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Reduced direct products

by
T. Frayne, A. C. Morel, and D. S. Scott (San Francisco)

Introduction. The reduced direct product of a sequence of relational
systems is a generalization of the standard algebraic notion of the (com-
plete) direct product; in fact, a reduced product is a special type of homo-
morphic image of a corresponding direct product—though it is not always
a quotient of this direct product except in the case of algebraic systems.
An extreme case of the reduced product is the prime reduced product.
The first definition and properties of prime products (in a quite different
formulation from that employed here) were given by .o in [29]. A useful
special case of reduced products was applied by Chang and Morel in [1].
Subsequently Tarski suggested that these two methods might have
something in common and that the idea could be applied to giving a proof
of the compactness theorem in the theory of models. In particular Tarski
realized that the construction of Chang and Morel gave a proof of com-
pactness for classes of systems, defined by certain special types of first
order sentences. These suggestions led to the formulation of the general
definition by Frayne, and several results were obtained by Frayne and
Morel. Independently Scott gave the same definition and found overlap-
ping results. Scott had been stimulated by many discussions with Kochen,
who wanted to extend Skolem’s method of [35] for obtaining models
of arithmetic to more general situations. The connection between Skolem’s
method and reduced products is explained in [33]. The definition and
results were first announced by the authors together with Tarski in [4],
[5], [6], and [21]. More recently the idea has been used by Kochen [23],
[24], [25], [26], [28], Keisler [12], [13], [14], [15], [17], [18], [19], [20], [21]
and Rabin [32] in several different applications.

This paper is divided into two sections together with an appendix.
In Section 1 the basic algebraic (or relation-theoretic) definitions are
given, and several theorems are presented of a general algebraic and
set-theoretic nature. In Section 2 the notions from the theory of models
are recalled and the applications of reduced products to this theory are
indicated. In particular a proof of the compactness theorem is given in
such a way that one sees how to obtain a model for a set of sentences
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from given models of the finite subsets of the set of sentences: the re-
sulting model is a eertain prime reduced product of the given models.
The method is not completely constructive since the axiom of choice
is needed to form the prime product; however, in some special cages the
method can be made more effective. In any case this proof shows for
the first time a direct algebraic connection between the given models and
the models of all the sentences. Furthermore it is now possible to char-
acterize elementary classes of relational systems by means of some
closure conditions involving prime products. The theorems given here
are not the best possible, for using the generalized continuum hypothesis
Keisler has found a way of giving simpler characterizations. The exact
situation, as well as references to work of Keisler and Kochen, is indicated
in the relevant place in Section 2. The appendix introduces some topolo-
gical notions, and it is shown how some of the result of Section 2 could
have been derived in an abstract setting.

The authors would like to thank Professor Tarski for many helpful
and stimulating suggestions in connection with this work. Thanks are
also due to H. J. Keisler, 8. Kochen, and O. O. Chang whose lively in-
terest and large number of original results in this domain have made it
possible for us to obtain a much deeper understanding of the subject.

1. General properties of reduced products. The empty set
as well as the ordinal zero is denoted by 0. In general, an ordinal is
identified with the set of all smaller ordinals. Lower case Greek lefters
will range over ordinals and sometimes functions on ordinals. The in-
finite initial ordinals are denoted DY wa, o an ordinal. We write w for w,.
The axiom of choice is applied freely, but cardinals are not identified
with ordinals. Lower case German letters will range over cardinals both
finite and infinite. The cardinal of a set 4 is denoted by | A]. We write
N, = |wa|. The generalized continuum hypothesis is not assumed, and
we write 2" to denote the cardinality of the power set of a set of cardi-
nality m. This exponential notation should not be confused with the
convention explained below, where, for example, 2° denotes the set
of all functions on » with values 0 or . At one place we use 2°, where
¥ < w, to denote the value of the ordinary exponential function, rather
than a set of functions. The context should always make the meaning
clear, however.

A finite set of elements is denoted by {#, ..., #,~1}; while the ex-
pressions {zm;: 4 ¢ I} and {z; ...7..} denote respectively the collection
of all elements x; where i ¢ I and the collection of all elements x; where 1%
satisfies the condition ... ... We shall also sometimes write {f e I: ... 7 ...}
to denote the collection of those 4e I satisfying the condition ...%...;
similarly for {JC I: ...J ...}, and so on. A finite sequence of elements
is denoted by <(a, ..., Z,—1»; while the expressions <(w;: ieJI> and
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<@z .4 ..> denote respectively the sequence (or better, the function)
with the value #; associated with 4, where in the first case tel, and in
the second, ¢ satisfies the condition ...%.... The sequence {w;: tel)y is
called an I-termed sequence; indeed, any function 7 with domain I is an
I-termed sequence, and we have f = {f(i): 4 eI). The restriction of f
to a subset J of I is denoted by f|'J, a J-termed sequence.

If {d4;: iel) is a sequence of sets, then P<d4y: ieI> denotes the
cartesian product of the sets A; and is taken to be the set of all I-termed
sequences <{a;: teI> such that a;e 4; for all tel. If A = 4; for all
ieI, then we write A7 = P4 ieI>. AT is the cartesian power of the
set 4 with respect to I. For finite sequences of sets we write 4, X... X
XAy =P<LA4gy ey Aprd. I I is empty, then P<(4;: i e I> = {0}. The
intersection and union of a sequence of sets are denoted respectively by
(Y <4iiiel) and | (As: iel); while if F is a family of sets, then we
write (Y F = <4d: A eF> and UF = |J <4: 4 ¢ F>. The intersection
operation is never applied in the cases where I or F is empty. For finite
sequences we write as usual 4y~ ...~ 4,—; and A, ...wA4,_;. The relative
complement of B in A is denoted by A~ B. A sequence of sets (A 1¢I>
is called an I-termed partition of set Bif B=| (4 eIy and 4;~ 4;=0,
for ¢,7 eI with 7 7.

A dual ideal (or filter) over a set I is a family D of subsets of I such
that I eD; if X, Y D, then X~ Y eD; and if XD and XCYCI,
then Y ¢ . Often we shall write for short ‘ideal’ rather than ‘dual ideal’.
The ideal ©D is proper if 0 ¢ D; while D is principal if (| D ¢ D. A maximal
proper ideal D is called prime (or an wlirafilter) and is characterized as
being prime by the condition that whenever X C I, then either X ¢ QD
or I~X e¢D. As is well known every family F of subsets of I having
the finite intersection property (i.e. no finite intersection of members
of ¥ is empty) can be extended to a prime dual ideal D with FC @.
A principal ideal 9 is prime if and only if (M @ = {¢} for some e 1.
A dual ideal D is called m-complete if whenever 0 £ % C D and |F| < m,
then (M) F € D. All ideals are 8,-complete; an N, -complete ideal is called
countably complete. The ideal P is principal if and only if it is m-complete
“for all m. A prime dual ideal @ is m-complete if and only if whenever
UFeD and |F| < m, then F~ D £ 0. If D is a dual ideal over I and
J C I, then the family {X nJ: X € D} is a dual ideal over J called the
restriction of O to J and is denoted by D['J. If (Jy: ke K> is a partition
of I then the sequence (D[ Jx: ke K) is called the partition of @ induced
by the given partition of I. If P is m-complete and |K| < m, then for
XCI, XD if and only if X ~Jy e D[ J; for all ke K; and s0o D can
be recaptured from its partition in this special case. If @ is prime, then
DI is prime over J if and only if I~dJ ¢ D. If I~J D, then D|J is
not. proper.
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Given any dual ideal D over a set I, an equivalence relation =g
is induced between I-termed sequences by the condition that f=¢g
if and only if {iel: (i) =g(4)} e D. That =q ig reflexive and sym-
metrie is obvious; while the transitivity follows from the formula

iel: f(5) =g(0) @}~ {iel: g(i) =h(@)} C{iel: f(3) =h(D)}.

Thus any cartesian product P(4;: ieI) is divided info equivalence
classes by =g. For each feP<ds iel), f/=q will denote the equiv-
alence class of f in the set P<A4;: ieI>. The notation is slightly am-
biguous since the produet is not mentioned in the expression fl=a;
however, the context will make the sense clear. Further, we shall some-
times write f* for f/=g when there is no question as to which ideal D
is meant. The collection {f/=q: feP<{4s: 4eI>} is called the reduced
cartesian product of the sets A; relative to (or reduced by) the dual ideal P,
and it is denoted by Pg<4s: i eI). If A; = A for all { ¢ T, then we write
A{D =Pp<4;: ieI). A?D is the reduced cartesian power. If D = {I}, then
clearly =q, is the identity relation; in which case f/=q = {f}, and there
is an obvious one-one correspondence between Pp<{4s: ield and
P <.A": tel >

We shall not investigate further the set-theoretical properties of
reduced cartesian products of sequences of sets. Instead we shall recast
the definition of the notion within the framework of the theory of re-
lational systems. Many of the subsequent theorems will have a purely
set-theoretical character, but we have stated them in terms of relational
systems, because systems rather than sets are our main interest in
this paper.

For gimplicity we shall not consider arbitrary relational systems
but only those involving a single ternary relation. A (ternary) relational
system is a pair A = (4, R), where 4 is a non-empty set and RC 43
Capital German letters will range over relational systems. We write
R(z,vy,2) for {z,y,?) ¢« R. The cardinal of % is 4] and will sometimes
be denoted by |¥|. A is called finite if |A| is finite. The system ({0}, {0}*>
is denoted by U and is called the unit system. A is a zero system if B = 0.

If A=<4,R) and B = (B, S) are relational systems, and if »
is a function with domain A and range B, then h is a homomorphism
“of %A onto B, if whenever E(x,y, 2), then S(h(w),h(y),h(z)). In this
case B is called a homomorphic ¢mage of A. If h is one-one and % is a ho-
momorphism of % onto B, and A" is a homomorphism of B onto A, then
h i3 called an isomorphism, and U and B are said to be isomorphic,
a relation denoted by U =~ B. On the other hand if ACB and R =8 43,
then ¥ is called a subsystem of B. A is said to be embeddable in B if
¥ is isomorphic to a subsystem of B. An equivalence relation E over 4
i8 a congruence relation over A if whenever R(z,y,#) and zEBz', yEy,
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and #zFz, then R(«',y’,2'). Letting z/E denote the equivalence class
of # and A/E the set of all equivalence classes, a relation R/¥ is defined
over A/E by the condition that R/E (x/E,y/E,/E) if and only if
R(x,y,2). The system W/H = {A/E, R/E> is called the quotient system
of % modulo E. If F is a congruence relation, then A/¥ is a homomorphie
image of UA; but not every homomorphic image of ¥ is isomorphic to
a quotient of 2.

If <Ui: 4 e I is a sequence of relational systems, where %; = (4;, B:>
for all 7¢I, then the system (B,S8>, where B =P<d{4;: 1eI> and
S C B is defined by the condition that S(f, g, k) holds if and only if
Ri(j(i), g(t), h(i)) holds for all e I, is called the direct product of the
gystems U and is denoted by P ie¢Id. In case W =A for all
iel, then we write U = P(Ay: ield. W is the direci power of the
system A with respect to I. For finite sequences we write €y x ... x Wy
=Py, ..oy W—r). Note that Ax U = A, and if B i3 a zero system,
then so is A x B. Indeed, an arbitrary direct product is a zero system
if and only if at least one of its factors is a zero system. If O is a dual
ideal over I, then another relation Sy can be defined over B=P<(4;: i e I>
by the condition that Sq(f, g, ) holds if and only if {i e I: Ry{f(4), (i),
h(4))} € . This definition of S8 is similar to that of the relation =g,
Notice -that =g is a congruence relation over the system (B, 8, for
we have

{iel: j(&) = (i)} ~ {ieI: g(3) = ( i)}~ i eIt B(5) = W()} A

~liel: Rifj (i), g(3), h(0)} Cli e It Ralf'(G), g'(6), W(5))} -
The system (B, S8p)/=g is called the reduced (direct) product of the
systems U; relative to (or reduced by) the dual ideal P, and it is denoted
by PBp<Wi: 4 eI). The reduced product is called proper if the ideal @D is
a proper dual ideal. If 9; = A for all 7 ¢ I, then we write ‘LLID =P W ield.
‘llfb is the reduced (direct) power of the system U. The case of finite
I is of no interest in as much as <) would then be a principal dual ideal.
Note that B/=q is the set Pp<4,: i «I). In the case that P is a prime
dual ideal, then Bg U el is called a prime (reduced direct) product,
and QIfD is called a prime (reduced direct) power.

The notation of the last paragraph with the relation of the system
Py i eIy being denoted by 8gp/=; is clumsy. Hence, we shall
often use the fact that if B =(B,8> is any system such that
B =P <W,;: i eI, then for f, g, heP<4,;: ieI), S(f* g% »*) holds if
and only if {ieI: Ri(f(i), g(5), h(4))} ¢ D. Here f* denotes the equiv-
alence class f/=g in P<{4;: ¢eI> as mentioned before.

The choice of terminology and notation has not beén easy for the
authors, and no doubt the choices made will not please everyone. We
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may mention some of the variations that have been used. Since it is
common in topology to refer to a dual ideal as a filber, Kochen [27] uses
the term filtered products. Prime dual ideals are wulirafiliers and so
Kochen [28], Keisler [14], and Lyndon [30] use the term wultraproducts,
which in certain combinations is more pleasant to some ears than the
alliterative term prime products. Further, Keisler [11] uses %’/ for .
We have preferred to keep the symbol / for the indication of quotient
systems. Liyndon [30] uses a further abreviation for direct products
(and uses ideals instead of dual ideals), but we prefer to have different
gymbols for products and powers. Also we prefer the style that uses
capital German letters for systems and the capital Roman letters for
gets of elements of systems, a convention reflected in our symbols for
products.

At last we shall state some consequences of the foregoing definitions.

TamorEM 1.1. (i) If D = {I}, then
Po s ieD> o B ieId;
(ii) If D s not proper, then - -
Pop<W: del> = UL
Proof. Obvious.

THEOREM 1.2. Let m be an infinite cardinal and D be an m-complete
dual ideal over I. Suppose that {(Jy: % e K is a partition of I with | K| < m.
Let D =DM Jy for ke K. Then

“BF_I)<QI.': 1el) %S'BCB:D’:(QI,iI ieJk>: keK).

Proof. As pointed out above, a set X e if and only if X ~ Ji € Dy
for all k¥ ¢ K. Hence, it follows at once that f=cg¢ if and only if f[J%
=g, Jx for all k¢ K. In other words, the function & defined on the
elements of Pgp<4,: ¢ eI) by the equation

hfl=q) ={flJ\/=q,: keK)
is one-one. It is clearly a mapping onto the cartesian product of the
P@k@t‘.: P €¢.7 o> by virtue of the fact that (J,: &k ¢ K) is a partition of I.
The conclusion that h also preserves the relation of the reduced product,

?md h.ence is an isomorphism, can be easily verified in the same way
in which it was shown that h is one-one:

The preceding result may be viewed as an associative law, a more
general form of which will be given in 1.10.

CorOLLARY 1.3. Let <D be anmy ideal over I and J € <D. Then
Pp W ie D> f_._\:%r\_,(ﬂ,: ied).

©
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Proof. Apply 1.2 to the case of the pm‘ﬁition Jy Imod ) with m = 8.
Note that D I~dJ is not proper and so the second factor of the direct
product by 1.1 (ii) is a trivial factor isomorphic to .

If @ is prime and the hypotheses of 1.2 apply, then there must be
a ke K with Jz¢D. Thus in this case we see that the direct product
in 1.2 is isomorphic to one of its factors.

COROLLARY 1.4. If D s a principal dual ideal over I, then

Pop<dg dely o2 PCAz 1€ DD

Proof. Apply 1.3 and then 1.1 (i).

COROLLARY 1.5. If D is a principal prime dual ideal over I and
ieM D, then

P WUz dely =U,.

Proof. Apply 1.4 and the fact that the direct product with a single
factor is isomorphic to that factor.

TerROREM 1.6, If D is a proper dual ideal over I and U; is a zero system
for each i eI, then P ieI) is a zero system.

Proof. Let W = (4, R;), where E; = 0, for all 4 ¢ I. If the reduced
product were not a zero system, then there would be sequences f, g,k
e P{4:: i eIy such that :

J =i e I: Ri{f(3), 9(4), R(i)} eD.
But J = 0, which contradicts the assumption that D is proper.

COROLLARY 1.7. If D is a dual ideal over I and J = {ieI: % is a zero
system}, then Po<W,: i eI) is a zero system if and only if I~dJ ¢<D.

Proof. If I~J ¢ D, then D M is proper and by 1.6, ﬂ}q,”(ﬂli: ted)
is a zero system. By 1.2 the full reduced product is isomorphic to
Py y<Ys 8 ed) x Boyppoy U iel~dJy, and hence is a zero system.
1§ I~J <D, then by 1.3 the reduced product is isomorphic to a reduced
product of non-zero factors, which is easily seen to be a non-zero system.

TrEOREM 1.8. If D is a dual ideal over I, no Wy is a zero system for
iel, and if J = {geI: |Us| >1}, then

Pp AUz tel) = 513@”(?11.: pel>.

Proof. As before, the full reduced product is isomorphic to

s‘BQ)[\JéHi: ’bEJ) X i?(DPINJ(%i: ’LEINJ>

Under the assumptions the second factor is isomorphic to U

Notice that if there were zero systems among the factors, the best
we could say is that either the second factor is jsomorphie to U or to
one of the zero factors U; with ieI~d. .
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CoROLLARY 1.9. If D s a dual ideal over I and
J={iel: |W|>1 and W is not a zero system} ,
then either Pop<W,: i e I)> is a zero system, or
P W iel> =By Wz ted>.

Proof. Apply 1.7, 1.3, and finally 1.8.

The import of 1.9 is that either a reduced produet is trivial, or it
is isomorphic to a reduced product of its mnon-trivial factors. Clearly,
similar results could be formulated for getting rid of factors of the form
(A, 43y, or at least reducing the occurence of such factors to a single
instance. As another example of the elimination of factors, we may
mention that by 1.3 it is possible to assume without loss of generality
that the dual ideal @ contains sets all of the same cardinality; for apply
1.3 where J ¢ D is chosen so that |J| is a minimum. Finally, as a last
example of the rearrangement of factors, we have the general associa-
tive law.

THEEOREM 1.10. Let <{Ji: ke K> be a partition of I, and let Dy be
a dual ideal over Ji for each ke K. Let D" be a dual ideal over K and
define a dual ideal D over I by the equation

:{X_(;I: {keK: Xkaeka}e‘-’D'].
Then
B {PBop, Wz jed > ke K) o2 P Wz eIy

Proof. It is only necessary to check that the function % such that
k(| =q) = {F8): i edid/=q,: ke B =q

is the required isomorphism. We leave this to the reader, sinee it is an
eagy but lengthy computation on sequences.

Notice that 1.2 is really a special case of 1.10 where D' = {K}. .

Of course, the hypothesis that |[K| < m cannot be eliminated from 1.2.
In1.10, if K were finite, then by 1.4 we may as well assume that D’ = {K}.
Let K = {0, ..., »—1} then D takes on a simpler form:

D={Xov..uX,y: XDy for k<v}.

In the case of arbitrary K, if ' and the 9 are all prime, then go is D,
a8 may be easily verified. In the finite case with |K|>1, D' = {K},
and the Dy, proper for k ¢ K, D is never prime. However, the ideals @
obtained from prime Dy in this way are of interest, and we ghall return
to them in 1.30-31. Next we want to discuss the questions of the cardi-
nality of reduced products, an area in which there are still some unsolved
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problems. First, we shall give some simple facts about homomorphisms,
isomorphisms, and embeddings.

TaeoREM 1.11. If D and D’ are dual ideals over I and D C D', then
Py Uz 1€ I> is a homomorphic image of PBop<W: @ Id.

Proof. It need only be checked that the function h such that
k(f/=q) = f|=qy is well-defined and is the required homomorphism.

TEEOREM 1.12. If D is a dual ideal over I and Wy =~ B; for all i e 1,
then '

%@(Q{i: teld == ‘B(D(%i: tely.

THEOREM 1.13. If D is a dual ideal over I and B; is a homomorphic
image of Ws for all i eI, then Py{(B;: 4 eI> is a homomorphic image of
Pop Uz i e ID.

THEOREM 1.14. If D is a dual ideal over I and U; is embeddable in
By for all iel, then Bop<A: i eIy is embeddable in P (B;: iel).

Proofs. Obvious. )

A result analogous to 1.12-1.14 with the hypothesis that B; is
a direct power of 9; does not hold, for we shall see a case below where

) 2 ()

Somewhat more interesting than the above is the fact that every re-
lational system can be reconstructed from its finite subsystems, in the
precise sense of the next theorem.

TaEOREM 1.15. Let < 4 e I> be a sequence containing all finite
subsystems of a system W. Then there is a proper dual ideal D over I such
that if D' DD is a proper dual ideal over I, then U is embeddable in
EB@'@L': ield.

Proof. Without loss- of generality, we may assume that each % is
a finite subsystem of . Let UA; = <{4i, B> and U = (4, R>. For each
jel let

Jj={iel: WCW}.

If KCI is a finite set, then it i3 clear that (M {(Jy: j ¢« K) # 0. Hence,
the least dual ideal D over I with J; ¢ @D for § e I is a proper ideal. Let
D’ be a proper dual ideal containing D. Let {d;: ¢ « I> be a fixed sequence
such that d;e 4; for 42 ¢I. For each ae .4, let h{a) be that sequence
{a;: 1 ¢I> such that ‘a; =a if a e 4;, and a; = &; otherwise. If a,be A
and h(a) =g h(b), then

J' = {i e I: h(a)(i) =h(b)(i)} € D'

Let j e I be chosen so that a,b e A;. Now J; €D and J; ~J' «D'. Butb
@’ is proper, and hence there must be a k eJ;~J'. By the choice of %,
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we know that &, b e Ax. BY the definition of &, it follows that h(a)(k) =«
and 7(b)(k) =b. On the other hand, % eJ’, so we conclude that a =b.
In as much as the range of % is included in P<{4: 4 € I, this last argument
shows that the function h* such that h¥(a)= h(a)/ =gy is a one-one
funetion mapping 4 into Pgy(As i€ I>. Finally, let a, b, ¢ A. Choose
jel so that @, b,¢ ¢ A;. From the definition of » and the fact that the
91; are all subsystems of ¥, it is easy to see that E(a, b, ¢) holds if and
only if .
JiCliel: Ry(h(a)(9), B(B)(3), h(e) (D)},

which in turn is equivalent to the statement
Jinfiel: Ri(h(a) (), R(D)(3), h(c)(z‘))} #0.

These equivalences imply at once that #* is an isomorphism from 2 onto
a subsystem of P Us: e DD

The idea of the proof of 1.15 is not new, for similar constructions
in algebra have been known for some time. For example, Saunders
Mac Lane pointed out to Tarski that the direct limit of algebraic systems
may always be obtained as & subsystem of a homomorphic image of
a direct product of the systems. The main point of sueh formulations
as 1.15 is that we are isolating for closer study the exact kind of homo-
morphic images needed.

CoRrOILARY 1.16. Let K be a class of relational systems, and let A
be a system such that each finite subsystem of W is embeddable in some system
in K. Then U is embeddable in a prime reduced product of systems i K.

Proof. By 1.14 and 1.15.

A different type of embedding theorem was noticed by Chang and
Keisler and is included next with their permission. This theorem shows
a relation between a direct product and all of its “subproducts” over
finite subsets of the index set.

TerorEM 1.17. Let (Jy: k ¢ K be a sequence of subsets of I containing
all the finite subsets of I. Then there is a proper dual ideal D over K
such that if D' DD is a proper dual ideal over K and (i iel) 8
any sequence of relational systems, then B U ieI) can be embedded in
PP, jed i ke K.

Proof. Without loss of generality, we may assume that each J&
is a finite subset of I. For each i eI let

Li={ke K: i edi}.

Tt is obvious that the least dual ideal @D over K with L; ¢ for i el is
a proper ideal. Let @' D D be a proper dual ideal over K and let (Wy: ¢ e I)
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be a sequence of systems with %; = (4, B;) for i e I. Define a function A
on P<A4s i eIy such that for fe P4 1eld,

h(f) =P dwt ke K[ =z -

If f,geP<ds iel> and f+#g, then f(i) # g(¢) for some 7 I. Hence,
LiCkeK: fMr# ghdx}, and so h(f) # h(g). A similar argument will
show that the one-one function % is actually an embedding.

Theorems 1.15 and 1.17 only show that for some dual ideals an
embedding exists; in the next theorem we see that in the case of powers,
we can say that an embedding exists for all proper dual ideals.

TEEOREM 1.18. If D is a proper dual ideal over I, then U is embeddable
n QI(ID

Proof. Let A = (4, Ry. The function % defined by the obvious
equation h(a) = <a: i e I)/=g for a ¢ 4 (where the sequence mentioned
is a constant sequence) is the required embedding.

We shall call the function indicated in the proof of 1.18 the canonical
embedding of W into 915_7, More information on this embedding can be
obtained from the results of Section 2 (see esp. 2.10).

COROLLARY 1.19. If m < |W;| for i eI and D is a proper dual ideal
over I, then m < [Py Wiz ¢ e D).

Proof. It is sufficient to argue for zero systems. In that case a zero
system 9 with || = m is embeddable in each Us. Apply 1.14 and 1.18.

TrEoREM 1.20. If |U| < m and D is an m-complete prime dual ideal
over I, then W = U.

Proof. Let % =<4, R). We need only show that the canonical
embedding mentioned in 1.18 has as its range Afz,. For this purpose, let A
be that embedding and let f e A*. Obviously, U {{iel: (i) = a}: ac A}
= I ¢. By hypothesis the number of terms of this union i less than m,
and so there must be an element a e A such that {ieI: f(i) =a} eD.
Hence, h{a) = f/=q, which establishes the desired conclusion.

COROLLARY 1.21. If || <n < m for all i e I and D is an m-complete
prime dual ideal over I, then |Pip<Ws iely| <

Proof. For zero systems apply 1.14 and 1.20.

In view of the fact that every dual ideal is N, -complete, it follows
from 1.21 that a prime reduced product of finite systems of bounded
cardinality is always finite. Theorem 1.15 shows there ean be no bound
given for arbitrary prime reduced products of finite systems. The question
of which cardinals can be obtained as the cardinals of reduced products
is not completely settled.

The cases where QIfD ~ 9 seem to be very rare when U is infinite,
as will be shown in the next sequence of theorems. To shorten the
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statements of the hypotheses, we shall call a dual ideal <D over I a uniform
ideal if for each J ¢ D we have |J| =|I|. As noted in the remarks following
1.9, the only interesting cases (as far as the question of cardinality is
concerned) are those where the ideal is uniform.

Lievva 1.22. Let m be an infinite cardinal and suppose that | A| >|I|
— 1. Then there exists a family FC A7 such that
i) |71 >m;
(i) if f,geF and f #g, then

el f(3) =

Proof. Similar to the lemma in [2], p. 549; cf. also [34].

THEOREM 1.23. Let m be an infinile cardinal and suppose that
(%] = | =m. If D is a uniform dual ideal over I, then 95| > m.

Proof. Use the elements f/=; of QI?D where f belongs to the family
F of 1.22. A similar argument was uséd in [2].

Unfortunately, the proof of 1.22 does not seem to yield the con-
clusion that [#] = 2", in as much as the diagonal argument only shows
that each family ¥ with |F| = m which satisties 1.22 (ii) is not maximal
with respect to condition (ii). A different type of argument due to Tarski
in [38] gives In several cases this additional information without the
necessity of using the generalized continuum hypothesis.

gl <m.

Lemma 1.24. Let m be an infinite cardinal, and let n be the least cardinal
such that m < 2". Suppose that |A|>m and |I| =n. Then there exvists
a family F C AT such that

@) 17} =2%
i) if f,9eF and f g, then

[iel: f(i) =

TeEOREM 1.25. Let m be an infinite cardinal, and let n be the least
cardinal such that m < 2". Suppose thet || >m and |I| =n. If D is
a uniform dual ideal over I, them |U%| > 2"

Proof. By 1.24.

Both 1.23 and 1.25 required the hypothesis that || >m, whereas
from 1.26 below it is clear that if % is merely infinite, then % can be
made arbitrarily large even using prime dual ideals 7. Using 1.17, Chang
and Keisler noticed that the place where 9% is large can be estimated rather
closely. A weaker result was announced by Keisler in [18] and another

weaker regult was included by Kochen in [28]; a similar proof was found
independently by D. Monk.

g(i)} <mn.
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THEOREM 1.26. Let m be an infinite cardinal and lot |I| =m. Then
there is a proper dual ideal D over I such that if D' D D is a proper dual
ideal over I and U is any infinite system, then || = 2™

Proof. Since m is infinite, the cardinality of the set of finite subsetis
of I is m alsp. Let {J;: ¢ € I> be a sequence including all the finite subsets
of I and only finite subsets of I. Applying 1.17 (with I = K), there is
a @ such that if <D’ D D is proper, then 9’ is embeddable in Py AT e I
Bub since U is infinite and each J; is finite, [A”| = |A|. It easily follows
that 2™ < || < By W 4 e I>| = Wy .

The counterexample mentioned after 1.14 can now be easily con-
structed. Let U be the two element zero system; let |J| =, |I]| = 2%,
and let @' be a prime dual ideal chosen as in 1.26. Then |(A)5,| > 2%,
by 1.26; but by 1.20, [{%5)’| = 2%; hence the two systems are not
isomorphic. Chang and Keisler have shown that for 9 prime over I
and )’ prime over J, the systems (QL—JZ,/)I@ and (%){D, need not be iso-
morphic even with I =J. The proof, however, uses the relational struc-
ture of 2 and is not just a trivial caleculation with cardinal numbers as
in the example above.

The reason for stating 1.15, 1.17 and 1.26 in the form “there is a D
such that for ‘every <D'D D, ete.” rather than in the more direct form
“there is a prime dual ideal D', ete.”, is that in the proofs the proper
ideal @ can be defined in an effective way that seemed to be rather
explicit and may possibly yield further information.

The generalizations of the above results from powers to products
is straightforward. The situation with finite factors is not covered by
these generalizations, however, and requires a separate argument.

LeMMA 1.27. There exists a family FC w® such that

) |7 =2%;
(ii) if feF, then f(») <2 for all v < wj_

(i) if f, ¢ eF and | £ g, then {» < w: f(v) = g(»)} is findte.

Proof. In the statement of the Lemma, o refers to the family
of all functions from w into w; while 2" stands for the ordinary finite
integer 2°. Let 2° be the family of functions on o with values 0 or 1.
To each function ¢ e 2” associate a function 7, w® defined by the equation

:2(])(%) 2

®<y

for all ¥ < w. Let F = {f,: p €2”}. The three required properties are
immediate.
Notice ‘that this lemma strengthens slightly the conclusion of 1.24.

The formulation resulted from an easy analysis of the proof of 1.24 in [38].
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TrEorEM 1.28. Let D be a prime dual ideal over I which 48 not
countably complete, and suppose for all 1 <Ny, {tel: |W| =n}éD. Then
1B Wz i e | =2 ,

Proof. Let I' = {i e I || < %o}, and let I = I~I'. By assumption
] is prime; hence either I' ¢ @ or I" ¢D. In view of 1.3, we may assume
without loss of generality that either I' = I or I = I. In the first case
we see that there must exist infinitely many n <N, such that {ieI:
|9%] = n} % 0 by virtue of our hypotheses on D. It easily follows by
taking unions of several of these subsets of I that there is a partition
I v <o)y of I into nonempty sets such that (i) J,¢ D, for » < w,
and (i) whenever ieJ,, » < , we have |%] > |2’|. In the second case,
where I' = I, all the factors are infinite. Since we have assumed that
D is not countably complete, it is a simple matter to show the existence
of a partition <¢J,: » < w) of I into non-empty sets such that J, ¢ D.
The second property of the partition follows because || =8, for all
iel. Thus in either case we may assume that we have a partition
with the two properties (i) and (ii). The next step is to choose for i ¢ dJ,,
where v < o, a sequence <a;,: » < 2"> of distinct elements of the system
90;. Let F be the family of functions mentioned in 1.27. For each f e,
let h; be defined on I by the equation

hy(t) = @50y
where » < w is the unique integer such that i eJ,. An easy calculation
shows that for f,ge%,
el hi) =hy(i)} = WJh: » <o and f(») =g(»)}.
I f g, then by the lemma the indicated union is finite, and hence
is not in . In other words, hy #q h,. This proves that |Pop<W,: i e I)]
> ||, and the conclusion follows.

Suppose that |%A| =¥&,. None of the foregoing theorems answers the
question of whether there exists an I with |I| =m >x, and a prime
dual ideal ©D over I such that

Ny < | U] < 2™

This is closely related to the problem of whether |%5| can be a singular
cardinal. The authors have been unable to find any facts that would
solve these problems even under the assumption of the generalized
eontinuum hypothesis.

TurorREM 1.29. If D is a prime dual ideal over I and |Pop Wz i € I)|
< 2%, then for some § eI, Po Wy i e I) =,

Proof. By 1.28 it follows that either there is an n < N, such that

I'={el: |W| =n}eD,
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or @ is countably complete. In the first case notice that there are only
finitely many isomorphism types of relational systems with n elements.
In other words, there must exist a finite set J C I" such that

I=UJfEel WU jed}.
Now (D ig prime and the union is finite, and so there is an index j eJ where
(el We=WreD.

Applying 1.3, 1.12, and 1.20, we obtain the conclusion. In the second
cage, where D is countably complete, we invoke e.g. Theorem 3.7 in
Smith-Tarski [36], p. 251, to conclude that D is m-complete for all
cardinals m weakly accessible from ¥,. Let

I = {iel: || < 2%},

It I €D, then, as in the cage with finite cardinals, we note that there
is a set J C I' such that |J| <2*™ and

I" = {fiel" WU} jed}.

In as much as @ is m-complete for some m > 22V, the argument may
proceed as before. On the other hand, if I~I"e<D, then {iel: |
>2% Q. Using 1.3 and 119, we would have [Py ieId|> o]
contradicting the hypothesis.

The final result of this section is the proof of the analogue of 1.29
for arbitrary dual ideals. To carry out the argument we need first, how-
ever, to distinguish a class of dual ideals that are remote from the prime
dual ideals. As is well known, a characteristic feature of prime dual
ideals @ over I is that the quotient modulo @ of the Boolean algebra of
all subsets of I has just two elements. Another formulation of this property
is that the reduced cartesian power 25 has two elements, and the con-
nection with 1.20 is easily seen. We shall call a dual ideal @D (not neces-
sarily prime) an ideal of finite indew if 2¢ID is finite. Equivalently we could
say that @ is of finite index if and only if there is a finite partition
i keE> of I such that each D[ Jy is a prime dual ideal over Ik
When @ is not of finite index we can make an estimate of the cardinality
of a reduced product.

TrEorEM 1.30. If D is a dual over I which is not of finite indez, and
if |W|>2 for all iel, then |Bo A ieI>| = 2%

. Proof. To say that @ is not of finite index means that the quotient
modulo D of the Boolean algebra of subsets of I iy infinite. Ag is well
known, every infinite Boolean algebra contains an infinite sequence of
mutually disjoint elements. The proof of this fact can be easily modified
to yield a partition <J,: » < o) of I such that I~d, ¢ D for all » < w.
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Let U; = (Ai, B;> and choose elements a0, di1 e A; with ayp 7 a4, for ie 1.
Corresponding to each function ¢ e 2° let the I-termed sequence f, be
defined by the equation

f w(i) = Qi,pis)

where i e I and » is the unique integer such that ied,. It is easy to show
for @,y e2” that

el f(i) =f,(0)} = U Wy v <o and ¢(») =p()}.

If ¢ # v, then it follows at once from our condition on the partition that
fo #fe, which establishes the desired conclusion.

The above theorem is actually a consequence of Theorem 4.4 in
Smith-Tarski [36], p. 254, which could have been used in the proof.
However, the construction is so simple that we have preferred to give
the direct proof.

TrEOREM 1.31. If D is any dual ideal over I and |Pop (Uy: i e | < g%,
then there is a finite subset J C I such that

Pyt i e I> o Pz j e

Proof. By the remark following 1.8 we see that the theorem reduces
to the case where |%;| > 2 for all ¢ ¢ I. By 1.30 we conclude that @ must
be of finite index, that is, there is a finite partition (Jx: & ¢ K) of I such
that @ MJy is prime over J,. By 1.2 the reduced product is isomorphic
to a direct product of factors Bg . ; Wit 4 €Ji>. Bub each of these factors
must have cardinality less than 2%. Hence by 1.29 the kth factor is
isomorphic to Ay for some jieJi. Let J = {jz: ke K}, and the con-
clusion follows.

2. Model theoretical properties of reduced products.
Many new relational systems may be constructed from given systems
by means of reduced products and powers. Several facts about the car-
dinalities of the resulting systems were given in the previous section,
but these facts and this type of construction would be of not interest
if it were not possible to discover something useful about the relational
structure of the product, systems. Two hints as to the possibilities are
contained in 1.13 and 1.15, from which it is seen that a reduced product
is related to its factors through the well-known operations of forming
direct products and homomeorphic images and contains in many cases
& variety of subsystems. However, these hints do not tell the whole story,
because the homomorphic images involved, for example, are only of
a very special type. The way to understand more clearly the nature of
the construction is to investigate which properties of relational yystems
are preserved under the formation of reduced products. In particular,

icm°®
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to make the problem more precise, we shall discuss in this section the
question of which first-order properties are preserved and then give some
applications of the results obtained.

To be able to formulate first-order conditions on relational systems,
we make use of a language L(“’, a an infinite ordinal number, involving
a transfinite sequence <{vs: £ << o) of distinet wariables. In addition, the
logical constants A, v, 7, A, V, and =, standing for conjunction, dis-
junction, negation, universal and existential quantification, and identity,
are uged, together with a ternary relation symbol R. The formulas of
I are built from atomic formulas of the forms R (v, v,, v;) and v; = v,
in the usual way by means of the sentential connectives and the quan-
tifiers. Free and bound occurrences of variables in formulas are defined
in the well-known way. A sentence is a formula without free variables.
Upper case Greek letters will range over formulas, while bold-face Greek
letters will denote sets of formulas. Let W =<4, R) be a relational
system, and let f € A® be an a-termed sequence of elements of the system.
We assume as known the meaning of the phrase the sequence f satisfies
the formula @ in the system U (cf. [42]). A sentence @ is true in U if it is
satisfied by all (or at least one) of the sequences in A%; in this case U is
also said to be a model of ®. Two formulas are logically equivalent
if in every relational system they are satisfied by exactly the same
sequences.

For our purposes we need to distinguish a special class of formulas,
now generally called Horn formulas, which were first investigated in [10]
only in connection with direct products. These are formulas in prenex
normal form (with arbitrarily many changes of quantifiers) with a matrix
that is a conjunction of (quantifier free) formulas of the form @yv...v 0,
where each 6,, u < v, is either an atomic formula or a negation of an
atomic formula, but where at most one atomic formula occurs unnegated.
Such disjunctions are called basic Horn formulas. Notice that any formula
obtained by conjunctions and quantifications (in any order) of basic
Horn formulas is logically equivalent to a Horn formula.

Instead of properties of relational systems we shall speak of classes
of systems. Bold-face capital Gothic letters will demote such classes.
A class K of systems is called an elementary olass (in symbols, K < EC)
if there is a sentence @ such that K is the class of all models of . In-

. asmuch ag each sentence contains only finitely many variables, it makes

no difference in this definition if we restrict attention to sentences of I,
An arbitrary intersection of elementary classes is an elementary class in
the wider sense (or a class in EC,); in other words, K ¢ EC, means that
there is a set X of sentences (of L) such that K consists of all those
gystems that are models of all sentences of ¥. A class K is a Horn class
HC(K ¢ or K <HC,) if analogous conditions hold involving sentences
Fundamenta Mathematicae, T. LI 15
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or sets of sentences that are all Horn formulas. A class K is an a-quasi-
elementary class (K e QCY) if there is a set ¥ of formulas of the language
I such that K consists of all systems % = (A, B> for which there is
a sequence fe A® simultaneously satisfying all the formulas in ¥. This
definition depends essentially on the ordinal «. We say KeQC, if
K < QCY for at least one o> w. :

Let A = <4, Ry and B = (B, §) be relational systems. The systems
A and B are elementarily equivalent (A = B) if they belong to the same
elementary classes; or, in other words, if every sentence true in U is also
true in B and conversely. The intersection of all elementary eclasses
containing U is the elementary type of A and is just the equivalence class
of % under the relation =. Isomorphic systems have the same elementary
type, but the converse is not always true. We say that B is an elementary
extension of A (or A is an elementary subsystem of B) if A is a subsystem
of B and whenever f ¢ A° and @ is a formula of L satistied by f in A,
then f also satisfies @ in B. If A is isomorphic to an elementary subsystem
of B, then A is elementarily embeddable in B. Of course elementary ex-
tensions of a system belong to the same elementary type. More information
on these notions can be found in [42]. The languages Z® can be used
to provide another definition of elementary extension. Suppose that A
is a subsystem of B and |a] > |%|. Let f ¢ 4° be a sequence whose range
i all of A. If this one sequence f satisfies exactly the same formulas in 9
ag it does in B, then B is an elementary extension of .

If f is an a-termed sequence and £ < a, then f(&/a) is that a-termed
sequence g such that g(£) = a, but for all 9 < a if 7 # &, then g(x) = f(y).
That i, f(¢/a) is the result of replacing the £th term of the sequence f
py the entry a. If f is an a-termed sequence, and if for each £ < a, }(&)
is an I-termed sequence, then f may be considered as an « by I matrix.
The transpose of that matrix is denoted by f'. In other words, 7' is an
I-termed sequence, such that for each ¢ e I, f¥(3) is an a-termed sequence
where fY(4)(§) =f(£)(4), for & < a. Notice that if g is an I-termed sequence,
then f'(5)(&/g(3)) =1(&/g)¥ (@), for i eI, £<a.

. The‘ above notation is useful for investigating the properties of
SE}:BLSf&OtIOn.‘FOI’ example, if A =<4, R, feA® and @ is a formula of
L, then f satisfies \/v,® in 9 if and only if f(&/a) satisties @ in A for
some a e 4. Next, suppose that <Ui: ¢ eI) is an I-termed sequence of
) rel‘a,tlmlla,l systems, where U; = (4;, B;>, for i e I, and that D is a dual
prime ideal over I. For our purposes, it is easier to express facts about
satisfaction in terms of a-termed sequences of elements from the direct
product rather than from the reduced product. If f is an a-termed
sequence of elements from P(A;: ¢ e I, then by f* we shall denote the
a-termed sequence characterized by the property that f*(&) = f (&) =0
for £ < a. Hence, f* is the corresponding sequence of elements of
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Py i eIy, To shorten writing let B* =P ieIy and B =
P4 ieId. For each formula ® of L and each f e B” let

Jye = (i e I: 1V(3) satisfies ® in W}.
Finally let

r = {®: for all f e B®, f* satisfies @ in B* if and only if Iy € D};

and
I’ = {®: for all fe B if Jy0eD then f* satisfies ® in B*}.

Obviously I' C I'’, and each of the two sets of formulas is closed under
logical equivalence. We shall refer to these sets in order to make clear
the connection between formulas satisfied in the reduced product and
formulas satisfied in the factors. In particular, the following lemma holds
for the given reduced product, to which our notation refers.

Tevma 2.1, If D is a proper dual ideal, then every Horn formula of
I belongs to I'"; if in addition D is prime, then every formula belongs to T

Proof. The required conclusions will follow directly from these
five statements:

(i) every atomic formula belongs to I';

(ii) if O, ¥ e, then DA V¥ el;

(iii) if @, P eI, then DN YF, VoD, N\oyPel';

(iv) every basic Horn formula belongs to I'';

(v) if D is prime and D T, then 7@, ;D I

Statement (i) is a trivial consequence of the definitions of reduced
products and the set I'; while (ii) and the first part of the conclusion
of (iii) follow from the facts that for all X, YCI, X ~Y D if and only
it X,Y D, and that Jrerw =J 16 J1e, for all feB% and all formulas
@, ¥. To establish the remaining parts of (iii), assume firgt that @ e I'',
and let ¥ be the formula \/v:®, where & < a. Suppose that f < B® and
JyweD. Hence, if iedyp, then f¥(i) satisties Vo:® in A, and so
7¥(3) (éfa) satisties @ in %; for some a € 4. Applying the axiom of choice,
let g ¢ B be chosen so that f() (£/g('i)) satisfies @ in A;, for all i eJyw.
Tt follows that Jiw C Jygme; hence, this latter set is in @D. In view
of the assumption on @, the sequence f(£/g)* satisfies & in B*, from which
we eagily conclude that f* satisfies \/o;® in B* Thus we have shown
that \/v;® e r'. Next assume that @ «I'’, and let ¥ now be the formula
V0. Suppose that feB® and JyweD. To show that f* satisfies ¥
in B*, it is -gufficient to establish that f(&g)* satisfies @ in B*, for all
geB. I geB, it is easily checked that Jyw C Jyan.0, and hence
J 5100 € D. The desired conclusion now. follows from the assumption on @.

15*
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The proof of (iv) divides into cases according to the type of basic
Horn formula considered. If the formula is simply a single unnegated
atomic formula, then it is in I'* by virtue of (i) and the inclusion 1" C 1,
Suppose then the formula @ is of the form —16,v...v 10, s, where each
6,, u<v, is atomic. By way of contradiction, assume that f ¢ B Jy,0 ¢ D,
but f* does not satisfy @ in B* Now 1@ is logically equivalent to a con-
junction of atomic formulas and is in I" in view of (i) and (iii). Hence,
Ji0 €D, and 50 0 =dJy0 N Jyme € D, which contradicts the assumption
that @ is proper. Finally, consider the case where @ has the form
T10yV...V10,_ V O,, where each 0,, p < is atomic. Again assume
that e B°, Jye €D, but f* does not satisfy @ in B* Let ¥ be the
formula GyA...AG,_;. Clearly, f* must satisfy ¥ in B* and since
Wel, we conclude that JyweD. Notice that Jye, D Jye ~Jywe D;
hence, Jyo, € D. But O, I, and so f* satisties @, in B* This last state-
ment obviously contradicts our assumption that f* does not satisty @
in B* which completes the proof of (iv).

To prove (v), assume that D is prime and @ eI The equation
Jjae = I~dJze shows that if @ is prime, then JiseD if and only
I Jyo¢ D. That 7@ eI' now easily follows. It also follows from this
equivalence that if ¥ is any formula such that ¥, 7% eI'’, then ¥e I
Take the case where ¥ is the formula \/v:®. From (iii) we know that
Pel', but 10 el'CI’, a3 we have just seen; hence Avs 1D eI by
(iii) again. Since ¥ is logically equivalent to Av:®, we have "W e I'
and ¥ eI, as was to be shown. The proof of the lemma is now complete.

As a direct consequence of Lemma 2.1, we have our first basic result
that shows how the true sentences of a prime product are related to the
sentences true in the factors.

TEROREM 2.2. If D is a prime dual ideal over I and D is a sentence
(of I®), then @ is true in By<A,: i eIy if and only if Gel: @ is true
in W} eD.

Clearly if a sentence is true in all the factors, then it is true in
a prime product. Of course, the converse need not hold. From 2.2, we
may easily derive two corollaries. '

CoROLLARY 2.3. Every EC, is closed under the formation of prime
products.

CoROLLARY 2.4. If D is a prime dual ideal over I, and if W; = B;
for eI, then Pz ie Iy =PBp<(B,: ieI).

In other words, prime products preserve elementary equivalence.
Actually 2.4 is a special case of Theorem 5.1 in Feferman-Vaught [3].
From the argument given in [3], p. 77, it is easily seen that not only
does 2.4 hold for arbitrary 9, but also reduced products preserve elementary
embeddability. For the case of a prime D, the argument via 2.1 seems

©
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to be the most direct; but for general X, 2.1 is not quite strong enough
and the method of [3] embodied in their Theorem 3.1, of which our 2.1
is a simplified version, would appear to yield the proper approach.
Corollary 2.3 is due to X.0f and is stated by him without proof as (2.6)
in [29], p. 105. Notice that the sense of the word “‘closed” in 2.3 can be
rather freely interpreted; that is, if K ¢EC,, then to conclude that
Py iel> K we need only assume that {ieI: A, e K} eD. This
follows from 2.2 or from the stricter version of 2.3 together with 1.3.
For the case of Horn classes, 2.1 has further consequences.

As a different kind of corollary of 2.2 we may derive a purely algebraic
result about the finite subsystems of a prime reduced product which
could have been easily proved in a direct way as was done in similar
cases in Section 1.

COROLLARY 2.3.If D is a prime dual ideal over I and B is finite system,
then B is embeddable in Pp W i e I if and only if {iel: B is embed-
dable U} e D. :

Proof. Noting that with each finite system B there is associated
in an obvious way a sentence @ such that @ is true in a system € if and
only if B is embeddable in €, we may apply 2.2 at once.

THEOREM 2.6. If D is a proper dual ideal over I and if the sentence @
is a Horn formula true in U, for each i e I, then @ is true in Py A ield.

COROLLARY 2.7. Every HC, is closed under the formation of proper
reduced products.

Inasmuch as direct products are special cases of reduced products,
2.6 and 2.7 generalize the results of Horn [10] as well as Theorem 1 of
Chang-Morel [1]. 2.7 was first noted by Chang. Generalizations about
Horn classes need be carried no further, for Keisler in [15] has proved
(under the assumption of the continuum hypothesis) that if an EC, is
closed proper reduced products, then it is necessarily an HCj..

Corollary 2.3 may be strengthened as follows by going back to 2.1.

TaEOREM 2.8. Every QC, is closed under the formation of primeproducts.

Proof. Let 4 be a set of formulas of the language I and suppose
that 4 is simultaneously satisfiable in ; for each 7 ¢ I. Using the axiom
of choice eonstruet an «-termed sequence f of elements of the direct product
of the U; such that 7' (i) satisfies all formulas of 4 in Uy, for 4 ¢ L. Tf D is
any prime dual ideal over I, then by 2.1 we see that f* must satisfy all
formulas of 4 in Py A i e DD,

As a corollary of 2.8 and 1.16 we may obtain the theorem of
Henkin ([8], p. 414): -

CoroLLARY 2.9. If K eQC, and each finite subsystem of U is em-
beddable in some system K, then U is embeddable in some system in K.
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The conclusions of 2.8 and 2.9 also hold for the classes PC, introduced
in Tarski [40], p. 584. Since we shall not state any applications of these
more general facts, and since the proof would require extending the
formal language to include several relational symbols, we shall not
give these theorems here. Instead we now turn our attention to the
proof of the so-called compaciness theorem for elementary classes (cf. [39]),
which turns out to be very easy when prime products are employed. In
terms of classes the theorem gtates that if F C EC, is a non-empty family
with the finite intersection property, then (| F % 0. To emphasize the role
of the prime products, we shall state the equivalent version in terms of
sentences.

THEOREM 2.10. If ¥ is a set of sentences such that every finite subset
has a model, then ¥ has a model.

Proof. Without loss of generality we may suppose that ¥ is closed
under the formation of finite conjunctions. Let ¥ = {&;: ¢ ¢ I}. Suppose
that systems %; are chosen so that U; is a model of @; for each i e I. We
wish to construct a prime ) over I such that P (A: ¢ eI) is a model
of ¥. To this end for each j eI let

Ji={iel: W; is o model of D;}.

Since j eJj, J; #0, and J; ~nJy =J7, where 1 is chosen so that @A Dy
is the sentence @;. Whence, we see that there is a prime dual ideal @
containing all the J;. From 2.2 it follows at once that each &; is true
in Pop<W;: e I); hence Po<A,: ¢ eI) is indeed a model of ¥.

Notice that in the above proof no other fact about the systems U;
was used except that for each 7 e I, @; is true in ;. In previous proofs
of 2.10 there was no very obvious algebraic or structural comnection
to be seen relating the U; to the final model of X. From our proof it is
apparent that formation of the prime product supplies just such an
algebraic connection. In the case of denumerable sets of sentences one
pas even greater freedom in choosing a prime product than was indicated
in th‘e a,bqve proof. For if <P,: » < w) is any w-sequence of sentences
@d if %, is a model of GyA...AD,, for each » < w, then Py <A: v < w)
wﬂ.l be a model of {,: » < w} whenever @ is any non princ{pa,l dual
prime ideal over . Notice also that in 2.10 if ¥ is a class of Horn sen-
teneeg, then instead of a prime ideal we may simply take the least ideal D’
containing the J; and the reduced product P <A,z 1€ I> is a model
of ¥. This avoids one application of the axiom of choice, but the proof
of 2.1, upon which the suceess of the construction depends, requires
the axiom of choice.

.The full strength of 2.1 still has not been used, for, with the ex-
ception of 2.8 and 2.9, the above results refer to the truth of sentences
rather than the satisfaction of formulas. The extra information contained
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jn 2.1 is best exposed by means of the notion of an elementary
extension.

THEOREM 2.11. If D is a prime dual ideal over I, then U is elemen-
mentarily embeddable in A,.

Proof. We shall show that the canonical embedding of U into %,
mentioned in connection with 1.18, is the required embedding. Let
% = (4, R, and let 1 be the function from A into the cartesian power
gnch that h(a) =<a: ieI) for a e A. If fe A® is an a-termed sequence
then (hf)* is the corresponding sequence of elements of QLID , where hf
represents the composition of the two functions. Assume now that f e A*
and f satisties @ in 9. We must show that (kf)* satisfies & in %5 In view
of 2.1 it is sufficient to show that Jye ¢ D. Notice that for each eI,
(hf)¥(3) = f. Hence, Ja,0 = I, and the conclusion follows.

TaroREM 2.12. If A =B, then A is elementarily embeddable in some
prime power of B.

Proof. Let A = <4, R) and B = (B, §). Choose an ordinal ¢ > o
so that |a| > || Let f < A° be a sequence whose range is all of A. The
set of all formulas of L° has cardinality |a|. Consider those formulas
satistied by f in 9; they may be arranged in a sequence <@ eI,
where |I| < [a]. Now % = B, and it easily follows that corresponding to
each eI there is a sequence g; ¢ B* such that g; satisfies @; in B. For
eachj e I, let J; = {i e I: g; satisfies @; in B}. Clearly j J;, and so Ji #0.
If j, j' e I, then | satisfies ®;APy in A; whence, for some % e I, @y is the
formula @;ADy. From the definition we see that Jr =J;~ Jy; thus the
family {J;: j e I} is closed under finite intersections. As usual, this family
can be extended to a prime dual ideal @ with J; € D for j e I. It is to
be shown that 9 is isomorphic to an elementary subsystem of %50. Let b
be the a-termed sequence of elements of B! such that 3" (4) = g;. Let h*
be the corresponding sequence of elements of BY. From 2.1 we know
that for any formula ¥, the sequence h* satisfies ¥ in 23;12, if and only if
i eI: BY(4) satisfies ¥ in B} eD. It follows at once that for all j eI,
I* satisties @, in %fz,. Among the formulas @,, we find the formula v, =7,
it f(£) =f(n), or the formula —w;=wv,, if f(£)# (). Hence, for
£, < a, we have f(£) =f(n) if and only if h*(£) = h*(n). By a similar
argument we show that, for &,7,{<a, R(f(é),f(n),f(t)) if and only
it §4(h*(&), B*(n), 7*(¢)), where S* is the relation. of ‘BI@. In other words
the correspondence of an element f(&) of A with k*(§) yields an embedding
of U into BL. Let € be the subsystem of B whose set of elements is
the range of h* The isomorphism exhibited above means that h* satis-
fies ¥ in G if and only if f satisfies ¥ in ¥, for any formula ¥, On the
other hand, by construetion we know that f satisfies ¥ in % if and only
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if h* satisties ¥ in BY). Since h* exhausts the elements of §, these equiv-
alences prove that 23{7) is an elementary extension of €.

In the case that % is an elementary extension of B, Kochen hag
pointed out that the conclusion of 2.12 can be strengthened. Namely,
in the proof we can simply take g;(&) = f(£), whenever f(&) e B, which
has the consequence that the restriction of the embedding of % in QS"Q,
to the subsystem B is nothing more than the canonical embedding of B
in %é,, Kochen has inade use of this fact in connection with his ‘““limif
ultrapowers” introduced in [24].

Keigler has proved, with the aid of the generalized continuum hypo-
thesis, & much stronger result than 2.12 in [21], where he shows that
it % = B, then for some I and for some P prime over I, A = BL,. As
a consequence of this superior result, we see that %A = B if and only
if & and B have isomorphic prime powers; hence a purely algebraic model
theoretic characterization of elementary equivalence i obtained. Un-
fortunately Keisler’s interesting method seems to involve the generalized’
continuum hypothesis in an essential way, so the weaker result of 2.12
still hag some interest. However, without use of the continuum hypothesis
‘I:O_th' Eeisler in [12] and Kochen in [24] show that a suitable notion of
hn.nt ultrapower” yields an algebraic characterization of elementary
equivalence.

The next three results show how prime products can be used to give
characterizations of various kinds of classes which were defined origi-
nally in a metamathematical way.

- TeROREM 2.13. In order that a class K of relational systems be in ECy
it 18 mecessary and sufficient that:

Q) K '%'s closed under the formation of prime products;

(i) K s closed under elementary equivalence.

- Proof. The necessity of (i) and (ii) follows from 2.3 and the defi-
nition of elementary equivalence. Assume now that K satisties (i) and (ii)
and let % be a model of the set of sentences true of every system in K,
»_We must show that % e K. Let all the sentences true in A be arranged.
In a sequence {@:: ieI). For each eI, we may choose a system B; e K
in w].uch ®; is true, since otherwise —19; would hold throughout Kla.nd
also in ?I.‘For each je I, let J; = {i e I: ®; is true in B:}. As in our other
proofs, 11'3 18 easy to show that the family of sets {/5: 1 € I} hag the finite
intersection property and is thus contained in a prime dual ideal D over I.
I(;/leaglg ig‘%é%i: iel) e K and each @, i3 true in this prime producé
agw{;s.m bensclel:);r: conclude that U = Pp<B;: ieI>, and s0 AeK,

In view of 2.12, it should be noted that condition

replaced by the following: (1) of 2.13 can be

©
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(ii’) whenever WA is elementarily embeddable in a system in K, then
AeK;
because (i) and (ii’) together imply (i), which in turn implies (ii’).
The result of Keisler [21] mentioned above (assuming the generalized
continuum hypothesis) shows that (ii) may also be replaced by this con-
dition:

(") whenever D is prime over I and 2[5,, is isomorphic to a system

in K, then NeK.
Using the notation K for the complement of K in the class of all systems,
this consequence of Keisler’s result can easily be stated in words: K ¢ EC,4
if and only if K is closed under isomorphism and prime products, and K
is closed under prime powers.

From the compactness theorem (2.10) it follows that K eEC if
and only if both K, K <« EC, (cf. Tarski [39], p. 714). Hence, 2.13 leads
to a characterization of classes in EC.

COROLLARY 2.14. In order that a class K of relational systems be
in EC it s necessary and sufficient that conditions (i) and (ii) of 2.13 as
well as the following hold:

(iii) whenever D s prime over I and Pp<WAs i eI> K, then for
some i eI, WLy e K.

In other words, (ili) means that K is closed under prime products.
From Keisler’s result mentioned above, we see that (under the continuum
hypothesis) condition (ii) of 2.13 can be replaced by the condition that K
is closed under isomorphism.

In [40], Tarski has introduced the notion of a wniversal class (uc
and UC,) meaning & class characterized by (prenex) universal sentences,
and he has shown that K e UC, if and only if K ¢ EC, and K is closed
under the formation of subsystems. Combining 2.12 and 2.13, we derive
the characterization of such classes first obtained by Xiof [29] for algebraic
systems.

COROLLARY 2.15. In order that a class K of relational systems be in
UC, it is necessary and sufficient that K be closed under the formation
of prime products, subsysiems, and isomorphic images.

Tt is also possible to characterize quasi-elementary classes in a style
similar to the theorems just given.

THEOREM 2.16. In order that a class K of relational systems be in
QC, it is necessary and sufficient thai:

(i) K is closed under isomorphism;
(ii) K is closed under the formation of prime products;
(i) K 4s closed wnder the formation of elementary extensions;
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(iv) there is o cardinal number m such that every system in K has
an elementary subsystem in K of cardinality at most m.

Proof. That (i), (i), and (iil) are necessary easily follows from the
definition of QC, aud 2.8. The necessity of (iv) is a consequence of the
definition and the Liwenheim-Skolem theorem as given in Targki-
Vaught [42]. Note that m may be taken as the cardinality of the set of
formulas of L, where K « QCY.

Now assume that K satisfies the stated conditions. Let (i 4e¢I>
be a sequence of systems in K such that any system of K of cardinality
at most m is isomorphic to some system in the sequence. Let A; = <4;, B>
for ieI, and choose a>w so that |a| > |P<WU: teIy|. Let f be an
a-termed sequence whose range is all of P(A4;: i« I>. Let ¥ be the set
of those formulas & of L such that j'(i) satisfies ® in A4, for all {¢I.
We wish to show that ¥ characterizes K. Suppose then that B = (B, 8>
is a relational system, and that g ¢ B® satisfies all formulag of ¥ in’ B.
Let ¥’ be the set of all formulas satisfied by g in B. For each @ e ¥
let t{@ = {ieI: {'(i) satisfies ® in W;}. If J, were empty, then —1® wouldi
be in ¥, which is impossible because ¥ C ¥’. Also, if @, ¥ ¢ X', then
?A'Te.)." and Jeay =Jo nJw. Hence, the family {Jp: @ ¢ X'} h;,s the
ﬁmt.e intersection property and can be extended to a prime dual ideal @.
Notice that by construction if f(£) =g, f(n) for &, 7 < a, then g(£) = g(%)
becau.se the formula v; = v, must be in ¥. Thus there is a well-defined
f!m(.:tlon hon P4, ieI) such that h(f(&)*) = g(£). By an argument
similar 'fo that used in 2.12, it is easily checked that & yields an elementary
embed@g of Bop<W,: iely into B. Therefore BeK. Finally, since
by cor}dltion (iv) each system in K has an elementary subsyste’m iso-
mo_rplnc to one of the U;, it follows that each system in K has a sequence
satisfying all of the formulas in ¥, and the proof is complete.

At‘ last it is time to indicate some examples of reduced products.

In stating these examples we shall freely refer to relational systems with

several relations, even though, strictly speaking, our results have only

been prov'ed for systems with one ternary relation. We may also use

:ziifl;lstzx; opefal:lions. Fgr a binary operation, say, may be identified
ry relation, and to say th i i

that <4, R) is a moé'le’l for the sinteiif ¥ o operation over 4 means

A AN 1 A25[R (0, vy, vg)rv, = 7] .

gllwc;h:: s;an‘tence is (logically equivalent to) a Horn sentence; hence,
e of ‘operational’ systems (or algebras) is cl
mation of reduced products. ! 3 losed under the o
The class of Boolean algebras can b
] . " e construed as a class of systems
with one binary operation. Lgt A be the two-element Boolean a{gebra.
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As is well-known, the direct power 917 is isomorphic to the Boolean algebra
of all subsets of the set I. It is easy to check that if @ is a dual ideal
over I, then ‘)IIZ, is isomorphic to the quotient algebra of sets modulo D
in the usual sense of ideal theory in Boolean algebras. Of course, if @
is prime, then %LIZ, =~ 9, as we have shown in general in 1.20. The method
employed in Chang-Morel [1] was, in effect, to notice that if B is an in-
finite atomistic Boolean algebra, then the reduced powers of B need
not be atomistic. Conclusion: the class of atomistic Boolean algebras
(an EC) though closed under direct products is not a Horn class.
A zero system is a model of the Horn sentence

A Av AP R (05, Vyy V) -

Hence, 1.6 is a special case of 2.7. We gave the direct argument in Section 1
because zero systems afforded a device for making deductions about
the cardinalities of reduced powers, and we wished to illustrate some of
the simple methods for handiing them.

The class of commutative fields is an EC, which is not an HC,, be-
canse it is not closed under direct products. The class is closed under
prime products by 2.3, and in this case the prime product has an easy
interpretation. Namely, if %;, ¢eI, are fields, then the prime products
of the 9; are exactly the quotients of the ring P<As: i eI) by prime
(= maximal, in this case) ideals. As indicated by Scott in [33], if the s
are merely integral domains, then the prime products are obtained by
dividing the direct product by minimal prime ideals. Suppose that U is
the field of real numbers. The class of real-closed fields is an EC. Since A
is real-closed, so is every quotient field of 97 for every index set I. This
conclusion is also a special case of a theorem of Hewitt [9]: Suppose the A;
run through all the finite fields and D is pon-principal and prime over I;
then Py ield is a non-denumerable field which satisfies all prop-
erties (which can be formulated in L) shared by all finite fields. For
example, every element of this field must be the sum of two squares,
but the field need not be algebraieally closed. In this algebraic context
the result of Keisler [21] mentioned after 2.12 has a striking consequence.
Let us say that two fields are equivalent if some quotient field of a direct
power of the first is ijsomorphic to a quotient of a direct power of the
second. Keisler’s metamathematical argument shows that the relation
of being equivalent is an equivalence relation (in particular that it is
transitive). This is a purely algebraic result discovered on metamathe-
matical grounds. The metamathematical approach also gives additional

- information: from algebraic insight alone would it be clear that there
are at most 2% equivalence classes under this relation?

Wext consider the class of systems simply ordered by a (binary)
relation. Again this elass is an EC that is not an HC. Let U be the system
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of rational numbers with their natural ordering. The system A satisfies
the additional condition of being dense in its ordering. Since these con-
ditions can be formulated in L(“’), every prime power of U is also densely
ordered. Let |I| = §, and D be a non-principal prime ideal over I. The den-
sely ordered system QLID has the further (non-elementary) property of being
an 7;-set in the sense of Hausdorff {7]. This phenomenon is not an isolated
example, for Keisler in [19], [20] has defined a notion of N,-repleteness
for arbitrary relational systems, which can be viewed as a generalization
of the notion of 7,-sets for ordered systems, and he has shown that large
numbers of reduced products are N,-replete. Thus Hausdorff’s con-
struction and some of the results of Erdos-Gillman-Hendriksen [2] then
appear as special cases of a general procedure based on Keisler's method.
Finally, inasmuch as 2.13 gives a characterization of classes in EC,,
we shall demonstrate how prime products may be used to prove that
certain classes are not in EC,. For simplicity we shall restrict attention
to subclasses of the class G of all groups. Let FN be the class of finite
groups; TF the class of torsion free groups (i.e., no element of finite order);
TN the class of torsion groups (every element of finite order); SM the
class of simple groups; and FR the class of free groups with at least two
generators. To show that FN ¢ EC,, let groups %, » < w, be chosen
50 that |»] < |W| < §,. If D is a non-principal prime dual ideal over o,
then by 1.28, P<U: » < w) ¢ FN. Hence, apply 2.3. This construction
also shows FN ¢ PC,. The class TF is actually in EC,, but we shall
show that TF ¢ EC by the same construction that we use to show that
TN¢EC,. Let =, be the »th prime number, and for each » < o, this
time let U, be the cyclic group of order =,, a group in TN. Let D be any
non-principal prime dual ideal over w. We wish to gshow that
B=Pp<A: »<w)eTF. Let a be an w-sequence of elements, with
a(v) chosen from A. Suppose in B the element a* = aj=7 has order
>0, Clearly, {» <w: a(»/'=1,}e¢D, where 1, is the unit element
of %,. All sets in “D are infinite, so let a(v')* = 1,, where »' is chosen 50 that
7ty > p. It easily follows that s, divides 4, which is impossible. Hence,
B eTF, and obviously, since |B|=2%, B¢TN. On the other hand,
%] > 1 for each », so U, ¢ TF for » < w. The two desired conclusions now
follow from 2.3 and 2.14. These results have also been derived by Szmie-
lew in [37], Chapter 6, as applications of her decision method for the
theory of Abelian groups. We feel that our method is in some ways more
direct, but of course it is a completely non-constructive approach, while
Mrs. Szmielew’s arguments are of a finitary character. The proofs for FN,
TF, and TN can also be obtained in a direct way
a8 shown by Tarski in [39], pp. 716 1.
Turning now to simple groups, we shall show that SM is not closed
under elementary equivalence. This wags first proved by Tarski [39], p. 717,

without prime products -
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footnote 17, using some rather deep results about groups. Our method
of proof is to find a group in SM not all of whose prime powers are in SM,
and then to apply 2.11. The group needed is the infinite. aliernating group A
consisting of all finite even permutations of the set w. That U is simple
is mentioned in van der Waerden [43], pp. 149-150. Let D be any non-
principal prime ideal over w. We want to show that QL% ¢ SM. For this
purpose, let a = (0,1, .., 2v+2), and let a* =<a: » < w)/=;. The
argument is completed by showing that a* is not in the smallest normal
subgroup of 9[1_,\ generated by the image of U under the canonical em-
bedding of ¥ in A,

In the case of free groups we shall show that if % is the free group
on two generators, then some prime power of U is not free. Indeed almost
no prime powers of 2 are in FR. Let the generators of U be ¢ and b. Let
D be any non-principal prime ideal over w. Let a* = <a: v < w)[=; and
¢ = (a1 » < wy[=;. In the group QI?Z,, the elements a* and ¢* commute
but they do not He in a cyclie subgroup of QLIY,; hence, this group is not
free. This same argument, which was noticed jointly by Keisler and the
authors, would work for any index set and any prime ideal that was
not countably complete.

Appendix. Boolean spaces. It was first noted by Tarski [39]
that the space of elementary types is a topological space and that the
compactness theorem for elementary classes corresponds exactly to the
topological compactness of this space. The proof of the eompaetn.ess
theorem given in 2.10 by means of prime products also has topological
significance, as will new be explained.

By a Boolean space we understand a totally disconnected compact
Hausdorff space. In a Boolean space the Boolean algebra of c}osed and
open subsets is a base for the topology. Boolean spaces are important
because the Stone representation theorem ghows that each abstract
Boolean algebra is isomorphic to the algebra of closed and open subsets
of a unique Boolean space (up to homeomorphism), and that every B.oolean
space is so obtained. Hence, the study of Boolean spaces is equivalent
to the study of Boolean algebras (cf, e.g., Kelley [22], pp. 1f38 £.).

We wish to show that the study of Boolean spaces is eqmvalent‘to
the study of spaces with an ‘‘ultralimit” operation (or “prime- }imlt”
to be consistent with the terminology of this paper.) To be specific, W.e
say that an operation lim is an ultmlimitlopemtion on a set (spa.c.e) X 1i
for every index set I, every sequence f ¢ X', and every prime dual ideal <D
over I, lim;f is defined and limgf ¢ X. A subset G c X is ca}led clopen
if for all sequences and ideals, limyf e C if and only if {i e I: (i) e Oy eD.
For points #,y « X, define x =y to mean that « and y belong to the
same clopen subsets of X. It is easy to verify that the clopen sets form
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a Boolean algebra of sets; that = is an equivalence relation; and that
each clopen set is the union of equivalence classes under =. Notice algo
that i 7, g e X7, and if for all i e I, f(i) = g(¢), then limyf = limgyg, for
any prime @ over I. In other words, the space X/= has an induced ultra-
limit operation, and the clopen subsets of X/= are exactly the sets O/=,
where ¢ is a clopen subset of X.

THEOREM A. If X has an wultralimit operation, then X|= with the
clopen sets as a base for a topology is a Boolean space whose closed and open
sets are exactly the original clopen sets.

Proof. Without loss of generality we may assume that the equiv-
alence relation = ig the identity relation. Hence, if @,y ¢ X are distinct,
then there is a clopen ¢ with # ¢ O and y e X~ C. It follows at once that
the topological space is Hausdorff and totally disconnected. To prove
compactness, we need only consider families  of basic closed-open sets
with the finite intersection property Take the family F and extend it
to 2 dual prime ideal @ in the algebra of all subsets of X. Let T =X
and let f ¢ X7 be the identity function. Let © = limsf; we wish to show
that e N F. Now if CeF, then {iel: f(i)e O} = C e D; hence, z¢C,
as was to be shown. Finally, if B is a subset of X which is both cloged
and open in the topology, then it is a union of clopen sets, which reduces
to a finite union by compactness. However, a finite union of clopen sets
is always clopen, and the proof is complete.

Next we wish to show that every Boolean space can be considered
a8 & space with an ultralimit operation in a unique way. Let X be a Boolean
space, and notice that every prime dual ideal in the algebra of all cloged
and open subsets of X has an intersection consisting of a single point.
This remark allows us to define an ultralimit operation on X. For let
Fe X and D be prime over I. Let € be the class of closed and open subsets
CC X such that {ieI: f(i) e 0} € D. Note that € is a prime dual ideal
in the algebra of closed and open sets, and define the limit so that
limgfe M €.

TrroREM B. If X is a Boolean space, then there is a unique ultralimit
operation over-X whose clopen sels are exactly the closed and open subsets
of X.

Proof. The definition of the ultralimit operation on X given above
implies at once that every C C X that is both closed and open is clopen
with respect to the limit. Could there be a clopen set that was not closed
and open in the topology? No. The topology determined by the clopen
sets by Theorem A is a compact Hausdorff topology with possibly more
open sets than the original compact Hausdorff topology on X. In view
of the maximality of such topologies (cf. Kelley [22], Theorem 5. 8, p. 141),
it follows that the two topologies are identical. Hence the defined Limit
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operation satisfies the condition of the theorem. Now suppose that Hm’
were another operation satisfying the condition. We would have for
fe X', and D prime over I that

flimf, £y = N{C C X: C dlopen and {i e I: §(i) e C} ¢ D)

and therefore, lim{) f = limpf. Thus the two operations are the same.

We may now speak of the ultralimit operation on a given Boolean
space X. It should be remarked that in the proof of Theorem B we have
actually shown that any ultralimit operation on X whose clopen sets .
include the closed and open sets of the given topology is the ultralimit
operation on X. Another useful fact is the characterization of the closed
subsets of X.

TaeorEM C. If X 48 a Boolean space, then the closed subsets of X
are exactly the sets closed under the uliralimit operation on X.

Proof. By definition every clopen subset is closed under the ultra-
limit operation. Every closed set is an intersection of clopen sets; hence,
closed sets are closed under the operation. Suppose now that B C X is
closed under the operation. Let # be a point in the topological closure
of B, and let <Ci: 7 € I)> be a sequence constisting of all the clopen sets
containing #. By hypothesis, B~ C;# 0 for iel. Applying the axiom
of choice, let f(i) e B ~ O; for each ieI. Corresponding to each j eI,
let J; = {i e I: C;C C;}. The family of all the C; is closed under finite
intersections, and so it is easy to conclude that the family of all the J;
has the finite intersection property. Let D be prime over I with J; € D for
jelI. Let y =limgpf, a point in B. If it were the case that y # x, then
there would be a C; with ¢ C; and y ¢ 0;. On the other hand {ieI:
1(4) € 0;} includes the set J; and hence is in . This means that impf € C;.
The contradiction proves that # = y and z ¢ B. In other words B is closed,
as was to be shown.

ExampLe 1. Let A be a set and let X be the set of all subsets of 4.
‘We may easily define an ultralimit operation on X in a direct way. If f e x7
and D is prime over I, let

limgf ={aed: {iel: acf(i)}eD}.

It is a simple exercige to verify that this opera:tmn on X yields the topology
obtained by identifying X with the space 24 with the usual product
topology.

Exampre 2. For each relational systems, let =(%) denote the ele-
mentary type of U; whence (%) = =(%B) means that % and B are elemen-
tarily equivalent. Let X be the space of all elementary types. Define
the limit operation as follows:

limey <=(2,): 1€ Iy = «(PpUy: i e 1))
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Corollary 2.4 shows that this operation is well-defined in X. The import
of 2.2 is precisely that every class in EC corresponds to a clopen subset
of X (the correspondence is obtained by taking the image of a clags in EC
under =.) Notice that there are enough clopen sets corresponding to classes
in EC to separate distinct points of X. It follows at once from Theorem A
that X itself (without introducing an equivalence relation) is a Boolean
space with the topology induced by the limit operation. Further, in any
Boolean space, a subalgebra of the algebra of clopen sets which is adequate
for separating points must be the whole algebra of clopen sets. This remark
proves 2.14. From this point of view, 2.13 is now a corollary of Theorem C,
and 2.10 is a corollary of Theorem A.

ExXAMPLE 3. Instead of elementary types, one might consider the
space of isomorphism types of relational systems. By 1.12, there is a well-
defined ultralimit- operation in this space. When we apply Theorem A

t0 this case it is necessary to introduce an equivalence relation to obtain

a Boolean space. The result of Keisler [21] mentioned after 2.12 shows
that this relation is nothing more than the relation of elementary equiv-
alence, and so the same space is obtained as in Txample 2.
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On ramification points in the classical sense
by - '
J. J. Charatonik (Wroctaw)

Introduction. I call any point p of an arbitrary point set X
a point of order v in the classical sense—or here briefly a point of order r—
if p is a unique common end-point of every two of exactly r simple ares
contained in X. A point of order > 3 will be called a ramification point ().

Hilton and Wylie (see [1] (), p. 380) constructed for every mapping
f: X—>Y a space Y; called a mapping cylinder of f. We may understand
Y; as a cylinder with X as its top and with its base embedded in Y, the
generators being segments connecting a point z ¢ X with its image f(z) ¢ Y.

The first purpose of this paper is to prove that for each continuum @
and for each continuous mapping f of the Cantor set onto @ the mapping
cylinder K, of f can be realized in the Euclidean space of dimension
2dim @ + 3 as a’continuum which is a union of straight segments, disjoint
one from another out of ¢ and such that ¢ is the set of all ramification
points of the continuum K. Namely one can place a cell I* and a straight
line L in the (k--2)-dimensional Euclidean space so that this straight
line and the %-dimensional hyperplane containing the cell are skew,
i.e. that there is no hyperplane of dimension k<41 which contains both
those objects. Then the straight segments joining arbitrary points of
the straight line I with arbitrary points of the cell I* have at most the
end-points in common. We then obtain the continuum K, by placing
the Cantor set O in the straight line as well as the continuum @ = f(C)
in the cell I¥, and by joining every point @ « ¢ with its image y = f(z) @
by the straight segment.

A further result is a construction of another two continua, namely
the continuum K, having the same property, but in which the order
of each ramification point is 2““, and the continuum K,, in which the

(*) A methodical investigation of sets of ramification points in the classical sense
in the continua, i.e. in compact and connected metric spaces, was initiated by Professor
B. Knaster in his Topological Seminar in Wroctaw (Institute of Mathematics of the Polish
Academy of Sciences). I am indebted to him for the project of this paper and for the
idea of the proof of Theorem 1. He suggested also the existence of the singularity realized
in the final part of this paper (see the dendroid A).

(%) The numbers in brackets denote the references, pp. 251 and 252.
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