = ...
= fm,,,‘,_lé,,,_{ . Denote by g the last expressions. We have geI*=>Xpm)
l\’la,p’ng g is the required special strong majorant for S,,. In fact, let
fyfe S’f"” for some(:qg <m—1. AS fmp i8 the strong majorant for S,,.,,
there exists a fe[I™—>X,,,] such that ffmn =71"'p. Hence we have

hY
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al80 fummdn = F'BOn, ie. f'g=f"yn, where yy = b, € [I*—>Xpn]. This
means that fg & f’. The lemma is proved.

Remark. Factors y, which realize inequalities f'g > f'" belong to
[I*—Xmm), s indicated in the proof of Lemma 3.

‘We say that an inverse system {X,, zy; } is contained in an A - category
if X, coincide with objects (in the sense of [4], p. 143) of this A4 -category
and 7, are admissible in it.

THEOREM 1. Every SC is an inverse limit of an inverse system con-
tained in an arbitrary A-category U.

Proof. Let X = lim{X,, o} be an SC. Let {e} be a sequence of
positive numbers with lim e, = 0. We define the following diagram:

N—00

4 5o
X, X, Xy« Xy

(3) idl “,61 lén »l,enﬂ.
ka:;'xk:(_' e € Xkﬂ;:Ianﬂé— ey
kn

%y

where e, ¢, ... are identities and
m
(4) mlg'enu,, i azlﬁ;"em N
~ —~1_k. —1
(5) OFen Ty = of'em
n

and the inverse system in the lower line is assuméd to be in .

We proceed by induction. Let k, = 1. Assume that k; for j < n are
already defined and that they have the properties required above. Ae-
cording to (AP), there exist kny1 and @ e [Xippiops > Xiotsa] SUCH
that the difference between o' and m";“ is 80 small that the relations (4)
and (5) hold for any j <# and m =n+1.

The existence of diagram (3) is equivalent to the existence of a homeo-
morphism of X onto the inverse limit of the inverse system in the lower
line of (3) (see [1] and also [8]).

§ 8. Universal snake-like continua (USC). Let % be an A-ca-
tegory. An SC is said to be universal in 9 if it is an inverse limit of an
inverse system {Xn, 7} contained in % and such that every projection
%1 is a special strong majorant for 8. We denote such an SC by TSC (U).

We first prove some properties of USC (%) and then we establish
its existence by construction. ’

Properties. It is easy to prove that all TSC (¥) for a given U -are
homeomorphic. However, the following more general theorem is true:

TEEOREM 2. Al USC are homeomorphic.
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Proof. Let X = lim{X,, s} and Y=]}'£1{Y,.,o§'f} be two USC,
the first for the A-catz_éory A’ and the second for the A -category 9.
According to the theorem concerning homeomorphisms of inverse limitg
{see [1] and also [8]), in order to prove that X and Y are homeomorphic
it is sufficient to show that for every e > 0, every m and =, and every
MAPPIG fmn: Xm—>Yn there exist a' >n and a mapping gum: ¥y —X,,
such that

"
fmngn'm = 0On ,
&

and to show the same after substitution of X for ¥ and Y for X.

To prove this, we choose an z-approximation of f,, by a mapping
fmn €[ Xrp—>Yp,.], Where r > n; such an approximation exists in virtne
of Lemma 2. Let n’ =r-+1. Because o' iy the strong majorant for
[¥rr—>Yn,], there exists a mapping gwm = grism € [Yri1x—¥,,] such
that Jrmgam = ohol " = 6. Since fmm = fmn, the required e-equality is
proved. }

The proof of a similar condition after the substitution of X for ¥
and Y for X is the same. Thus, the Theorem is proved.

Thanks to Theorem 2 we can henceforth write simply USC instead

of TSC(U).

THEOREM 3. Every SC is a continuous image of USC.

Proof. Let X = lim{X,, ny} be an USC (A), where A is an 4-ca-
tegory. According to Theorem 1,1et ¥ = lim{Y;,, o{*} be an arbitrary SC,
where {¥;,, o"} is an inverse system co(;ta,ined in 4-category 9. We
define the commutative diagram

Xpy+ Xpy< oo X, < X,

. N1
I I NS ¢h+1

Y, <Y, « ..« Y <Y <

<

where the vertical mappings are continuous and onto. It is known (see [4],
D- 271, Theorem 3.13) that such a diagram induces a continuous mapping
of X onto Y.

We proceed by induction. Let =, —j,+1 and let f1.€ 8p,. Assume
that n; and f; are already defined for i < k, so that n; = ji+1 and f; € 8p44.
Let nz41 = jisa+1. By the definition of USC (%), the mapping apF+_,

feri+l 2 : N
=2 g a special strong majorant for §y,,. Hence (see Lemma 3

and’ Remark after it) there exists a mapping, which we denote by fei1,
belonging to the class Sy, = 8,41 and such that off*'fy,,, — furrt

{= femns™ ek 1) . Thus, the theorem is proved.

Construction. We shall define an 4-category A and an USC(A)
simultaneously. ’
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Let X, and X; be two unit elosed intervals with divisions X, and X,
consisting of 2 and 4 segments respectively. Let a7 be a strong majorant
for 8, = [X,,,—~X,,]- It is in class [X,;—~X,,], where X,, is a division
of the unit closed interval X,. Consider a subdivision X,, of X,, created
from X,, by dividing all segments in X, into three equal parts. The
subdivision X, induces subdivisions X,,, X,, of X,, and X,, created
by simplicial images from X,, onto X, and then onto X,,. We have
immediate inclusions Sp.C Span, if p <7 for the integers in question.
We have also n; € 8,,C 8,.

Assume that divisions X,, of X, and mappings =, are already
defined for p,r <= and r >p—1, and that they have the following
properties:

(1) 7 € [ Xp,p—>Xmp] = Spm for m < p,
(ii) mp—_: is a special strong majorant for S,—;, p <,
(iil) SpmC Spm for r<g<n and m < p < n.

‘We choose now my*" as a special strong majorant for S,. According
to Lemma 3, we have 7" €[ Xpny1n—>Xnal, Where X,.,, is a division
of X,.;. Consider a subdivision X,;1n+1 0f Xpi1n created from X,ii,
by dividing all segments of X,;; . into three equal parts. The subdivision
Xpt1,n4+1 induces subdivisions Xy, n41 of Xpa, » = 0,1, ..., n, in the same
way as X,, induces X, and X,,- We then have 73 C 8p1q,p for p < u,
and inclusions 85, C Spim for r <n-+1 and m <p < n-+1. Thus, the
construction is finished.

‘We shall prove in § 5 that the category eonstructed is an 4 - category.

§ 4. An estimation. We still consider the category constructed
in § 3.

LEMMA 4. 7(Xppn)—1{Xn-1,a) 2> 2 implies n(Xpi1n) = 30{(Xnn)-

Proof. Let on be a segment of X,n.. Let f',f" e[Xnn—>Xn-1a]

be two mappings defined as follows. We define ' as a mapping which
maps on onto a segment ¢, of X, 1, and

) 7 [Int{on—1)] = Int(on) .

Such a mapping exists, as 7(Xpn) = HXn-1,4)-

From 7(Xpn)—1(Xn-1.) =2 it follows that there exist three adja-
cent segments ok, o5 and o, of X,, and a mapping € [Xpn—>Xp-1,]
such that’

(10) F0h) = 0py, i=1,2 and 3.
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Since =, is a special strong majorant for §,, there exists an
a e[ Xpi1,n—+Xp,] such that the diagram
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fn,n “fn-&l,n

11 r .

( ) Xn—l,n‘; X’n,’n

is commutative. .

Leb opt1, ohsr and opy: be segments of X, such that a(ohs1) = o
for ¢=1, 2 and 3. By (10) and the commutativity of (11), we have
f'7 (0ne1) = op—y for i=1, 2 and 3. From this equality and (9) we
obtain " (oh1) = 6, 1 =1, 2 and 3. Hence every segment ¢, of X,
is an image by ="' of at least three segments of X,,;,. Thus, 7 (Xnt1n)
> 39(Xnn)-

§ 5. The proof of property (2). The first members of the im-
plication in Lemma 4 are true for all n. In fact, this is valid for n = 1,
a8 9(Xy,) = 4 and 5(X,,;) = 2. Suppose that this is valid for every # < k.
According to Lemma 4, we have 7(Xpiy;) > 37 (Xrx) and, by the de-
finition of subdivisions described in the construction (see § 3), we have
1(Zrra,k1) > 3n(Xagya). Therefore, n(Xirrrr) —n(Xigpsr1) > 27(Xionsa).
It is obvious that n(Xyz.1) > 12 for & > 1. Thus, N Xrr k1) — 9 (Xpgaa)
> 24> 2.

Hence, also the second members of the implication are true for all n.
We obtain for n+4j < #

N &gl (Xt i-10) = 1 Xng sms )0 (Xt imrmts) = 3 .
Finally, we have

WX (Xnr) = 9 Xnir,) 1 Xngar) oo (X )1 Xnr) X
X Xng1) oo 9(Xpg) = 37770,
This ends the proof of (2).
Becaunse all the properties of A -categories, except (2), are assumed
in the construction, the proof of the existence of USC is finished.

§ 6. Other properties of USC. Let I' and I” be divisions of
the closed unit interval I. Let f « [I” —1I']. Let J be a subinterval of I’.
We say that f has a full oscillation over J if, for every J' CJ, J' % J,
where J” is also a subinterval of I’, and for every component C of f™(J)
such that C is an interior subinterval of I’ and f maps the ends of C
onto the ends of J; there exist at least two intervals 0y, 0, C O such that
J(C1)= f(0,) = J'. This notion of oscillation is parallel to that of crook-
edness in [2].

THEOREM 4. If X = lim {X,, 73"} i3 an USC, then every =™, n> 1,
has full oscillation over any subinterval J of Xpp.
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Proof. LetJ"Cd, J’ £ J, be a subinterval of X,,. We shall define
the commutative diagram

(Xn,ny J) e (-Xn-}-l,n; K)

13 e .
(13) (Taas < (Xnmy M)

" We define ' e [Xpn— X, ,] a8 2 monotone mapping which maps J
and J' onto subintervals I and L' of Xo-1n respectively and such that
(14) D) =Jd  and MDY =J7.

Such a mapping always exists if 7(X,_1,) > 5, which is true for » > 1;
the existence is a consequence of inequality #(X..) > 7(Xnoin)-

We define /"' € [ X+ Xy-1,,] 88 2 mapping which maps an interval M
of Xy, onto I with full oscillation over L and such that

(15) ' Dy =M.

Such a mapping exists according to the estimation N(Xnn) >
> 3n(Xp-1,), which follows from Lemma 4.

Since ' is a special strong majorant for 8,, there exists an
0 €[ Xpi1n— Xy, filling up the diagram.

Consider a component K of (#;"")"J) such that K is an interior
subinterval of Xp,41, and such that a ' maps the ends of K onto the

ends of J. We have a' (K) =J. We prove that
a(K)= M.

In fact, if & ¢ K, then a(x) ¢ M, because in the other case f"’a(x) € L,
in virtue of (15), Since f'mr"'(«) ¢ L, we have a contradiction -of the com-
mutativity of diagram (13).

Note that o« maps the ends a’ and a” of K into the ends of M. In
fact, if a(a’) e Int(M), then, because K is interior in X,.,, there exists
an @ e X, —K such that a(x)e M and = (x)¢ J. This implies /'a(x) e L
and, by (14), f'#y'(x) ¢ L. We have a contradiction of the commutativity
of diagram (13).

We have, in addition, a(a’) # a(a’’), because in the other case
Fant(a’) = ' (@), by (13). This contradicts the definition of X and f".
Thus, the equality a(K)= M is proved.

By the definition of 7, the inverse image f'"YL') ~ M consists
of at least two components which are mapped by f ontp L'. Hence,
(f""a) (L'} ~ K and, by the commutativity of (13), also (F'wp ") (L) A 111’
contains at least two components which are mapped by f”a .?’nd; fi:;:,’f‘* y
respectively, onto L’. We have, by (14), (fah™") ™ (L) = (=™~ HT')
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= (an™)7H(J"). Hence, (z*") ™ (J') contains in K at least two components
which are mapped by @' onto J'. Thus, 7" has full oscillation over ..

Let A = lim{A,, n;"}, where A, C X, are closed intervals and =™
= 7y | Am, be a subcontinuum of X. )

Levma 5. Let A, be the mawmimal interval of X. contained in the
interior of An. If m**" has, for every m, full oscillation over Al then A4 s
indecomposable.

Proof. Let B = lim{B,, »,}, where B,C A, are closed intervals
and 5 = 7" |Bn, be ;proper subcontinuum of 4. We prove that B
is non-dense in 4. We can assume, without loss of generality, that 4, — B,
#0 and that any non-empty component of A4,— B, contains at least
two segments of X,,. We then have B,C 4, and B, 5= A},.

As A, lies in the interior of 4, and =" is onto, there exists a con-
ponent C of (7)Y (4;) such that C lies in the interior of A,;; and »™
maps the ends of C onto the ends of 4,. Let 4} be an interval of X
which is a proper subinterval of A,. Note that if b, e B,, then

(16) ¢(bn, Ay) < mesh Xy, .

As 7;""" has full oscillation over A, there exist disjoint intervals ¢,
and C, in € such that ="' maps €, and C, onto AY. As B,C 4, and
By # A;, By is disjoint with one of these intervals. Denote this interval
by ¢"™\. Let D™ = #;3(C"")C A where 1) = mysi A. We have D™
nB =0 for every # in question.

Let b eB. For every n there exists a point d*™ e D" such that

an ok, &)< D 2" mesh Xpn+ 3 1/2% <mj3™ 12",
k=1 k=n+1

In order to find d"*, we choose b}, € 4, such that |bn—ba] < mesh X,
and such that the set

(18) (JZ;:H-l)_I (b;l,) ~ Cn+1

is non-empty. Such a by, exists according to (16). We define @ as a point
in m,}: of the set (18). We have lim d* = b, in virtue of (17). Thus, B is
n—=00
non-dense in A, since d"¢ B.
TeeorEM 5. USC 45 a hereditarily indecomposable continuum (®).
Proof. Let X be an USC and let 4 = lim{4,, ©,™ be a subeon-
tinuum of X. We shall prove that 4 is indecomposable.

(*) So is the psendoarc; see [2], [6], and [10].
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Let A, be the maximal interval of X, contained in the interior
of 4. There exists a component C of (a%™*)™(4%) such that C is in the

interior of 4,;, and such that #* maps the ends of ¢ onto the ends of A5,

Let 47 be a proper subinterval (in Xna) of 4%, According to Theorem 4,
74" has full oscillation over A!,. Hence there exist imtervals C, and C,
in ¢ disjoint and such that =3 maps those intervals onto A7. Because
OC A,,,, intervals C, and (, also lie in Apy1. Hence, the partial mapping
't = 2| dpra also has full oscillation over A.. Then, in virtue of
Lemma 5, the subcontinmum 4 is indecomposable. Thus, the theorem
is proved.
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